astconv.rs 86.7 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20
//! `AstConv` instance; in this phase, the `get_item_type()`
//! function triggers a recursive call to `type_of_item()`
21 22
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
23 24
//! `AstConv`, `get_item_type()` just looks up the item type in
//! `tcx.types` (using `TyCtxt::item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use rustc_const_eval::eval_length;
52
use rustc_data_structures::accumulate_vec::AccumulateVec;
53
use hir;
54
use hir::def::Def;
55
use hir::def_id::DefId;
56
use middle::resolve_lifetime as rl;
57
use rustc::lint;
58
use rustc::ty::subst::{Kind, Subst, Substs};
59 60 61
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, ToPredicate, TypeFoldable};
use rustc::ty::wf::object_region_bounds;
62
use rustc_back::slice;
63
use require_c_abi_if_variadic;
64
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
65 66
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope,
             ElisionFailureInfo, ElidedLifetime};
67
use rscope::{AnonTypeScope, MaybeWithAnonTypes};
68
use util::common::{ErrorReported, FN_OUTPUT_NAME};
69
use util::nodemap::{NodeMap, FxHashSet};
70

71
use std::cell::RefCell;
72
use std::iter;
N
Niko Matsakis 已提交
73
use syntax::{abi, ast};
74
use syntax::feature_gate::{GateIssue, emit_feature_err};
75
use syntax::symbol::{Symbol, keywords};
76
use syntax_pos::Span;
77
use errors::DiagnosticBuilder;
78

79 80
pub trait AstConv<'gcx, 'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
81

82 83 84
    /// A cache used for the result of `ast_ty_to_ty_cache`
    fn ast_ty_to_ty_cache(&self) -> &RefCell<NodeMap<Ty<'tcx>>>;

85 86 87 88
    /// Returns the generic type and lifetime parameters for an item.
    fn get_generics(&self, span: Span, id: DefId)
                    -> Result<&'tcx ty::Generics<'tcx>, ErrorReported>;

89 90
    /// Identify the type for an item, like a type alias, fn, or struct.
    fn get_item_type(&self, span: Span, id: DefId) -> Result<Ty<'tcx>, ErrorReported>;
91

92 93
    /// Returns the `TraitDef` for a given trait. This allows you to
    /// figure out the set of type parameters defined on the trait.
N
Niko Matsakis 已提交
94
    fn get_trait_def(&self, span: Span, id: DefId)
95
                     -> Result<&'tcx ty::TraitDef, ErrorReported>;
N
Nick Cameron 已提交
96

97 98 99
    /// Ensure that the super-predicates for the trait with the given
    /// id are available and also for the transitive set of
    /// super-predicates.
N
Niko Matsakis 已提交
100
    fn ensure_super_predicates(&self, span: Span, id: DefId)
101 102 103 104
                               -> Result<(), ErrorReported>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
105 106
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
107

N
Nick Cameron 已提交
108 109 110 111
    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
112
    fn get_free_substs(&self) -> Option<&Substs<'tcx>>;
113

114
    /// What type should we use when a type is omitted?
115 116 117 118 119
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;

    /// Same as ty_infer, but with a known type parameter definition.
    fn ty_infer_for_def(&self,
                        _def: &ty::TypeParameterDef<'tcx>,
120
                        _substs: &[Kind<'tcx>],
121 122 123
                        span: Span) -> Ty<'tcx> {
        self.ty_infer(span)
    }
124

125 126 127 128 129 130 131 132 133 134 135
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
136
                                        -> Ty<'tcx>;
137 138 139 140 141

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
142
                    _trait_ref: ty::TraitRef<'tcx>,
143
                    _item_name: ast::Name)
N
Nick Cameron 已提交
144
                    -> Ty<'tcx>;
145 146 147 148 149 150

    /// Invoked when we encounter an error from some prior pass
    /// (e.g. resolve) that is translated into a ty-error. This is
    /// used to help suppress derived errors typeck might otherwise
    /// report.
    fn set_tainted_by_errors(&self);
151 152
}

153 154 155 156 157 158
struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

159 160 161 162 163
/// Dummy type used for the `Self` of a `TraitRef` created for converting
/// a trait object, and which gets removed in `ExistentialTraitRef`.
/// This type must not appear anywhere in other converted types.
const TRAIT_OBJECT_DUMMY_SELF: ty::TypeVariants<'static> = ty::TyInfer(ty::FreshTy(0));

164 165 166
pub fn ast_region_to_region<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            lifetime: &hir::Lifetime)
                                            -> &'tcx ty::Region {
167
    let r = match tcx.named_region_map.defs.get(&lifetime.id) {
168 169
        None => {
            // should have been recorded by the `resolve_lifetime` pass
170
            span_bug!(lifetime.span, "unresolved lifetime");
171
        }
172

173
        Some(&rl::DefStaticRegion) => {
174
            ty::ReStatic
175 176
        }

177
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
178 179 180 181 182 183 184 185 186 187 188 189 190 191
            // If this region is declared on a function, it will have
            // an entry in `late_bound`, but if it comes from
            // `for<'a>` in some type or something, it won't
            // necessarily have one. In that case though, we won't be
            // changed from late to early bound, so we can just
            // substitute false.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
            ty::ReLateBound(debruijn, ty::BrNamed(tcx.map.local_def_id(id),
                                                  lifetime.name,
                                                  issue_32330))
192 193
        }

194
        Some(&rl::DefEarlyBoundRegion(index, _)) => {
195 196 197 198
            ty::ReEarlyBound(ty::EarlyBoundRegion {
                index: index,
                name: lifetime.name
            })
199 200
        }

201
        Some(&rl::DefFreeRegion(scope, id)) => {
202 203 204 205 206 207 208
            // As in DefLateBoundRegion above, could be missing for some late-bound
            // regions, but also for early-bound regions.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
209
            ty::ReFree(ty::FreeRegion {
210
                    scope: scope.to_code_extent(&tcx.region_maps),
211
                    bound_region: ty::BrNamed(tcx.map.local_def_id(id),
212 213 214 215 216
                                              lifetime.name,
                                              issue_32330)
            })

                // (*) -- not late-bound, won't change
217 218 219
        }
    };

220 221
    debug!("ast_region_to_region(lifetime={:?} id={}) yields {:?}",
           lifetime,
222
           lifetime.id,
223
           r);
224

225
    tcx.mk_region(r)
226 227
}

228
fn report_elision_failure(
229
    tcx: TyCtxt,
N
Nick Cameron 已提交
230
    db: &mut DiagnosticBuilder,
231 232 233 234
    params: Vec<ElisionFailureInfo>)
{
    let mut m = String::new();
    let len = params.len();
235

236 237 238 239 240 241 242
    let elided_params: Vec<_> = params.into_iter()
                                       .filter(|info| info.lifetime_count > 0)
                                       .collect();

    let elided_len = elided_params.len();

    for (i, info) in elided_params.into_iter().enumerate() {
243
        let ElisionFailureInfo {
244
            parent, index, lifetime_count: n, have_bound_regions
245 246
        } = info;

247 248
        let help_name = if let Some(body) = parent {
            let arg = &tcx.map.body(body).arguments[index];
249
            format!("`{}`", tcx.map.node_to_pretty_string(arg.pat.id))
250
        } else {
251
            format!("argument {}", index + 1)
252 253 254 255 256 257 258 259 260
        };

        m.push_str(&(if n == 1 {
            help_name
        } else {
            format!("one of {}'s {} elided {}lifetimes", help_name, n,
                    if have_bound_regions { "free " } else { "" } )
        })[..]);

261
        if elided_len == 2 && i == 0 {
262
            m.push_str(" or ");
263
        } else if i + 2 == elided_len {
264
            m.push_str(", or ");
265
        } else if i != elided_len - 1 {
266 267
            m.push_str(", ");
        }
268

269
    }
270

271
    if len == 0 {
272 273 274 275 276
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    there is no value for it to be borrowed from");
        help!(db,
                   "consider giving it a 'static lifetime");
277
    } else if elided_len == 0 {
278 279 280 281 282 283 284
        help!(db,
                   "this function's return type contains a borrowed value with \
                    an elided lifetime, but the lifetime cannot be derived from \
                    the arguments");
        help!(db,
                   "consider giving it an explicit bounded or 'static \
                    lifetime");
285
    } else if elided_len == 1 {
286 287 288 289
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say which {} it is borrowed from",
                   m);
290
    } else {
291 292 293 294
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say whether it is borrowed from {}",
                   m);
295 296 297
    }
}

298
impl<'o, 'gcx: 'tcx, 'tcx> AstConv<'gcx, 'tcx>+'o {
299 300 301
    pub fn opt_ast_region_to_region(&self,
        rscope: &RegionScope,
        default_span: Span,
302
        opt_lifetime: &Option<hir::Lifetime>) -> &'tcx ty::Region
303 304 305 306 307
    {
        let r = match *opt_lifetime {
            Some(ref lifetime) => {
                ast_region_to_region(self.tcx(), lifetime)
            }
308

309
            None => self.tcx().mk_region(match rscope.anon_regions(default_span, 1) {
310 311
                Ok(rs) => rs[0],
                Err(params) => {
312 313 314 315 316 317
                    let ampersand_span = Span { hi: default_span.lo, ..default_span};

                    let mut err = struct_span_err!(self.tcx().sess, ampersand_span, E0106,
                                                 "missing lifetime specifier");
                    err.span_label(ampersand_span, &format!("expected lifetime parameter"));

318
                    if let Some(params) = params {
319
                        report_elision_failure(self.tcx(), &mut err, params);
320 321 322
                    }
                    err.emit();
                    ty::ReStatic
323
                }
324
            })
325
        };
326

