astconv.rs 97.0 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20
//! `AstConv` instance; in this phase, the `get_item_type()`
//! function triggers a recursive call to `type_of_item()`
21 22
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
23 24
//! `AstConv`, `get_item_type()` just looks up the item type in
//! `tcx.types` (using `TyCtxt::item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use rustc_const_eval::eval_length;
52
use hir::{self, SelfKind};
53
use hir::def::{Def, PathResolution};
54
use hir::def_id::DefId;
55
use hir::print as pprust;
56
use middle::resolve_lifetime as rl;
57
use rustc::lint;
58
use rustc::ty::subst::{Kind, Subst, Substs};
59 60 61
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, ToPredicate, TypeFoldable};
use rustc::ty::wf::object_region_bounds;
62
use rustc_back::slice;
63
use require_c_abi_if_variadic;
64
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
65 66
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope,
             ElisionFailureInfo, ElidedLifetime};
67
use rscope::{AnonTypeScope, MaybeWithAnonTypes};
68
use util::common::{ErrorReported, FN_OUTPUT_NAME};
69
use util::nodemap::{NodeMap, FxHashSet};
70

71
use std::cell::RefCell;
N
Niko Matsakis 已提交
72
use syntax::{abi, ast};
73
use syntax::feature_gate::{GateIssue, emit_feature_err};
74
use syntax::symbol::{Symbol, keywords};
75 76
use syntax_pos::{Span, Pos};
use errors::DiagnosticBuilder;
77

78 79
pub trait AstConv<'gcx, 'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
80

81 82 83
    /// A cache used for the result of `ast_ty_to_ty_cache`
    fn ast_ty_to_ty_cache(&self) -> &RefCell<NodeMap<Ty<'tcx>>>;

84 85 86 87
    /// Returns the generic type and lifetime parameters for an item.
    fn get_generics(&self, span: Span, id: DefId)
                    -> Result<&'tcx ty::Generics<'tcx>, ErrorReported>;

88 89
    /// Identify the type for an item, like a type alias, fn, or struct.
    fn get_item_type(&self, span: Span, id: DefId) -> Result<Ty<'tcx>, ErrorReported>;
90

91 92
    /// Returns the `TraitDef` for a given trait. This allows you to
    /// figure out the set of type parameters defined on the trait.
N
Niko Matsakis 已提交
93
    fn get_trait_def(&self, span: Span, id: DefId)
94
                     -> Result<&'tcx ty::TraitDef<'tcx>, ErrorReported>;
N
Nick Cameron 已提交
95

96 97 98
    /// Ensure that the super-predicates for the trait with the given
    /// id are available and also for the transitive set of
    /// super-predicates.
N
Niko Matsakis 已提交
99
    fn ensure_super_predicates(&self, span: Span, id: DefId)
100 101 102 103
                               -> Result<(), ErrorReported>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
104 105
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
106

N
Nick Cameron 已提交
107 108 109 110
    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
111
    fn get_free_substs(&self) -> Option<&Substs<'tcx>>;
112

113
    /// What type should we use when a type is omitted?
114 115 116 117 118
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;

    /// Same as ty_infer, but with a known type parameter definition.
    fn ty_infer_for_def(&self,
                        _def: &ty::TypeParameterDef<'tcx>,
119
                        _substs: &[Kind<'tcx>],
120 121 122
                        span: Span) -> Ty<'tcx> {
        self.ty_infer(span)
    }
123

124 125 126 127 128 129 130 131 132 133 134
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
135
                                        -> Ty<'tcx>;
136 137 138 139 140

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
141
                    _trait_ref: ty::TraitRef<'tcx>,
142
                    _item_name: ast::Name)
N
Nick Cameron 已提交
143
                    -> Ty<'tcx>;
144 145 146 147 148 149

    /// Invoked when we encounter an error from some prior pass
    /// (e.g. resolve) that is translated into a ty-error. This is
    /// used to help suppress derived errors typeck might otherwise
    /// report.
    fn set_tainted_by_errors(&self);
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165
#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