327 328 329
        debug!("opt_ast_region_to_region(opt_lifetime={:?}) yields {:?}",
                opt_lifetime,
                r);
330

331 332
        r
    }
333

334 335 336 337 338
    /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
    /// returns an appropriate set of substitutions for this particular reference to `I`.
    pub fn ast_path_substs_for_ty(&self,
        rscope: &RegionScope,
        span: Span,
339
        def_id: DefId,
340
        item_segment: &hir::PathSegment)
341
        -> &'tcx Substs<'tcx>
342 343 344
    {
        let tcx = self.tcx();

345 346
        match item_segment.parameters {
            hir::AngleBracketedParameters(_) => {}
347
            hir::ParenthesizedParameters(..) => {
348 349 350 351 352
                struct_span_err!(tcx.sess, span, E0214,
                          "parenthesized parameters may only be used with a trait")
                    .span_label(span, &format!("only traits may use parentheses"))
                    .emit();

353
                return Substs::for_item(tcx, def_id, |_, _| {
354
                    tcx.mk_region(ty::ReStatic)
355 356
                }, |_, _| {
                    tcx.types.err
357
                });
358
            }
359 360 361 362 363
        }

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_path(rscope,
                                            span,
364
                                            def_id,
365 366
                                            &item_segment.parameters,
                                            None);
367

368
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
369

370
        substs
371
    }
372

373 374 375 376 377 378
    /// Given the type/region arguments provided to some path (along with
    /// an implicit Self, if this is a trait reference) returns the complete
    /// set of substitutions. This may involve applying defaulted type parameters.
    ///
    /// Note that the type listing given here is *exactly* what the user provided.
    fn create_substs_for_ast_path(&self,
379 380
        rscope: &RegionScope,
        span: Span,
381
        def_id: DefId,
382 383 384
        parameters: &hir::PathParameters,
        self_ty: Option<Ty<'tcx>>)
        -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
385 386 387
    {
        let tcx = self.tcx();

388
        debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
389
               parameters={:?})",
390
               def_id, self_ty, parameters);
391

392
        let (lifetimes, num_types_provided, infer_types) = match *parameters {
393
            hir::AngleBracketedParameters(ref data) => {
394
                (&data.lifetimes[..], data.types.len(), data.infer_types)
395
            }
396
            hir::ParenthesizedParameters(_) => (&[][..], 1, false)
397 398
        };

399 400 401
        // If the type is parameterized by this region, then replace this
        // region with the current anon region binding (in other words,
        // whatever & would get replaced with).
402 403 404 405 406 407 408 409
        let decl_generics = match self.get_generics(span, def_id) {
            Ok(generics) => generics,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
410
        let expected_num_region_params = decl_generics.regions.len();
411
        let supplied_num_region_params = lifetimes.len();
412
        let regions = if expected_num_region_params == supplied_num_region_params {
413
            lifetimes.iter().map(|l| *ast_region_to_region(tcx, l)).collect()
414 415 416
        } else {
            let anon_regions =
                rscope.anon_regions(span, expected_num_region_params);
417

418 419 420 421 422
            if supplied_num_region_params != 0 || anon_regions.is_err() {
                report_lifetime_number_error(tcx, span,
                                             supplied_num_region_params,
                                             expected_num_region_params);
            }
423

424 425 426 427 428
            match anon_regions {
                Ok(anon_regions) => anon_regions,
                Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
            }
        };
429

430
        // If a self-type was declared, one should be provided.
431
        assert_eq!(decl_generics.has_self, self_ty.is_some());
432

433
        // Check the number of type parameters supplied by the user.
434 435 436
        let ty_param_defs = &decl_generics.types[self_ty.is_some() as usize..];
        if !infer_types || num_types_provided > ty_param_defs.len() {
            check_type_argument_count(tcx, span, num_types_provided, ty_param_defs);
437
        }
438

439 440 441 442 443 444 445 446 447
        let is_object = self_ty.map_or(false, |ty| ty.sty == TRAIT_OBJECT_DUMMY_SELF);
        let default_needs_object_self = |p: &ty::TypeParameterDef<'tcx>| {
            if let Some(ref default) = p.default {
                if is_object && default.has_self_ty() {
                    // There is no suitable inference default for a type parameter
                    // that references self, in an object type.
                    return true;
                }
            }
448

449 450 451 452
            false
        };

        let mut output_assoc_binding = None;
453
        let substs = Substs::for_item(tcx, def_id, |def, _| {
454 455
            let i = def.index as usize - self_ty.is_some() as usize;
            tcx.mk_region(regions[i])
456 457
        }, |def, substs| {
            let i = def.index as usize;
458 459 460 461 462 463

            // Handle Self first, so we can adjust the index to match the AST.
            if let (0, Some(ty)) = (i, self_ty) {
                return ty;
            }

464
            let i = i - self_ty.is_some() as usize - decl_generics.regions.len();
465
            if i < num_types_provided {
466 467 468 469 470 471 472 473 474 475 476 477 478
                // A provided type parameter.
                match *parameters {
                    hir::AngleBracketedParameters(ref data) => {
                        self.ast_ty_arg_to_ty(rscope, Some(def), substs, &data.types[i])
                    }
                    hir::ParenthesizedParameters(ref data) => {
                        assert_eq!(i, 0);
                        let (ty, assoc) =
                            self.convert_parenthesized_parameters(rscope, substs, data);
                        output_assoc_binding = Some(assoc);
                        ty
                    }
                }
479
            } else if infer_types {
480 481 482 483 484 485 486 487 488
                // No type parameters were provided, we can infer all.
                let ty_var = if !default_needs_object_self(def) {
                    self.ty_infer_for_def(def, substs, span)
                } else {
                    self.ty_infer(span)
                };
                ty_var
            } else if let Some(default) = def.default {
                // No type parameter provided, but a default exists.
489

490 491 492 493 494
                // If we are converting an object type, then the
                // `Self` parameter is unknown. However, some of the
                // other type parameters may reference `Self` in their
                // defaults. This will lead to an ICE if we are not
                // careful!
495
                if default_needs_object_self(def) {
Z
zjhmale 已提交
496 497 498 499 500 501 502
                    struct_span_err!(tcx.sess, span, E0393,
                                     "the type parameter `{}` must be explicitly specified",
                                     def.name)
                        .span_label(span, &format!("missing reference to `{}`", def.name))
                        .note(&format!("because of the default `Self` reference, \
                                        type parameters must be specified on object types"))
                        .emit();
503
                    tcx.types.err
504 505
                } else {
                    // This is a default type parameter.
506
                    default.subst_spanned(tcx, substs, Some(span))
507
                }
508
            } else {
509 510
                // We've already errored above about the mismatch.
                tcx.types.err
S
Sean Bowe 已提交
511
            }
512
        });
S
Sean Bowe 已提交
513

514 515 516 517 518 519 520 521 522 523 524 525 526 527
        let assoc_bindings = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                data.bindings.iter().map(|b| {
                    ConvertedBinding {
                        item_name: b.name,
                        ty: self.ast_ty_to_ty(rscope, &b.ty),
                        span: b.span
                    }
                }).collect()
            }
            hir::ParenthesizedParameters(ref data) => {
                vec![output_assoc_binding.unwrap_or_else(|| {
                    // This is an error condition, but we should
                    // get the associated type binding anyway.
528
                    self.convert_parenthesized_parameters(rscope, substs, data).1
529 530
                })]
            }
531
        };
S
Sean Bowe 已提交
532

533 534
        debug!("create_substs_for_ast_path(decl_generics={:?}, self_ty={:?}) -> {:?}",
               decl_generics, self_ty, substs);
S
Sean Bowe 已提交
535

536
        (substs, assoc_bindings)
537
    }
538

539 540 541
    /// Returns the appropriate lifetime to use for any output lifetimes
    /// (if one exists) and a vector of the (pattern, number of lifetimes)
    /// corresponding to each input type/pattern.
542
    fn find_implied_output_region<I>(&self,
543
                                     input_tys: &[Ty<'tcx>],
544 545 546
                                     parent: Option<hir::BodyId>,
                                     input_indices: I) -> ElidedLifetime
        where I: Iterator<Item=usize>
547 548
    {
        let tcx = self.tcx();
549
        let mut lifetimes_for_params = Vec::with_capacity(input_tys.len());
550
        let mut possible_implied_output_region = None;
551
        let mut lifetimes = 0;
552

553
        for (input_type, index) in input_tys.iter().zip(input_indices) {
554
            let mut regions = FxHashSet();
555 556 557 558 559
            let have_bound_regions = tcx.collect_regions(input_type, &mut regions);

            debug!("find_implied_output_regions: collected {:?} from {:?} \
                    have_bound_regions={:?}", &regions, input_type, have_bound_regions);

560 561 562
            lifetimes += regions.len();

            if lifetimes == 1 && regions.len() == 1 {
563 564 565 566 567
                // there's a chance that the unique lifetime of this
                // iteration will be the appropriate lifetime for output
                // parameters, so lets store it.
                possible_implied_output_region = regions.iter().cloned().next();
            }
568

569
            lifetimes_for_params.push(ElisionFailureInfo {
570 571
                parent: parent,
                index: index,
572 573 574
                lifetime_count: regions.len(),
                have_bound_regions: have_bound_regions
            });
575 576
        }

577
        if lifetimes == 1 {
578
            Ok(*possible_implied_output_region.unwrap())
579 580 581
        } else {
            Err(Some(lifetimes_for_params))
        }
582
    }
583

584 585
    fn convert_ty_with_lifetime_elision(&self,
                                        elided_lifetime: ElidedLifetime,
586 587
                                        ty: &hir::Ty,
                                        anon_scope: Option<AnonTypeScope>)
588 589 590 591 592
                                        -> Ty<'tcx>
    {
        match elided_lifetime {
            Ok(implied_output_region) => {
                let rb = ElidableRscope::new(implied_output_region);
593
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
594 595 596 597 598 599
            }
            Err(param_lifetimes) => {
                // All regions must be explicitly specified in the output
                // if the lifetime elision rules do not apply. This saves
                // the user from potentially-confusing errors.
                let rb = UnelidableRscope::new(param_lifetimes);
600
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
601
            }
602 603 604
        }
    }

605 606
    fn convert_parenthesized_parameters(&self,
                                        rscope: &RegionScope,
607
                                        region_substs: &[Kind<'tcx>],
608
                                        data: &hir::ParenthesizedParameterData)
609
                                        -> (Ty<'tcx>, ConvertedBinding<'tcx>)
610
    {
611 612
        let anon_scope = rscope.anon_type_scope();
        let binding_rscope = MaybeWithAnonTypes::new(BindingRscope::new(), anon_scope);
613
        let inputs = self.tcx().mk_type_list(data.inputs.iter().map(|a_t| {
614
            self.ast_ty_arg_to_ty(&binding_rscope, None, region_substs, a_t)
615
        }));
616 617
        let input_params = 0..inputs.len();
        let implied_output_region = self.find_implied_output_region(&inputs, None, input_params);
618

619 620
        let (output, output_span) = match data.output {
            Some(ref output_ty) => {
621 622 623
                (self.convert_ty_with_lifetime_elision(implied_output_region,
                                                       &output_ty,
                                                       anon_scope),
624 625 626 627 628 629
                 output_ty.span)
            }
            None => {
                (self.tcx().mk_nil(), data.span)
            }
        };
630

631
        let output_binding = ConvertedBinding {
632
            item_name: Symbol::intern(FN_OUTPUT_NAME),
633 634 635
            ty: output,
            span: output_span
        };
636

637
        (self.tcx().mk_ty(ty::TyTuple(inputs)), output_binding)
638
    }
639

640 641 642
    pub fn instantiate_poly_trait_ref(&self,
        rscope: &RegionScope,
        ast_trait_ref: &hir::PolyTraitRef,
643
        self_ty: Ty<'tcx>,
644 645 646 647 648 649 650 651 652
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
    {
        let trait_ref = &ast_trait_ref.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_poly_trait_ref(rscope,
                                        trait_ref.path.span,
                                        trait_def_id,
                                        self_ty,
653
                                        trait_ref.ref_id,
654 655 656
                                        trait_ref.path.segments.last().unwrap(),
                                        poly_projections)
    }
657

658 659 660 661 662 663 664 665 666
    /// Instantiates the path for the given trait reference, assuming that it's
    /// bound to a valid trait type. Returns the def_id for the defining trait.
    /// Fails if the type is a type other than a trait type.
    ///
    /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
    /// are disallowed. Otherwise, they are pushed onto the vector given.
    pub fn instantiate_mono_trait_ref(&self,
        rscope: &RegionScope,
        trait_ref: &hir::TraitRef,
667
        self_ty: Ty<'tcx>)
668 669 670 671 672 673 674 675 676
        -> ty::TraitRef<'tcx>
    {
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_mono_trait_ref(rscope,
                                        trait_ref.path.span,
                                        trait_def_id,
                                        self_ty,
                                        trait_ref.path.segments.last().unwrap())
    }
677

678 679
    fn trait_def_id(&self, trait_ref: &hir::TraitRef) -> DefId {
        let path = &trait_ref.path;
680
        match path.def {
681 682 683 684 685 686
            Def::Trait(trait_def_id) => trait_def_id,
            Def::Err => {
                self.tcx().sess.fatal("cannot continue compilation due to previous error");
            }
            _ => {
                span_fatal!(self.tcx().sess, path.span, E0245, "`{}` is not a trait",
687
                            self.tcx().map.node_to_pretty_string(trait_ref.ref_id));
688
            }
N
Niko Matsakis 已提交
689 690 691
        }
    }

692 693 694 695
    fn ast_path_to_poly_trait_ref(&self,
        rscope: &RegionScope,
        span: Span,
        trait_def_id: DefId,
696
        self_ty: Ty<'tcx>,
697
        path_id: ast::NodeId,
698 699 700
        trait_segment: &hir::PathSegment,
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
701
    {
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        debug!("ast_path_to_poly_trait_ref(trait_segment={:?})", trait_segment);
        // The trait reference introduces a binding level here, so
        // we need to shift the `rscope`. It'd be nice if we could
        // do away with this rscope stuff and work this knowledge
        // into resolve_lifetimes, as we do with non-omitted
        // lifetimes. Oh well, not there yet.
        let shifted_rscope = &ShiftedRscope::new(rscope);

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(shifted_rscope,
                                                 span,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        let poly_trait_ref = ty::Binder(ty::TraitRef::new(trait_def_id, substs));

718 719 720 721 722 723 724 725
        poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
            // specify type to assert that error was already reported in Err case:
            let predicate: Result<_, ErrorReported> =
                self.ast_type_binding_to_poly_projection_predicate(path_id,
                                                                   poly_trait_ref,
                                                                   binding);
            predicate.ok() // ok to ignore Err() because ErrorReported (see above)
        }));
726 727 728 729

        debug!("ast_path_to_poly_trait_ref(trait_segment={:?}, projections={:?}) -> {:?}",
               trait_segment, poly_projections, poly_trait_ref);
        poly_trait_ref
730 731
    }

732 733 734 735
    fn ast_path_to_mono_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  trait_def_id: DefId,
736
                                  self_ty: Ty<'tcx>,
737 738 739 740 741 742 743 744 745 746 747 748
                                  trait_segment: &hir::PathSegment)
                                  -> ty::TraitRef<'tcx>
    {
        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(rscope,
                                                 span,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
        ty::TraitRef::new(trait_def_id, substs)
    }
749

750 751 752 753
    fn create_substs_for_ast_trait_ref(&self,
                                       rscope: &RegionScope,
                                       span: Span,
                                       trait_def_id: DefId,
754
                                       self_ty: Ty<'tcx>,
755 756 757 758 759 760 761 762 763 764 765 766 767 768
                                       trait_segment: &hir::PathSegment)
                                       -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
    {
        debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
               trait_segment);

        let trait_def = match self.get_trait_def(span, trait_def_id) {
            Ok(trait_def) => trait_def,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
769

770 771
        match trait_segment.parameters {
            hir::AngleBracketedParameters(_) => {
772 773 774
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
775
                    emit_feature_err(&self.tcx().sess.parse_sess,
776 777 778 779 780 781
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        the precise format of `Fn`-family traits' \
                        type parameters is subject to change. \
                        Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead");
                }
782
            }
783
            hir::ParenthesizedParameters(_) => {
784 785 786
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
787
                    emit_feature_err(&self.tcx().sess.parse_sess,
788 789 790 791
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        parenthetical notation is only stable when used with `Fn`-family traits");
                }
792
            }
793
        }
794

795 796
        self.create_substs_for_ast_path(rscope,
                                        span,
797
                                        trait_def_id,
798 799
                                        &trait_segment.parameters,
                                        Some(self_ty))
800
    }
801

802 803 804 805 806 807 808 809 810 811
    fn trait_defines_associated_type_named(&self,
                                           trait_def_id: DefId,
                                           assoc_name: ast::Name)
                                           -> bool
    {
        self.tcx().associated_items(trait_def_id).any(|item| {
            item.kind == ty::AssociatedKind::Type && item.name == assoc_name
        })
    }

812 813 814
    fn ast_type_binding_to_poly_projection_predicate(
        &self,
        path_id: ast::NodeId,
815
        trait_ref: ty::PolyTraitRef<'tcx>,
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
        binding: &ConvertedBinding<'tcx>)
        -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();

        // Given something like `U : SomeTrait<T=X>`, we want to produce a
        // predicate like `<U as SomeTrait>::T = X`. This is somewhat
        // subtle in the event that `T` is defined in a supertrait of
        // `SomeTrait`, because in that case we need to upcast.
        //
        // That is, consider this case:
        //
        // ```
        // trait SubTrait : SuperTrait<int> { }
        // trait SuperTrait<A> { type T; }
        //
        // ... B : SubTrait<T=foo> ...
        // ```
        //
        // We want to produce `<B as SuperTrait<int>>::T == foo`.