166 167 168 169 170
/// Dummy type used for the `Self` of a `TraitRef` created for converting
/// a trait object, and which gets removed in `ExistentialTraitRef`.
/// This type must not appear anywhere in other converted types.
const TRAIT_OBJECT_DUMMY_SELF: ty::TypeVariants<'static> = ty::TyInfer(ty::FreshTy(0));

171 172 173
pub fn ast_region_to_region<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            lifetime: &hir::Lifetime)
                                            -> &'tcx ty::Region {
174
    let r = match tcx.named_region_map.defs.get(&lifetime.id) {
175 176
        None => {
            // should have been recorded by the `resolve_lifetime` pass
177
            span_bug!(lifetime.span, "unresolved lifetime");
178
        }
179

180
        Some(&rl::DefStaticRegion) => {
181
            ty::ReStatic
182 183
        }

184
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
185 186 187 188 189 190 191 192 193 194 195 196 197 198
            // If this region is declared on a function, it will have
            // an entry in `late_bound`, but if it comes from
            // `for<'a>` in some type or something, it won't
            // necessarily have one. In that case though, we won't be
            // changed from late to early bound, so we can just
            // substitute false.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
            ty::ReLateBound(debruijn, ty::BrNamed(tcx.map.local_def_id(id),
                                                  lifetime.name,
                                                  issue_32330))
199 200
        }

201
        Some(&rl::DefEarlyBoundRegion(index, _)) => {
202 203 204 205
            ty::ReEarlyBound(ty::EarlyBoundRegion {
                index: index,
                name: lifetime.name
            })
206 207
        }

208
        Some(&rl::DefFreeRegion(scope, id)) => {
209 210 211 212 213 214 215
            // As in DefLateBoundRegion above, could be missing for some late-bound
            // regions, but also for early-bound regions.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
216
            ty::ReFree(ty::FreeRegion {
217
                    scope: scope.to_code_extent(&tcx.region_maps),
218
                    bound_region: ty::BrNamed(tcx.map.local_def_id(id),
219 220 221 222 223
                                              lifetime.name,
                                              issue_32330)
            })

                // (*) -- not late-bound, won't change
224 225 226
        }
    };

227 228
    debug!("ast_region_to_region(lifetime={:?} id={}) yields {:?}",
           lifetime,
229
           lifetime.id,
230
           r);
231

232
    tcx.mk_region(r)
233 234
}

235
fn report_elision_failure(
N
Nick Cameron 已提交
236
    db: &mut DiagnosticBuilder,
237 238 239 240
    params: Vec<ElisionFailureInfo>)
{
    let mut m = String::new();
    let len = params.len();
241

242 243 244 245 246 247 248
    let elided_params: Vec<_> = params.into_iter()
                                       .filter(|info| info.lifetime_count > 0)
                                       .collect();

    let elided_len = elided_params.len();

    for (i, info) in elided_params.into_iter().enumerate() {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        let ElisionFailureInfo {
            name, lifetime_count: n, have_bound_regions
        } = info;

        let help_name = if name.is_empty() {
            format!("argument {}", i + 1)
        } else {
            format!("`{}`", name)
        };

        m.push_str(&(if n == 1 {
            help_name
        } else {
            format!("one of {}'s {} elided {}lifetimes", help_name, n,
                    if have_bound_regions { "free " } else { "" } )
        })[..]);

266
        if elided_len == 2 && i == 0 {
267
            m.push_str(" or ");
268
        } else if i + 2 == elided_len {
269
            m.push_str(", or ");
270
        } else if i != elided_len - 1 {
271 272
            m.push_str(", ");
        }
273