837 838 839 840 841 842 843 844 845 846 847 848 849
        // Find any late-bound regions declared in `ty` that are not
        // declared in the trait-ref. These are not wellformed.
        //
        // Example:
        //
        //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
        //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
        let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
        let late_bound_in_ty = tcx.collect_referenced_late_bound_regions(&ty::Binder(binding.ty));
        debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
        debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
        for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
            let br_name = match *br {
850
                ty::BrNamed(_, name, _) => name,
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
                _ => {
                    span_bug!(
                        binding.span,
                        "anonymous bound region {:?} in binding but not trait ref",
                        br);
                }
            };
            tcx.sess.add_lint(
                lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                path_id,
                binding.span,
                format!("binding for associated type `{}` references lifetime `{}`, \
                         which does not appear in the trait input types",
                        binding.item_name, br_name));
        }

867 868
        // Simple case: X is defined in the current trait.
        if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
869 870 871 872 873 874 875 876
            return Ok(trait_ref.map_bound(|trait_ref| {
                ty::ProjectionPredicate {
                    projection_ty: ty::ProjectionTy {
                        trait_ref: trait_ref,
                        item_name: binding.item_name,
                    },
                    ty: binding.ty,
                }
877 878 879 880
            }));
        }

        // Otherwise, we have to walk through the supertraits to find
881
        // those that do.
882 883
        self.ensure_super_predicates(binding.span, trait_ref.def_id())?;

884
        let candidates =
885
            traits::supertraits(tcx, trait_ref.clone())
886
            .filter(|r| self.trait_defines_associated_type_named(r.def_id(), binding.item_name));
887 888 889 890 891 892

        let candidate = self.one_bound_for_assoc_type(candidates,
                                                      &trait_ref.to_string(),
                                                      &binding.item_name.as_str(),
                                                      binding.span)?;

893 894 895 896 897 898 899 900
        Ok(candidate.map_bound(|trait_ref| {
            ty::ProjectionPredicate {
                projection_ty: ty::ProjectionTy {
                    trait_ref: trait_ref,
                    item_name: binding.item_name,
                },
                ty: binding.ty,
            }
901
        }))
902 903
    }

904 905 906 907 908 909 910 911
    fn ast_path_to_ty(&self,
        rscope: &RegionScope,
        span: Span,
        did: DefId,
        item_segment: &hir::PathSegment)
        -> Ty<'tcx>
    {
        let tcx = self.tcx();
912 913
        let decl_ty = match self.get_item_type(span, did) {
            Ok(ty) => ty,
914 915 916 917
            Err(ErrorReported) => {
                return tcx.types.err;
            }
        };
918

919 920
        let substs = self.ast_path_substs_for_ty(rscope,
                                                 span,
921
                                                 did,
922
                                                 item_segment);
923

924 925
        // FIXME(#12938): This is a hack until we have full support for DST.
        if Some(did) == self.tcx().lang_items.owned_box() {
926 927
            assert_eq!(substs.types().count(), 1);
            return self.tcx().mk_box(substs.type_at(0));
928
        }
929

930
        decl_ty.subst(self.tcx(), substs)
931 932
    }

933 934 935 936 937 938
    /// Transform a PolyTraitRef into a PolyExistentialTraitRef by
    /// removing the dummy Self type (TRAIT_OBJECT_DUMMY_SELF).
    fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
                                -> ty::ExistentialTraitRef<'tcx> {
        assert_eq!(trait_ref.self_ty().sty, TRAIT_OBJECT_DUMMY_SELF);
        ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
939
    }
940

941 942 943 944 945 946 947 948 949
    fn trait_path_to_object_type(&self,
                                 rscope: &RegionScope,
                                 path_span: Span,
                                 trait_def_id: DefId,
                                 trait_path_ref_id: ast::NodeId,
                                 trait_segment: &hir::PathSegment,
                                 span: Span,
                                 partitioned_bounds: PartitionedBounds)
                                 -> Ty<'tcx> {
950
        let tcx = self.tcx();
951 952 953 954 955 956 957 958 959 960 961

        let mut projection_bounds = vec![];
        let dummy_self = tcx.mk_ty(TRAIT_OBJECT_DUMMY_SELF);
        let principal = self.ast_path_to_poly_trait_ref(rscope,
                                                        path_span,
                                                        trait_def_id,
                                                        dummy_self,
                                                        trait_path_ref_id,
                                                        trait_segment,
                                                        &mut projection_bounds);

962
        let PartitionedBounds { trait_bounds,
963 964 965
                                region_bounds } =
            partitioned_bounds;

966 967
        let (auto_traits, trait_bounds) = split_auto_traits(tcx, trait_bounds);

968 969 970 971
        if !trait_bounds.is_empty() {
            let b = &trait_bounds[0];
            let span = b.trait_ref.path.span;
            struct_span_err!(self.tcx().sess, span, E0225,
972 973
                "only Send/Sync traits can be used as additional traits in a trait object")
                .span_label(span, &format!("non-Send/Sync additional trait"))
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
                .emit();
        }

        // Erase the dummy_self (TRAIT_OBJECT_DUMMY_SELF) used above.
        let existential_principal = principal.map_bound(|trait_ref| {
            self.trait_ref_to_existential(trait_ref)
        });
        let existential_projections = projection_bounds.iter().map(|bound| {
            bound.map_bound(|b| {
                let p = b.projection_ty;
                ty::ExistentialProjection {
                    trait_ref: self.trait_ref_to_existential(p.trait_ref),
                    item_name: p.item_name,
                    ty: b.ty
                }
            })
990
        });
991

992 993 994 995
        // ensure the super predicates and stop if we encountered an error
        if self.ensure_super_predicates(span, principal.def_id()).is_err() {
            return tcx.types.err;
        }
996

997 998 999 1000 1001 1002 1003
        // check that there are no gross object safety violations,
        // most importantly, that the supertraits don't contain Self,
        // to avoid ICE-s.
        let object_safety_violations =
            tcx.astconv_object_safety_violations(principal.def_id());
        if !object_safety_violations.is_empty() {
            tcx.report_object_safety_error(
1004 1005
                span, principal.def_id(), object_safety_violations)
                .emit();
1006 1007
            return tcx.types.err;
        }
1008

1009
        let mut associated_types = FxHashSet::default();
1010
        for tr in traits::supertraits(tcx, principal) {
1011 1012 1013
            associated_types.extend(tcx.associated_items(tr.def_id())
                .filter(|item| item.kind == ty::AssociatedKind::Type)
                .map(|item| (tr.def_id(), item.name)));
1014
        }
1015

1016
        for projection_bound in &projection_bounds {
1017 1018 1019 1020 1021 1022
            let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
                        projection_bound.0.projection_ty.item_name);
            associated_types.remove(&pair);
        }

        for (trait_def_id, name) in associated_types {
1023
            struct_span_err!(tcx.sess, span, E0191,
1024 1025
                "the value of the associated type `{}` (from the trait `{}`) must be specified",
                        name,
1026 1027 1028 1029
                        tcx.item_path_str(trait_def_id))
                        .span_label(span, &format!(
                            "missing associated type `{}` value", name))
                        .emit();
1030
        }
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        let mut v =
            iter::once(ty::ExistentialPredicate::Trait(*existential_principal.skip_binder()))
            .chain(auto_traits.into_iter().map(ty::ExistentialPredicate::AutoTrait))
            .chain(existential_projections
                   .map(|x| ty::ExistentialPredicate::Projection(*x.skip_binder())))
            .collect::<AccumulateVec<[_; 8]>>();
        v.sort_by(|a, b| a.cmp(tcx, b));
        let existential_predicates = ty::Binder(tcx.mk_existential_predicates(v.into_iter()));

        let region_bound = self.compute_object_lifetime_bound(span,
                                                              &region_bounds,
                                                              existential_predicates);

        let region_bound = match region_bound {
            Some(r) => r,
            None => {
                tcx.mk_region(match rscope.object_lifetime_default(span) {
                    Some(r) => r,
                    None => {
                        span_err!(self.tcx().sess, span, E0228,
                                  "the lifetime bound for this object type cannot be deduced \
                                   from context; please supply an explicit bound");
                        ty::ReStatic
                    }
                })
            }
        };

        debug!("region_bound: {:?}", region_bound);

        let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1063 1064
        debug!("trait_object_type: {:?}", ty);
        ty
1065 1066
    }

1067 1068 1069 1070 1071
    fn report_ambiguous_associated_type(&self,
                                        span: Span,
                                        type_str: &str,
                                        trait_str: &str,
                                        name: &str) {
K
Keith Yeung 已提交
1072 1073 1074 1075 1076 1077
        struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type")
            .span_label(span, &format!("ambiguous associated type"))
            .note(&format!("specify the type using the syntax `<{} as {}>::{}`",
                  type_str, trait_str, name))
            .emit();

1078
    }
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    // Search for a bound on a type parameter which includes the associated item
    // given by assoc_name. ty_param_node_id is the node id for the type parameter
    // (which might be `Self`, but only if it is the `Self` of a trait, not an
    // impl). This function will fail if there are no suitable bounds or there is
    // any ambiguity.
    fn find_bound_for_assoc_item(&self,
                                 ty_param_node_id: ast::NodeId,
                                 ty_param_name: ast::Name,
                                 assoc_name: ast::Name,
                                 span: Span)
                                 -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();
1093

1094 1095 1096 1097 1098 1099
        let bounds = match self.get_type_parameter_bounds(span, ty_param_node_id) {
            Ok(v) => v,
            Err(ErrorReported) => {
                return Err(ErrorReported);
            }
        };
N
Nick Cameron 已提交
1100

1101 1102
        // Ensure the super predicates and stop if we encountered an error.
        if bounds.iter().any(|b| self.ensure_super_predicates(span, b.def_id()).is_err()) {
1103
            return Err(ErrorReported);
N
Nick Cameron 已提交
1104
        }
1105

1106 1107
        // Check that there is exactly one way to find an associated type with the
        // correct name.
1108
        let suitable_bounds =
1109
            traits::transitive_bounds(tcx, &bounds)
1110
            .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name));
1111 1112 1113 1114 1115

        self.one_bound_for_assoc_type(suitable_bounds,
                                      &ty_param_name.as_str(),
                                      &assoc_name.as_str(),
                                      span)
1116
    }
1117

1118

1119 1120
    // Checks that bounds contains exactly one element and reports appropriate
    // errors otherwise.
1121 1122
    fn one_bound_for_assoc_type<I>(&self,
                                mut bounds: I,
1123 1124 1125 1126
                                ty_param_name: &str,
                                assoc_name: &str,
                                span: Span)
        -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1127
        where I: Iterator<Item=ty::PolyTraitRef<'tcx>>
1128
    {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
        let bound = match bounds.next() {
            Some(bound) => bound,
            None => {
                struct_span_err!(self.tcx().sess, span, E0220,
                          "associated type `{}` not found for `{}`",
                          assoc_name,
                          ty_param_name)
                  .span_label(span, &format!("associated type `{}` not found", assoc_name))
                  .emit();
                return Err(ErrorReported);
            }
        };
M
Mikhail Modin 已提交
1141

1142 1143
        if let Some(bound2) = bounds.next() {
            let bounds = iter::once(bound).chain(iter::once(bound2)).chain(bounds);
1144 1145 1146 1147 1148 1149
            let mut err = struct_span_err!(
                self.tcx().sess, span, E0221,
                "ambiguous associated type `{}` in bounds of `{}`",
                assoc_name,
                ty_param_name);
            err.span_label(span, &format!("ambiguous associated type `{}`", assoc_name));
1150

1151 1152 1153 1154 1155 1156 1157
            for bound in bounds {
                let bound_span = self.tcx().associated_items(bound.def_id()).find(|item| {
                    item.kind == ty::AssociatedKind::Type && item.name == assoc_name
                })
                .and_then(|item| self.tcx().map.span_if_local(item.def_id));

                if let Some(span) = bound_span {
M
Mikhail Modin 已提交
1158 1159
                    err.span_label(span, &format!("ambiguous `{}` from `{}`",
                                                  assoc_name,
1160
                                                  bound));
M
Mikhail Modin 已提交
1161 1162 1163 1164
                } else {
                    span_note!(&mut err, span,
                               "associated type `{}` could derive from `{}`",
                               ty_param_name,
1165
                               bound);
M
Mikhail Modin 已提交
1166
                }
1167 1168
            }
            err.emit();
1169 1170
        }

1171
        return Ok(bound);
1172
    }
1173

1174 1175 1176 1177 1178 1179
    // Create a type from a path to an associated type.
    // For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
    // and item_segment is the path segment for D. We return a type and a def for
    // the whole path.
    // Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
    // parameter or Self.
1180
    pub fn associated_path_def_to_ty(&self,
1181
                                     ref_id: ast::NodeId,
1182 1183 1184 1185 1186
                                     span: Span,
                                     ty: Ty<'tcx>,
                                     ty_path_def: Def,
                                     item_segment: &hir::PathSegment)
                                     -> (Ty<'tcx>, Def)
1187 1188
    {
        let tcx = self.tcx();
V
Vadim Petrochenkov 已提交
1189
        let assoc_name = item_segment.name;
1190 1191 1192 1193 1194 1195 1196 1197

        debug!("associated_path_def_to_ty: {:?}::{}", ty, assoc_name);

        tcx.prohibit_type_params(slice::ref_slice(item_segment));

        // Find the type of the associated item, and the trait where the associated
        // item is declared.
        let bound = match (&ty.sty, ty_path_def) {
1198
            (_, Def::SelfTy(Some(_), Some(impl_def_id))) => {
1199 1200
                // `Self` in an impl of a trait - we have a concrete self type and a
                // trait reference.
1201
                let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
1202 1203 1204 1205 1206 1207
                let trait_ref = if let Some(free_substs) = self.get_free_substs() {
                    trait_ref.subst(tcx, free_substs)
                } else {
                    trait_ref
                };

1208
                if self.ensure_super_predicates(span, trait_ref.def_id).is_err() {
1209
                    return (tcx.types.err, Def::Err);
1210
                }
1211

1212
                let candidates =
1213 1214
                    traits::supertraits(tcx, ty::Binder(trait_ref))
                    .filter(|r| self.trait_defines_associated_type_named(r.def_id(),
1215
                                                                         assoc_name));
1216 1217 1218 1219 1220 1221

                match self.one_bound_for_assoc_type(candidates,
                                                    "Self",
                                                    &assoc_name.as_str(),
                                                    span) {
                    Ok(bound) => bound,
1222
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1223
                }
1224
            }
1225 1226 1227 1228 1229 1230 1231
            (&ty::TyParam(_), Def::SelfTy(Some(trait_did), None)) => {
                let trait_node_id = tcx.map.as_local_node_id(trait_did).unwrap();
                match self.find_bound_for_assoc_item(trait_node_id,
                                                     keywords::SelfType.name(),
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1232
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1233
                }
1234
            }
1235
            (&ty::TyParam(_), Def::TyParam(param_did)) => {
1236
                let param_node_id = tcx.map.as_local_node_id(param_did).unwrap();
1237
                let param_name = tcx.type_parameter_def(param_node_id).name;
1238 1239 1240 1241 1242
                match self.find_bound_for_assoc_item(param_node_id,
                                                     param_name,
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1243
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1244
                }
1245
            }
1246
            _ => {
1247 1248 1249 1250 1251 1252 1253
                // Don't print TyErr to the user.
                if !ty.references_error() {
                    self.report_ambiguous_associated_type(span,
                                                          &ty.to_string(),
                                                          "Trait",
                                                          &assoc_name.as_str());
                }
1254
                return (tcx.types.err, Def::Err);
1255
            }
1256
        };
1257

1258 1259 1260
        let trait_did = bound.0.def_id;
        let ty = self.projected_ty_from_poly_trait_ref(span, bound, assoc_name);

1261
        let item = tcx.associated_items(trait_did).find(|i| i.name == assoc_name);
1262 1263 1264
        let def_id = item.expect("missing associated type").def_id;
        tcx.check_stability(def_id, ref_id, span);
        (ty, Def::AssociatedTy(def_id))
1265
    }
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    fn qpath_to_ty(&self,
                   rscope: &RegionScope,
                   span: Span,
                   opt_self_ty: Option<Ty<'tcx>>,
                   trait_def_id: DefId,
                   trait_segment: &hir::PathSegment,
                   item_segment: &hir::PathSegment)
                   -> Ty<'tcx>
    {
        let tcx = self.tcx();
1277

1278
        tcx.prohibit_type_params(slice::ref_slice(item_segment));
1279

1280 1281 1282 1283 1284 1285 1286
        let self_ty = if let Some(ty) = opt_self_ty {
            ty
        } else {
            let path_str = tcx.item_path_str(trait_def_id);
            self.report_ambiguous_associated_type(span,
                                                  "Type",
                                                  &path_str,
V
Vadim Petrochenkov 已提交
1287
                                                  &item_segment.name.as_str());
1288 1289
            return tcx.types.err;
        };
1290

1291
        debug!("qpath_to_ty: self_type={:?}", self_ty);
1292

1293 1294 1295
        let trait_ref = self.ast_path_to_mono_trait_ref(rscope,
                                                        span,
                                                        trait_def_id,
1296
                                                        self_ty,
1297
                                                        trait_segment);
1298

1299
        debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1300

V
Vadim Petrochenkov 已提交
1301
        self.projected_ty(span, trait_ref, item_segment.name)
1302
    }
1303

1304 1305 1306 1307 1308 1309 1310
    /// Convert a type supplied as value for a type argument from AST into our
    /// our internal representation. This is the same as `ast_ty_to_ty` but that
    /// it applies the object lifetime default.
    ///
    /// # Parameters
    ///
    /// * `this`, `rscope`: the surrounding context
1311
    /// * `def`: the type parameter being instantiated (if available)
1312 1313 1314
    /// * `region_substs`: a partial substitution consisting of
    ///   only the region type parameters being supplied to this type.
    /// * `ast_ty`: the ast representation of the type being supplied
1315 1316 1317
    fn ast_ty_arg_to_ty(&self,
                        rscope: &RegionScope,
                        def: Option<&ty::TypeParameterDef<'tcx>>,
1318
                        region_substs: &[Kind<'tcx>],
1319 1320
                        ast_ty: &hir::Ty)
                        -> Ty<'tcx>
1321 1322
    {
        let tcx = self.tcx();
1323

1324
        if let Some(def) = def {
1325 1326 1327 1328 1329 1330
            let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
            let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
            self.ast_ty_to_ty(rscope1, ast_ty)
        } else {
            self.ast_ty_to_ty(rscope, ast_ty)
        }
1331 1332
    }

1333
    // Check a type Path and convert it to a Ty.
1334 1335 1336
    pub fn def_to_ty(&self,
                     rscope: &RegionScope,
                     opt_self_ty: Option<Ty<'tcx>>,
1337
                     path: &hir::Path,
1338 1339 1340
                     path_id: ast::NodeId,
                     permit_variants: bool)
                     -> Ty<'tcx> {
1341 1342
        let tcx = self.tcx();

1343
        debug!("base_def_to_ty(def={:?}, opt_self_ty={:?}, path_segments={:?})",
1344
               path.def, opt_self_ty, path.segments);
1345

1346 1347
        let span = path.span;
        match path.def {
1348 1349
            Def::Trait(trait_def_id) => {
                // N.B. this case overlaps somewhat with
1350
                // TyTraitObject, see that fn for details
1351