274
    }
275

276
    if len == 0 {
277 278 279 280 281
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    there is no value for it to be borrowed from");
        help!(db,
                   "consider giving it a 'static lifetime");
282
    } else if elided_len == 0 {
283 284 285 286 287 288 289
        help!(db,
                   "this function's return type contains a borrowed value with \
                    an elided lifetime, but the lifetime cannot be derived from \
                    the arguments");
        help!(db,
                   "consider giving it an explicit bounded or 'static \
                    lifetime");
290
    } else if elided_len == 1 {
291 292 293 294
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say which {} it is borrowed from",
                   m);
295
    } else {
296 297 298 299
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say whether it is borrowed from {}",
                   m);
300 301 302
    }
}

303
impl<'o, 'gcx: 'tcx, 'tcx> AstConv<'gcx, 'tcx>+'o {
304 305 306
    pub fn opt_ast_region_to_region(&self,
        rscope: &RegionScope,
        default_span: Span,
307
        opt_lifetime: &Option<hir::Lifetime>) -> &'tcx ty::Region
308 309 310 311 312
    {
        let r = match *opt_lifetime {
            Some(ref lifetime) => {
                ast_region_to_region(self.tcx(), lifetime)
            }
313

314
            None => self.tcx().mk_region(match rscope.anon_regions(default_span, 1) {
315 316
                Ok(rs) => rs[0],
                Err(params) => {
317 318 319 320 321 322
                    let ampersand_span = Span { hi: default_span.lo, ..default_span};

                    let mut err = struct_span_err!(self.tcx().sess, ampersand_span, E0106,
                                                 "missing lifetime specifier");
                    err.span_label(ampersand_span, &format!("expected lifetime parameter"));

323 324 325 326 327
                    if let Some(params) = params {
                        report_elision_failure(&mut err, params);
                    }
                    err.emit();
                    ty::ReStatic
328
                }
329
            })
330
        };
331

332 333 334
        debug!("opt_ast_region_to_region(opt_lifetime={:?}) yields {:?}",
                opt_lifetime,
                r);
335

336 337
        r
    }
338

339 340 341 342 343 344
    /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
    /// returns an appropriate set of substitutions for this particular reference to `I`.
    pub fn ast_path_substs_for_ty(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
345
        def_id: DefId,
346
        item_segment: &hir::PathSegment)
347
        -> &'tcx Substs<'tcx>
348 349 350
    {
        let tcx = self.tcx();

351 352
        match item_segment.parameters {
            hir::AngleBracketedParameters(_) => {}
353
            hir::ParenthesizedParameters(..) => {
354 355 356 357 358
                struct_span_err!(tcx.sess, span, E0214,
                          "parenthesized parameters may only be used with a trait")
                    .span_label(span, &format!("only traits may use parentheses"))
                    .emit();

359
                return Substs::for_item(tcx, def_id, |_, _| {
360
                    tcx.mk_region(ty::ReStatic)
361 362
                }, |_, _| {
                    tcx.types.err
363
                });
364
            }
365 366 367 368 369 370
        }

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_path(rscope,
                                            span,
                                            param_mode,
371
                                            def_id,
372 373
                                            &item_segment.parameters,
                                            None);
374

375
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
376

377
        substs
378
    }
379

380 381 382 383 384 385
    /// Given the type/region arguments provided to some path (along with
    /// an implicit Self, if this is a trait reference) returns the complete
    /// set of substitutions. This may involve applying defaulted type parameters.
    ///
    /// Note that the type listing given here is *exactly* what the user provided.
    fn create_substs_for_ast_path(&self,
386 387
        rscope: &RegionScope,
        span: Span,
388
        param_mode: PathParamMode,
389
        def_id: DefId,
390 391 392
        parameters: &hir::PathParameters,
        self_ty: Option<Ty<'tcx>>)
        -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
393 394 395
    {
        let tcx = self.tcx();

396
        debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
397
               parameters={:?})",
398
               def_id, self_ty, parameters);
399 400 401 402 403 404 405 406 407 408 409 410

        let (lifetimes, num_types_provided) = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                if param_mode == PathParamMode::Optional && data.types.is_empty() {
                    (&data.lifetimes[..], None)
                } else {
                    (&data.lifetimes[..], Some(data.types.len()))
                }
            }
            hir::ParenthesizedParameters(_) => (&[][..], Some(1))
        };