1352
                assert_eq!(opt_self_ty, None);
1353
                tcx.prohibit_type_params(path.segments.split_last().unwrap().1);
1354 1355 1356 1357

                self.trait_path_to_object_type(rscope,
                                               span,
                                               trait_def_id,
1358
                                               path_id,
1359
                                               path.segments.last().unwrap(),
1360
                                               span,
1361
                                               partition_bounds(&[]))
1362
            }
1363
            Def::Enum(did) | Def::TyAlias(did) | Def::Struct(did) | Def::Union(did) => {
1364
                assert_eq!(opt_self_ty, None);
1365 1366
                tcx.prohibit_type_params(path.segments.split_last().unwrap().1);
                self.ast_path_to_ty(rscope, span, did, path.segments.last().unwrap())
1367
            }
V
Vadim Petrochenkov 已提交
1368 1369 1370
            Def::Variant(did) if permit_variants => {
                // Convert "variant type" as if it were a real type.
                // The resulting `Ty` is type of the variant's enum for now.
1371
                assert_eq!(opt_self_ty, None);
1372
                tcx.prohibit_type_params(path.segments.split_last().unwrap().1);
V
Vadim Petrochenkov 已提交
1373 1374 1375
                self.ast_path_to_ty(rscope,
                                    span,
                                    tcx.parent_def_id(did).unwrap(),
1376
                                    path.segments.last().unwrap())
V
Vadim Petrochenkov 已提交
1377
            }
1378
            Def::TyParam(did) => {
1379
                assert_eq!(opt_self_ty, None);
1380
                tcx.prohibit_type_params(&path.segments);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

                let node_id = tcx.map.as_local_node_id(did).unwrap();
                let param = tcx.ty_param_defs.borrow().get(&node_id)
                               .map(ty::ParamTy::for_def);
                if let Some(p) = param {
                    p.to_ty(tcx)
                } else {
                    // Only while computing defaults of earlier type
                    // parameters can a type parameter be missing its def.
                    struct_span_err!(tcx.sess, span, E0128,
                                     "type parameters with a default cannot use \
                                      forward declared identifiers")
                        .span_label(span, &format!("defaulted type parameters \
                                                    cannot be forward declared"))
                        .emit();
                    tcx.types.err
                }
1398
            }
1399
            Def::SelfTy(_, Some(def_id)) => {
1400
                // Self in impl (we know the concrete type).
1401

1402
                assert_eq!(opt_self_ty, None);
1403
                tcx.prohibit_type_params(&path.segments);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

                // FIXME: Self type is not always computed when we are here because type parameter
                // bounds may affect Self type and have to be converted before it.
                let ty = if def_id.is_local() {
                    tcx.item_types.borrow().get(&def_id).cloned()
                } else {
                    Some(tcx.item_type(def_id))
                };
                if let Some(ty) = ty {
                    if let Some(free_substs) = self.get_free_substs() {
                        ty.subst(tcx, free_substs)
                    } else {
                        ty
                    }
1418
                } else {
1419 1420
                    tcx.sess.span_err(span, "`Self` type is used before it's determined");
                    tcx.types.err
1421 1422 1423 1424
                }
            }
            Def::SelfTy(Some(_), None) => {
                // Self in trait.
1425
                assert_eq!(opt_self_ty, None);
1426
                tcx.prohibit_type_params(&path.segments);
1427 1428
                tcx.mk_self_type()
            }
1429
            Def::AssociatedTy(def_id) => {
1430
                tcx.prohibit_type_params(&path.segments[..path.segments.len()-2]);
1431
                let trait_did = tcx.parent_def_id(def_id).unwrap();
1432 1433 1434 1435
                self.qpath_to_ty(rscope,
                                 span,
                                 opt_self_ty,
                                 trait_did,
1436 1437
                                 &path.segments[path.segments.len()-2],
                                 path.segments.last().unwrap())
1438 1439
            }
            Def::PrimTy(prim_ty) => {
1440
                assert_eq!(opt_self_ty, None);
1441
                tcx.prim_ty_to_ty(&path.segments, prim_ty)
1442 1443 1444 1445 1446
            }
            Def::Err => {
                self.set_tainted_by_errors();
                return self.tcx().types.err;
            }
1447
            _ => span_bug!(span, "unexpected definition: {:?}", path.def)
1448
        }
1449
    }
1450

1451 1452 1453 1454 1455
    /// Parses the programmer's textual representation of a type into our
    /// internal notion of a type.
    pub fn ast_ty_to_ty(&self, rscope: &RegionScope, ast_ty: &hir::Ty) -> Ty<'tcx> {
        debug!("ast_ty_to_ty(id={:?}, ast_ty={:?})",
               ast_ty.id, ast_ty);
1456

1457
        let tcx = self.tcx();
1458

1459
        let cache = self.ast_ty_to_ty_cache();
1460 1461
        if let Some(ty) = cache.borrow().get(&ast_ty.id) {
            return ty;
1462 1463 1464
        }

        let result_ty = match ast_ty.node {
1465
            hir::TySlice(ref ty) => {
1466
                tcx.mk_slice(self.ast_ty_to_ty(rscope, &ty))
1467
            }
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
            hir::TyPtr(ref mt) => {
                tcx.mk_ptr(ty::TypeAndMut {
                    ty: self.ast_ty_to_ty(rscope, &mt.ty),
                    mutbl: mt.mutbl
                })
            }
            hir::TyRptr(ref region, ref mt) => {
                let r = self.opt_ast_region_to_region(rscope, ast_ty.span, region);
                debug!("TyRef r={:?}", r);
                let rscope1 =
                    &ObjectLifetimeDefaultRscope::new(
                        rscope,
                        ty::ObjectLifetimeDefault::Specific(r));
                let t = self.ast_ty_to_ty(rscope1, &mt.ty);
1482
                tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
1483
            }
A
Andrew Cann 已提交
1484 1485
            hir::TyNever => {
                tcx.types.never
1486
            },
1487
            hir::TyTup(ref fields) => {
1488
                tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(rscope, &t)))
1489 1490 1491
            }
            hir::TyBareFn(ref bf) => {
                require_c_abi_if_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
1492
                let anon_scope = rscope.anon_type_scope();
1493 1494 1495 1496
                let bare_fn_ty = self.ty_of_method_or_bare_fn(bf.unsafety,
                                                              bf.abi,
                                                              None,
                                                              &bf.decl,
1497
                                                              None,
1498 1499
                                                              anon_scope,
                                                              anon_scope);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

                // Find any late-bound regions declared in return type that do
                // not appear in the arguments. These are not wellformed.
                //
                // Example:
                //
                //     for<'a> fn() -> &'a str <-- 'a is bad
                //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
                //
                // Note that we do this check **here** and not in
                // `ty_of_bare_fn` because the latter is also used to make
                // the types for fn items, and we do not want to issue a
                // warning then. (Once we fix #32330, the regions we are
                // checking for here would be considered early bound
                // anyway.)
                let inputs = bare_fn_ty.sig.inputs();
1516 1517
                let late_bound_in_args = tcx.collect_constrained_late_bound_regions(
                    &inputs.map_bound(|i| i.to_owned()));
1518 1519 1520 1521
                let output = bare_fn_ty.sig.output();
                let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
                for br in late_bound_in_ret.difference(&late_bound_in_args) {
                    let br_name = match *br {
1522
                        ty::BrNamed(_, name, _) => name,
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
                        _ => {
                            span_bug!(
                                bf.decl.output.span(),
                                "anonymous bound region {:?} in return but not args",
                                br);
                        }
                    };
                    tcx.sess.add_lint(
                        lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                        ast_ty.id,
                        ast_ty.span,
                        format!("return type references lifetime `{}`, \
                                 which does not appear in the trait input types",
                                br_name));
                }
                tcx.mk_fn_ptr(bare_fn_ty)
1539
            }
1540
            hir::TyTraitObject(ref bounds) => {
1541
                self.conv_object_ty_poly_trait_ref(rscope, ast_ty.span, bounds)
1542
            }
1543 1544 1545 1546 1547
            hir::TyImplTrait(ref bounds) => {
                use collect::{compute_bounds, SizedByDefault};

                // Create the anonymized type.
                let def_id = tcx.map.local_def_id(ast_ty.id);
1548
                if let Some(anon_scope) = rscope.anon_type_scope() {
1549
                    let substs = anon_scope.fresh_substs(self, ast_ty.span);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
                    let ty = tcx.mk_anon(tcx.map.local_def_id(ast_ty.id), substs);

                    // Collect the bounds, i.e. the `A+B+'c` in `impl A+B+'c`.
                    let bounds = compute_bounds(self, ty, bounds,
                                                SizedByDefault::Yes,
                                                Some(anon_scope),
                                                ast_ty.span);
                    let predicates = bounds.predicates(tcx, ty);
                    let predicates = tcx.lift_to_global(&predicates).unwrap();
                    tcx.predicates.borrow_mut().insert(def_id, ty::GenericPredicates {
1560
                        parent: None,
1561
                        predicates: predicates
1562 1563 1564
                    });

                    ty
1565 1566 1567 1568
                } else {
                    span_err!(tcx.sess, ast_ty.span, E0562,
                              "`impl Trait` not allowed outside of function \
                               and inherent method return types");
1569 1570
                    tcx.types.err
                }
1571
            }
1572
            hir::TyPath(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
1573
                debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
1574
                let opt_self_ty = maybe_qself.as_ref().map(|qself| {
1575
                    self.ast_ty_to_ty(rscope, qself)
1576
                });
1577
                self.def_to_ty(rscope, opt_self_ty, path, ast_ty.id, false)
1578 1579 1580 1581 1582
            }
            hir::TyPath(hir::QPath::TypeRelative(ref qself, ref segment)) => {
                debug!("ast_ty_to_ty: qself={:?} segment={:?}", qself, segment);
                let ty = self.ast_ty_to_ty(rscope, qself);

1583 1584 1585 1586 1587
                let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
                    path.def
                } else {
                    Def::Err
                };
1588
                self.associated_path_def_to_ty(ast_ty.id, ast_ty.span, ty, def, segment).0
1589
            }
1590
            hir::TyArray(ref ty, length) => {
1591
                if let Ok(length) = eval_length(tcx.global_tcx(), length, "array length") {
1592 1593 1594
                    tcx.mk_array(self.ast_ty_to_ty(rscope, &ty), length)
                } else {
                    self.tcx().types.err
1595 1596
                }
            }
1597
            hir::TyTypeof(ref _e) => {
G
Gavin Baker 已提交
1598 1599 1600 1601 1602
                struct_span_err!(tcx.sess, ast_ty.span, E0516,
                                 "`typeof` is a reserved keyword but unimplemented")
                    .span_label(ast_ty.span, &format!("reserved keyword"))
                    .emit();