411 412 413
        // If the type is parameterized by this region, then replace this
        // region with the current anon region binding (in other words,
        // whatever & would get replaced with).
414 415 416 417 418 419 420 421
        let decl_generics = match self.get_generics(span, def_id) {
            Ok(generics) => generics,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
422
        let expected_num_region_params = decl_generics.regions.len();
423
        let supplied_num_region_params = lifetimes.len();
424
        let regions = if expected_num_region_params == supplied_num_region_params {
425
            lifetimes.iter().map(|l| *ast_region_to_region(tcx, l)).collect()
426 427 428
        } else {
            let anon_regions =
                rscope.anon_regions(span, expected_num_region_params);
429

430 431 432 433 434
            if supplied_num_region_params != 0 || anon_regions.is_err() {
                report_lifetime_number_error(tcx, span,
                                             supplied_num_region_params,
                                             expected_num_region_params);
            }
435

436 437 438 439 440
            match anon_regions {
                Ok(anon_regions) => anon_regions,
                Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
            }
        };
441

442
        // If a self-type was declared, one should be provided.
443
        assert_eq!(decl_generics.has_self, self_ty.is_some());
444

445 446
        // Check the number of type parameters supplied by the user.
        if let Some(num_provided) = num_types_provided {
447
            let ty_param_defs = &decl_generics.types[self_ty.is_some() as usize..];
448
            check_type_argument_count(tcx, span, num_provided, ty_param_defs);
449
        }
450

451 452 453 454 455 456 457 458 459
        let is_object = self_ty.map_or(false, |ty| ty.sty == TRAIT_OBJECT_DUMMY_SELF);
        let default_needs_object_self = |p: &ty::TypeParameterDef<'tcx>| {
            if let Some(ref default) = p.default {
                if is_object && default.has_self_ty() {
                    // There is no suitable inference default for a type parameter
                    // that references self, in an object type.
                    return true;
                }
            }
460

461 462 463 464
            false
        };

        let mut output_assoc_binding = None;
465
        let substs = Substs::for_item(tcx, def_id, |def, _| {
466 467
            let i = def.index as usize - self_ty.is_some() as usize;
            tcx.mk_region(regions[i])
468 469
        }, |def, substs| {
            let i = def.index as usize;
470 471 472 473 474 475

            // Handle Self first, so we can adjust the index to match the AST.
            if let (0, Some(ty)) = (i, self_ty) {
                return ty;
            }

476
            let i = i - self_ty.is_some() as usize - decl_generics.regions.len();
477
            if num_types_provided.map_or(false, |n| i < n) {
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
                // A provided type parameter.
                match *parameters {
                    hir::AngleBracketedParameters(ref data) => {
                        self.ast_ty_arg_to_ty(rscope, Some(def), substs, &data.types[i])
                    }
                    hir::ParenthesizedParameters(ref data) => {
                        assert_eq!(i, 0);
                        let (ty, assoc) =
                            self.convert_parenthesized_parameters(rscope, substs, data);
                        output_assoc_binding = Some(assoc);
                        ty
                    }
                }
            } else if num_types_provided.is_none() {
                // No type parameters were provided, we can infer all.
                let ty_var = if !default_needs_object_self(def) {
                    self.ty_infer_for_def(def, substs, span)
                } else {
                    self.ty_infer(span)
                };
                ty_var
            } else if let Some(default) = def.default {
                // No type parameter provided, but a default exists.
501

502 503 504 505 506
                // If we are converting an object type, then the
                // `Self` parameter is unknown. However, some of the
                // other type parameters may reference `Self` in their
                // defaults. This will lead to an ICE if we are not
                // careful!
507
                if default_needs_object_self(def) {
Z
zjhmale 已提交
508 509 510 511 512 513 514
                    struct_span_err!(tcx.sess, span, E0393,
                                     "the type parameter `{}` must be explicitly specified",
                                     def.name)
                        .span_label(span, &format!("missing reference to `{}`", def.name))
                        .note(&format!("because of the default `Self` reference, \
                                        type parameters must be specified on object types"))
                        .emit();
515
                    tcx.types.err
516 517
                } else {
                    // This is a default type parameter.
518
                    default.subst_spanned(tcx, substs, Some(span))
519
                }
520
            } else {
521 522
                // We've already errored above about the mismatch.
                tcx.types.err
S
Sean Bowe 已提交
523
            }
524
        });
S
Sean Bowe 已提交
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539
        let assoc_bindings = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                data.bindings.iter().map(|b| {
                    ConvertedBinding {
                        item_name: b.name,
                        ty: self.ast_ty_to_ty(rscope, &b.ty),
                        span: b.span
                    }
                }).collect()
            }
            hir::ParenthesizedParameters(ref data) => {
                vec![output_assoc_binding.unwrap_or_else(|| {
                    // This is an error condition, but we should
                    // get the associated type binding anyway.
540
                    self.convert_parenthesized_parameters(rscope, substs, data).1
541 542
                })]
            }
543
        };
S
Sean Bowe 已提交
544

545 546
        debug!("create_substs_for_ast_path(decl_generics={:?}, self_ty={:?}) -> {:?}",
               decl_generics, self_ty, substs);
S
Sean Bowe 已提交
547

548
        (substs, assoc_bindings)
549
    }
550

551 552 553
    /// Returns the appropriate lifetime to use for any output lifetimes
    /// (if one exists) and a vector of the (pattern, number of lifetimes)
    /// corresponding to each input type/pattern.
554 555 556 557
    fn find_implied_output_region<F>(&self,
                                     input_tys: &[Ty<'tcx>],
                                     input_pats: F) -> ElidedLifetime
        where F: FnOnce() -> Vec<String>
558 559 560 561 562
    {
        let tcx = self.tcx();
        let mut lifetimes_for_params = Vec::new();
        let mut possible_implied_output_region = None;

563
        for input_type in input_tys.iter() {
564
            let mut regions = FxHashSet();
565 566 567 568 569 570 571 572 573 574 575
            let have_bound_regions = tcx.collect_regions(input_type, &mut regions);

            debug!("find_implied_output_regions: collected {:?} from {:?} \
                    have_bound_regions={:?}", &regions, input_type, have_bound_regions);

            if regions.len() == 1 {
                // there's a chance that the unique lifetime of this
                // iteration will be the appropriate lifetime for output
                // parameters, so lets store it.
                possible_implied_output_region = regions.iter().cloned().next();
            }
576

577 578 579
            // Use a placeholder for `name` because computing it can be
            // expensive and we don't want to do it until we know it's
            // necessary.
580
            lifetimes_for_params.push(ElisionFailureInfo {
581
                name: String::new(),
582 583 584
                lifetime_count: regions.len(),
                have_bound_regions: have_bound_regions
            });
585 586
        }

587
        if lifetimes_for_params.iter().map(|e| e.lifetime_count).sum::<usize>() == 1 {
588
            Ok(*possible_implied_output_region.unwrap())
589
        } else {
590 591 592 593 594
            // Fill in the expensive `name` fields now that we know they're
            // needed.
            for (info, input_pat) in lifetimes_for_params.iter_mut().zip(input_pats()) {
                info.name = input_pat;
            }
595 596
            Err(Some(lifetimes_for_params))
        }
597
    }
598