1603 1604 1605 1606 1607 1608 1609
                tcx.types.err
            }
            hir::TyInfer => {
                // TyInfer also appears as the type of arguments or return
                // values in a ExprClosure, or as
                // the type of local variables. Both of these cases are
                // handled specially and will not descend into this routine.
1610
                self.ty_infer(ast_ty.span)
1611
            }
1612 1613 1614 1615 1616
        };

        cache.borrow_mut().insert(ast_ty.id, result_ty);

        result_ty
1617
    }
1618

1619 1620
    pub fn ty_of_arg(&self,
                     rscope: &RegionScope,
1621
                     ty: &hir::Ty,
1622 1623 1624
                     expected_ty: Option<Ty<'tcx>>)
                     -> Ty<'tcx>
    {
1625
        match ty.node {
1626
            hir::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
1627 1628
            hir::TyInfer => self.ty_infer(ty.span),
            _ => self.ast_ty_to_ty(rscope, ty),
1629
        }
1630
    }
1631

1632 1633
    pub fn ty_of_method(&self,
                        sig: &hir::MethodSig,
1634
                        opt_self_value_ty: Option<Ty<'tcx>>,
1635
                        body: Option<hir::BodyId>,
1636
                        anon_scope: Option<AnonTypeScope>)
1637
                        -> &'tcx ty::BareFnTy<'tcx> {
1638 1639
        self.ty_of_method_or_bare_fn(sig.unsafety,
                                     sig.abi,
1640
                                     opt_self_value_ty,
1641
                                     &sig.decl,
1642
                                     body,
1643 1644
                                     None,
                                     anon_scope)
1645
    }
1646

1647
    pub fn ty_of_bare_fn(&self,
1648 1649
                         unsafety: hir::Unsafety,
                         abi: abi::Abi,
1650
                         decl: &hir::FnDecl,
1651
                         body: hir::BodyId,
1652
                         anon_scope: Option<AnonTypeScope>)
1653
                         -> &'tcx ty::BareFnTy<'tcx> {
1654
        self.ty_of_method_or_bare_fn(unsafety, abi, None, decl, Some(body), None, anon_scope)
1655
    }
1656

1657 1658 1659
    fn ty_of_method_or_bare_fn(&self,
                               unsafety: hir::Unsafety,
                               abi: abi::Abi,
1660
                               opt_self_value_ty: Option<Ty<'tcx>>,
1661
                               decl: &hir::FnDecl,
1662
                               body: Option<hir::BodyId>,
1663 1664
                               arg_anon_scope: Option<AnonTypeScope>,
                               ret_anon_scope: Option<AnonTypeScope>)
1665
                               -> &'tcx ty::BareFnTy<'tcx>
1666 1667 1668 1669 1670
    {
        debug!("ty_of_method_or_bare_fn");

        // New region names that appear inside of the arguments of the function
        // declaration are bound to that function type.
1671
        let rb = MaybeWithAnonTypes::new(BindingRscope::new(), arg_anon_scope);
1672

1673 1674
        let input_tys: Vec<Ty> =
            decl.inputs.iter().map(|a| self.ty_of_arg(&rb, a, None)).collect();
1675

1676 1677 1678 1679
        let has_self = opt_self_value_ty.is_some();
        let explicit_self = opt_self_value_ty.map(|self_value_ty| {
            ExplicitSelf::determine(self_value_ty, input_tys[0])
        });
1680

1681
        let implied_output_region = match explicit_self {
1682 1683 1684 1685 1686
            // `implied_output_region` is the region that will be assumed for any
            // region parameters in the return type. In accordance with the rules for
            // lifetime elision, we can determine it in two ways. First (determined
            // here), if self is by-reference, then the implied output region is the
            // region of the self parameter.
1687
            Some(ExplicitSelf::ByReference(region, _)) => Ok(*region),
1688 1689 1690 1691

            // Second, if there was exactly one lifetime (either a substitution or a
            // reference) in the arguments, then any anonymous regions in the output
            // have that lifetime.
1692
            _ => {
1693
                let arg_tys = &input_tys[has_self as usize..];
1694 1695
                let arg_params = has_self as usize..input_tys.len();
                self.find_implied_output_region(arg_tys, body, arg_params)
1696

1697
            }
1698
        };
1699

1700 1701
        let output_ty = match decl.output {
            hir::Return(ref output) =>
1702 1703 1704 1705
                self.convert_ty_with_lifetime_elision(implied_output_region,
                                                      &output,
                                                      ret_anon_scope),
            hir::DefaultReturn(..) => self.tcx().mk_nil(),
1706
        };
1707

1708 1709
        debug!("ty_of_method_or_bare_fn: output_ty={:?}", output_ty);

1710
        self.tcx().mk_bare_fn(ty::BareFnTy {
1711 1712
            unsafety: unsafety,
            abi: abi,
1713
            sig: ty::Binder(self.tcx().mk_fn_sig(
1714
                input_tys.into_iter(),
1715 1716 1717
                output_ty,
                decl.variadic
            )),
1718
        })
1719
    }
1720

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
    pub fn ty_of_closure(&self,
        unsafety: hir::Unsafety,
        decl: &hir::FnDecl,
        abi: abi::Abi,
        expected_sig: Option<ty::FnSig<'tcx>>)
        -> ty::ClosureTy<'tcx>
    {
        debug!("ty_of_closure(expected_sig={:?})",
               expected_sig);

        // new region names that appear inside of the fn decl are bound to
        // that function type
        let rb = rscope::BindingRscope::new();

1735
        let input_tys = decl.inputs.iter().enumerate().map(|(i, a)| {
1736 1737 1738
            let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
                // no guarantee that the correct number of expected args
                // were supplied
1739 1740
                if i < e.inputs().len() {
                    Some(e.inputs()[i])
1741 1742 1743 1744 1745
                } else {
                    None
                }
            });
            self.ty_of_arg(&rb, a, expected_arg_ty)
1746
        });
1747

1748
        let expected_ret_ty = expected_sig.as_ref().map(|e| e.output());
J
Jakub Bukaj 已提交
1749

1750 1751 1752 1753 1754
        let is_infer = match decl.output {
            hir::Return(ref output) if output.node == hir::TyInfer => true,
            hir::DefaultReturn(..) => true,
            _ => false
        };
1755

1756 1757 1758
        let output_ty = match decl.output {
            _ if is_infer && expected_ret_ty.is_some() =>
                expected_ret_ty.unwrap(),
1759
            _ if is_infer => self.ty_infer(decl.output.span()),
1760
            hir::Return(ref output) =>
1761
                self.ast_ty_to_ty(&rb, &output),
1762 1763
            hir::DefaultReturn(..) => bug!(),
        };
1764

1765
        debug!("ty_of_closure: output_ty={:?}", output_ty);
1766

1767 1768 1769
        ty::ClosureTy {
            unsafety: unsafety,
            abi: abi,
1770
            sig: ty::Binder(self.tcx().mk_fn_sig(input_tys, output_ty, decl.variadic)),
1771
        }
1772
    }
1773

1774
    fn conv_object_ty_poly_trait_ref(&self,
1775 1776 1777 1778 1779
        rscope: &RegionScope,
        span: Span,
        ast_bounds: &[hir::TyParamBound])
        -> Ty<'tcx>
    {
1780
        let mut partitioned_bounds = partition_bounds(ast_bounds);
1781

1782 1783
        let trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
            partitioned_bounds.trait_bounds.remove(0)
1784 1785 1786 1787 1788
        } else {
            span_err!(self.tcx().sess, span, E0224,
                      "at least one non-builtin trait is required for an object type");
            return self.tcx().types.err;
        };
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798
        let trait_ref = &trait_bound.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.trait_path_to_object_type(rscope,
                                       trait_ref.path.span,
                                       trait_def_id,
                                       trait_ref.ref_id,
                                       trait_ref.path.segments.last().unwrap(),
                                       span,
                                       partitioned_bounds)
1799
    }
1800

1801 1802 1803 1804 1805 1806 1807 1808
    /// Given the bounds on an object, determines what single region bound (if any) we can
    /// use to summarize this type. The basic idea is that we will use the bound the user
    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
    /// for region bounds. It may be that we can derive no bound at all, in which case
    /// we return `None`.
    fn compute_object_lifetime_bound(&self,
        span: Span,
        explicit_region_bounds: &[&hir::Lifetime],
1809
        existential_predicates: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>)
1810
        -> Option<&'tcx ty::Region> // if None, use the default
1811 1812
    {
        let tcx = self.tcx();
1813

1814
        debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
1815
               existential_predicates={:?})",
1816
               explicit_region_bounds,
1817
               existential_predicates);
1818

1819 1820 1821 1822
        if explicit_region_bounds.len() > 1 {
            span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
                "only a single explicit lifetime bound is permitted");
        }
1823

1824
        if let Some(&r) = explicit_region_bounds.get(0) {
1825 1826 1827
            // Explicitly specified region bound. Use that.
            return Some(ast_region_to_region(tcx, r));
        }
1828

1829 1830 1831 1832
        if let Some(principal) = existential_predicates.principal() {
            if let Err(ErrorReported) = self.ensure_super_predicates(span, principal.def_id()) {
                return Some(tcx.mk_region(ty::ReStatic));
            }
1833
        }
1834

1835 1836 1837
        // No explicit region bound specified. Therefore, examine trait
        // bounds and see if we can derive region bounds from those.
        let derived_region_bounds =
1838
            object_region_bounds(tcx, existential_predicates);
1839

1840 1841 1842 1843 1844
        // If there are no derived region bounds, then report back that we
        // can find no region bound. The caller will use the default.
        if derived_region_bounds.is_empty() {
            return None;
        }
1845