599 600
    fn convert_ty_with_lifetime_elision(&self,
                                        elided_lifetime: ElidedLifetime,
601 602
                                        ty: &hir::Ty,
                                        anon_scope: Option<AnonTypeScope>)
603 604 605 606 607
                                        -> Ty<'tcx>
    {
        match elided_lifetime {
            Ok(implied_output_region) => {
                let rb = ElidableRscope::new(implied_output_region);
608
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
609 610 611 612 613 614
            }
            Err(param_lifetimes) => {
                // All regions must be explicitly specified in the output
                // if the lifetime elision rules do not apply. This saves
                // the user from potentially-confusing errors.
                let rb = UnelidableRscope::new(param_lifetimes);
615
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
616
            }
617 618 619
        }
    }

620 621
    fn convert_parenthesized_parameters(&self,
                                        rscope: &RegionScope,
622
                                        region_substs: &[Kind<'tcx>],
623
                                        data: &hir::ParenthesizedParameterData)
624
                                        -> (Ty<'tcx>, ConvertedBinding<'tcx>)
625
    {
626 627
        let anon_scope = rscope.anon_type_scope();
        let binding_rscope = MaybeWithAnonTypes::new(BindingRscope::new(), anon_scope);
628
        let inputs = self.tcx().mk_type_list(data.inputs.iter().map(|a_t| {
629
            self.ast_ty_arg_to_ty(&binding_rscope, None, region_substs, a_t)
630
        }));
631 632
        let inputs_len = inputs.len();
        let input_params = || vec![String::new(); inputs_len];
633
        let implied_output_region = self.find_implied_output_region(&inputs, input_params);
634

635 636
        let (output, output_span) = match data.output {
            Some(ref output_ty) => {
637 638 639
                (self.convert_ty_with_lifetime_elision(implied_output_region,
                                                       &output_ty,
                                                       anon_scope),
640 641 642 643 644 645
                 output_ty.span)
            }
            None => {
                (self.tcx().mk_nil(), data.span)
            }
        };
646

647
        let output_binding = ConvertedBinding {
648
            item_name: Symbol::intern(FN_OUTPUT_NAME),
649 650 651
            ty: output,
            span: output_span
        };
652

653
        (self.tcx().mk_ty(ty::TyTuple(inputs)), output_binding)
654
    }
655

656 657 658
    pub fn instantiate_poly_trait_ref(&self,
        rscope: &RegionScope,
        ast_trait_ref: &hir::PolyTraitRef,
659
        self_ty: Ty<'tcx>,
660 661 662 663 664 665 666 667 668 669
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
    {
        let trait_ref = &ast_trait_ref.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_poly_trait_ref(rscope,
                                        trait_ref.path.span,
                                        PathParamMode::Explicit,
                                        trait_def_id,
                                        self_ty,
670
                                        trait_ref.ref_id,
671 672 673
                                        trait_ref.path.segments.last().unwrap(),
                                        poly_projections)
    }
674

675 676 677 678 679 680 681 682 683
    /// Instantiates the path for the given trait reference, assuming that it's
    /// bound to a valid trait type. Returns the def_id for the defining trait.
    /// Fails if the type is a type other than a trait type.
    ///
    /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
    /// are disallowed. Otherwise, they are pushed onto the vector given.
    pub fn instantiate_mono_trait_ref(&self,
        rscope: &RegionScope,
        trait_ref: &hir::TraitRef,
684
        self_ty: Ty<'tcx>)
685 686 687 688 689 690 691 692 693 694
        -> ty::TraitRef<'tcx>
    {
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_mono_trait_ref(rscope,
                                        trait_ref.path.span,
                                        PathParamMode::Explicit,
                                        trait_def_id,
                                        self_ty,
                                        trait_ref.path.segments.last().unwrap())
    }
695

696 697
    fn trait_def_id(&self, trait_ref: &hir::TraitRef) -> DefId {
        let path = &trait_ref.path;
698
        match self.tcx().expect_def(trait_ref.ref_id) {
699 700 701 702 703 704 705 706
            Def::Trait(trait_def_id) => trait_def_id,
            Def::Err => {
                self.tcx().sess.fatal("cannot continue compilation due to previous error");
            }
            _ => {
                span_fatal!(self.tcx().sess, path.span, E0245, "`{}` is not a trait",
                            path);
            }
N
Niko Matsakis 已提交
707 708 709
        }
    }

710 711 712 713 714
    fn ast_path_to_poly_trait_ref(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
        trait_def_id: DefId,
715
        self_ty: Ty<'tcx>,
716
        path_id: ast::NodeId,
717 718 719
        trait_segment: &hir::PathSegment,
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
720
    {
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
        debug!("ast_path_to_poly_trait_ref(trait_segment={:?})", trait_segment);
        // The trait reference introduces a binding level here, so
        // we need to shift the `rscope`. It'd be nice if we could
        // do away with this rscope stuff and work this knowledge
        // into resolve_lifetimes, as we do with non-omitted
        // lifetimes. Oh well, not there yet.
        let shifted_rscope = &ShiftedRscope::new(rscope);

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(shifted_rscope,
                                                 span,
                                                 param_mode,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        let poly_trait_ref = ty::Binder(ty::TraitRef::new(trait_def_id, substs));

738 739 740 741 742 743 744 745
        poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
            // specify type to assert that error was already reported in Err case:
            let predicate: Result<_, ErrorReported> =
                self.ast_type_binding_to_poly_projection_predicate(path_id,
                                                                   poly_trait_ref,
                                                                   binding);
            predicate.ok() // ok to ignore Err() because ErrorReported (see above)
        }));
746 747 748 749

        debug!("ast_path_to_poly_trait_ref(trait_segment={:?}, projections={:?}) -> {:?}",
               trait_segment, poly_projections, poly_trait_ref);
        poly_trait_ref
750 751
    }

752 753 754 755 756
    fn ast_path_to_mono_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  param_mode: PathParamMode,
                                  trait_def_id: DefId,
757
                                  self_ty: Ty<'tcx>,
758 759 760 761 762 763 764 765 766 767 768 769 770
                                  trait_segment: &hir::PathSegment)
                                  -> ty::TraitRef<'tcx>
    {
        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(rscope,
                                                 span,
                                                 param_mode,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
        ty::TraitRef::new(trait_def_id, substs)
    }
771

772 773 774 775 776
    fn create_substs_for_ast_trait_ref(&self,
                                       rscope: &RegionScope,
                                       span: Span,
                                       param_mode: PathParamMode,
                                       trait_def_id: DefId,
777
                                       self_ty: Ty<'tcx>,
778 779 780 781 782 783 784 785 786 787 788 789 790 791
                                       trait_segment: &hir::PathSegment)
                                       -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
    {
        debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
               trait_segment);

        let trait_def = match self.get_trait_def(span, trait_def_id) {
            Ok(trait_def) => trait_def,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
792

793 794
        match trait_segment.parameters {
            hir::AngleBracketedParameters(_) => {
795 796 797
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
798
                    emit_feature_err(&self.tcx().sess.parse_sess,
799 800 801 802 803 804
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        the precise format of `Fn`-family traits' \
                        type parameters is subject to change. \
                        Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead");
                }
805
            }
806
            hir::ParenthesizedParameters(_) => {
807 808 809
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
810
                    emit_feature_err(&self.tcx().sess.parse_sess,
811 812 813 814
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        parenthetical notation is only stable when used with `Fn`-family traits");
                }
815
            }
816
        }
817

818 819 820
        self.create_substs_for_ast_path(rscope,
                                        span,
                                        param_mode,
821
                                        trait_def_id,
822 823
                                        &trait_segment.parameters,
                                        Some(self_ty))
824
    }
825

826 827 828 829 830 831 832 833 834 835
    fn trait_defines_associated_type_named(&self,
                                           trait_def_id: DefId,
                                           assoc_name: ast::Name)
                                           -> bool
    {
        self.tcx().associated_items(trait_def_id).any(|item| {
            item.kind == ty::AssociatedKind::Type && item.name == assoc_name
        })
    }