1846 1847
        // If any of the derived region bounds are 'static, that is always
        // the best choice.
1848 1849
        if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
            return Some(tcx.mk_region(ty::ReStatic));
1850
        }
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860
        // Determine whether there is exactly one unique region in the set
        // of derived region bounds. If so, use that. Otherwise, report an
        // error.
        let r = derived_region_bounds[0];
        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
            span_err!(tcx.sess, span, E0227,
                      "ambiguous lifetime bound, explicit lifetime bound required");
        }
        return Some(r);
1861
    }
1862
}
1863 1864

pub struct PartitionedBounds<'a> {
1865 1866
    pub trait_bounds: Vec<&'a hir::PolyTraitRef>,
    pub region_bounds: Vec<&'a hir::Lifetime>,
1867 1868
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
/// Divides a list of general trait bounds into two groups: builtin bounds (Sync/Send) and the
/// remaining general trait bounds.
fn split_auto_traits<'a, 'b, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                         trait_bounds: Vec<&'b hir::PolyTraitRef>)
    -> (Vec<DefId>, Vec<&'b hir::PolyTraitRef>)
{
    let (auto_traits, trait_bounds): (Vec<_>, _) = trait_bounds.into_iter().partition(|bound| {
        match bound.trait_ref.path.def {
            Def::Trait(trait_did) => {
                // Checks whether `trait_did` refers to one of the builtin
                // traits, like `Send`, and adds it to `auto_traits` if so.
                if Some(trait_did) == tcx.lang_items.send_trait() ||
                    Some(trait_did) == tcx.lang_items.sync_trait() {
                    let segments = &bound.trait_ref.path.segments;
                    let parameters = &segments[segments.len() - 1].parameters;
                    if !parameters.types().is_empty() {
                        check_type_argument_count(tcx, bound.trait_ref.path.span,
                                                  parameters.types().len(), &[]);
                    }
                    if !parameters.lifetimes().is_empty() {
                        report_lifetime_number_error(tcx, bound.trait_ref.path.span,
                                                     parameters.lifetimes().len(), 0);
                    }
                    true
                } else {
                    false
                }
            }
            _ => false
        }
    });

    let auto_traits = auto_traits.into_iter().map(|tr| {
        if let Def::Trait(trait_did) = tr.trait_ref.path.def {
            trait_did
        } else {
            unreachable!()
        }
    }).collect::<Vec<_>>();

    (auto_traits, trait_bounds)
}

/// Divides a list of bounds from the AST into two groups: general trait bounds and region bounds
pub fn partition_bounds<'a, 'b, 'gcx, 'tcx>(ast_bounds: &'b [hir::TyParamBound])
    -> PartitionedBounds<'b>
1915 1916 1917
{
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
1918
    for ast_bound in ast_bounds {
1919
        match *ast_bound {
1920
            hir::TraitTyParamBound(ref b, hir::TraitBoundModifier::None) => {
1921 1922
                trait_bounds.push(b);
            }
1923 1924
            hir::TraitTyParamBound(_, hir::TraitBoundModifier::Maybe) => {}
            hir::RegionTyParamBound(ref l) => {
1925 1926
                region_bounds.push(l);
            }
1927
        }
1928 1929 1930 1931 1932
    }

    PartitionedBounds {
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
1933 1934
    }
}
1935

1936
fn check_type_argument_count(tcx: TyCtxt, span: Span, supplied: usize,
1937 1938 1939
                             ty_param_defs: &[ty::TypeParameterDef]) {
    let accepted = ty_param_defs.len();
    let required = ty_param_defs.iter().take_while(|x| x.default.is_none()) .count();
1940 1941 1942 1943 1944 1945
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
1946
        let arguments_plural = if required == 1 { "" } else { "s" };
1947 1948 1949 1950 1951 1952 1953 1954 1955

        struct_span_err!(tcx.sess, span, E0243,
                "wrong number of type arguments: {} {}, found {}",
                expected, required, supplied)
            .span_label(span,
                &format!("{} {} type argument{}",
                    expected,
                    required,
                    arguments_plural))
1956
            .emit();
1957
    } else if supplied > accepted {
1958
        let expected = if required < accepted {
1959
            format!("expected at most {}", accepted)
1960
        } else {
1961
            format!("expected {}", accepted)
1962
        };
1963
        let arguments_plural = if accepted == 1 { "" } else { "s" };
1964

1965 1966 1967
        struct_span_err!(tcx.sess, span, E0244,
                "wrong number of type arguments: {}, found {}",
                expected, supplied)
1968 1969
            .span_label(
                span,
1970 1971 1972
                &format!("{} type argument{}",
                    if accepted == 0 { "expected no" } else { &expected },
                    arguments_plural)
1973 1974
            )
            .emit();
1975 1976 1977
    }
}

1978
fn report_lifetime_number_error(tcx: TyCtxt, span: Span, number: usize, expected: usize) {
O
Omer Sheikh 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
    let label = if number < expected {
        if expected == 1 {
            format!("expected {} lifetime parameter", expected)
        } else {
            format!("expected {} lifetime parameters", expected)
        }
    } else {
        let additional = number - expected;
        if additional == 1 {
            "unexpected lifetime parameter".to_string()
        } else {
            format!("{} unexpected lifetime parameters", additional)
        }
    };
    struct_span_err!(tcx.sess, span, E0107,
                     "wrong number of lifetime parameters: expected {}, found {}",
                     expected, number)
        .span_label(span, &label)
        .emit();
1998
}
1999 2000 2001 2002 2003

// A helper struct for conveniently grouping a set of bounds which we pass to
// and return from functions in multiple places.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct Bounds<'tcx> {
2004
    pub region_bounds: Vec<&'tcx ty::Region>,
2005
    pub implicitly_sized: bool,
2006 2007 2008 2009
    pub trait_bounds: Vec<ty::PolyTraitRef<'tcx>>,
    pub projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
}

2010 2011
impl<'a, 'gcx, 'tcx> Bounds<'tcx> {
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, param_ty: Ty<'tcx>)
2012
                      -> Vec<ty::Predicate<'tcx>>
2013 2014 2015
    {
        let mut vec = Vec::new();

2016 2017 2018 2019 2020 2021 2022 2023 2024
        // If it could be sized, and is, add the sized predicate
        if self.implicitly_sized {
            if let Some(sized) = tcx.lang_items.sized_trait() {
                let trait_ref = ty::TraitRef {
                    def_id: sized,
                    substs: tcx.mk_substs_trait(param_ty, &[])
                };
                vec.push(trait_ref.to_predicate());
            }
2025 2026 2027 2028 2029
        }

        for &region_bound in &self.region_bounds {
            // account for the binder being introduced below; no need to shift `param_ty`
            // because, at present at least, it can only refer to early-bound regions
2030
            let region_bound = tcx.mk_region(ty::fold::shift_region(*region_bound, 1));
2031
            vec.push(ty::Binder(ty::OutlivesPredicate(param_ty, region_bound)).to_predicate());
2032 2033 2034
        }

        for bound_trait_ref in &self.trait_bounds {
2035
            vec.push(bound_trait_ref.to_predicate());
2036 2037 2038
        }

        for projection in &self.projection_bounds {
2039
            vec.push(projection.to_predicate());
2040 2041 2042 2043 2044
        }

        vec
    }
}
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

pub enum ExplicitSelf<'tcx> {
    ByValue,
    ByReference(&'tcx ty::Region, hir::Mutability),
    ByBox
}

impl<'tcx> ExplicitSelf<'tcx> {
    /// We wish to (for now) categorize an explicit self
    /// declaration like `self: SomeType` into either `self`,
    /// `&self`, `&mut self`, or `Box<self>`. We do this here
    /// by some simple pattern matching. A more precise check
    /// is done later in `check_method_self_type()`.
    ///
    /// Examples:
    ///
    /// ```
    /// impl Foo for &T {
    ///     // Legal declarations:
    ///     fn method1(self: &&T); // ExplicitSelf::ByReference
    ///     fn method2(self: &T); // ExplicitSelf::ByValue
    ///     fn method3(self: Box<&T>); // ExplicitSelf::ByBox
    ///
    ///     // Invalid cases will be caught later by `check_method_self_type`:
    ///     fn method_err1(self: &mut T); // ExplicitSelf::ByReference
    /// }
    /// ```
    ///
    /// To do the check we just count the number of "modifiers"
    /// on each type and compare them. If they are the same or
    /// the impl has more, we call it "by value". Otherwise, we
    /// look at the outermost modifier on the method decl and
    /// call it by-ref, by-box as appropriate. For method1, for
    /// example, the impl type has one modifier, but the method
    /// type has two, so we end up with
    /// ExplicitSelf::ByReference.
    pub fn determine(untransformed_self_ty: Ty<'tcx>,
                     self_arg_ty: Ty<'tcx>)
                     -> ExplicitSelf<'tcx> {
        fn count_modifiers(ty: Ty) -> usize {
            match ty.sty {
                ty::TyRef(_, mt) => count_modifiers(mt.ty) + 1,
                ty::TyBox(t) => count_modifiers(t) + 1,
                _ => 0,
            }
        }

        let impl_modifiers = count_modifiers(untransformed_self_ty);
        let method_modifiers = count_modifiers(self_arg_ty);

        if impl_modifiers >= method_modifiers {
            ExplicitSelf::ByValue
        } else {
            match self_arg_ty.sty {
                ty::TyRef(r, mt) => ExplicitSelf::ByReference(r, mt.mutbl),
                ty::TyBox(_) => ExplicitSelf::ByBox,
                _ => ExplicitSelf::ByValue,
            }
        }
    }
}