836 837 838
    fn ast_type_binding_to_poly_projection_predicate(
        &self,
        path_id: ast::NodeId,
839
        trait_ref: ty::PolyTraitRef<'tcx>,
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
        binding: &ConvertedBinding<'tcx>)
        -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();

        // Given something like `U : SomeTrait<T=X>`, we want to produce a
        // predicate like `<U as SomeTrait>::T = X`. This is somewhat
        // subtle in the event that `T` is defined in a supertrait of
        // `SomeTrait`, because in that case we need to upcast.
        //
        // That is, consider this case:
        //
        // ```
        // trait SubTrait : SuperTrait<int> { }
        // trait SuperTrait<A> { type T; }
        //
        // ... B : SubTrait<T=foo> ...
        // ```
        //
        // We want to produce `<B as SuperTrait<int>>::T == foo`.

861 862 863 864 865 866 867 868 869 870 871 872 873
        // Find any late-bound regions declared in `ty` that are not
        // declared in the trait-ref. These are not wellformed.
        //
        // Example:
        //
        //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
        //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
        let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
        let late_bound_in_ty = tcx.collect_referenced_late_bound_regions(&ty::Binder(binding.ty));
        debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
        debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
        for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
            let br_name = match *br {
874
                ty::BrNamed(_, name, _) => name,
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                _ => {
                    span_bug!(
                        binding.span,
                        "anonymous bound region {:?} in binding but not trait ref",
                        br);
                }
            };
            tcx.sess.add_lint(
                lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                path_id,
                binding.span,
                format!("binding for associated type `{}` references lifetime `{}`, \
                         which does not appear in the trait input types",
                        binding.item_name, br_name));
        }

891 892
        // Simple case: X is defined in the current trait.
        if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
893 894 895 896 897 898 899 900
            return Ok(trait_ref.map_bound(|trait_ref| {
                ty::ProjectionPredicate {
                    projection_ty: ty::ProjectionTy {
                        trait_ref: trait_ref,
                        item_name: binding.item_name,
                    },
                    ty: binding.ty,
                }
901 902 903 904
            }));
        }

        // Otherwise, we have to walk through the supertraits to find
905
        // those that do.
906 907
        self.ensure_super_predicates(binding.span, trait_ref.def_id())?;

908
        let candidates: Vec<ty::PolyTraitRef> =
909 910 911 912 913 914 915 916 917
            traits::supertraits(tcx, trait_ref.clone())
            .filter(|r| self.trait_defines_associated_type_named(r.def_id(), binding.item_name))
            .collect();

        let candidate = self.one_bound_for_assoc_type(candidates,
                                                      &trait_ref.to_string(),
                                                      &binding.item_name.as_str(),
                                                      binding.span)?;

918 919 920 921 922 923 924 925
        Ok(candidate.map_bound(|trait_ref| {
            ty::ProjectionPredicate {
                projection_ty: ty::ProjectionTy {
                    trait_ref: trait_ref,
                    item_name: binding.item_name,
                },
                ty: binding.ty,
            }
926
        }))
927 928
    }

929 930 931 932 933 934 935 936 937
    fn ast_path_to_ty(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
        did: DefId,
        item_segment: &hir::PathSegment)
        -> Ty<'tcx>
    {
        let tcx = self.tcx();
938 939
        let decl_ty = match self.get_item_type(span, did) {
            Ok(ty) => ty,
940 941 942 943
            Err(ErrorReported) => {
                return tcx.types.err;
            }
        };
944

945 946 947
        let substs = self.ast_path_substs_for_ty(rscope,
                                                 span,
                                                 param_mode,
948
                                                 did,
949
                                                 item_segment);
950

951 952
        // FIXME(#12938): This is a hack until we have full support for DST.
        if Some(did) == self.tcx().lang_items.owned_box() {
953 954
            assert_eq!(substs.types().count(), 1);
            return self.tcx().mk_box(substs.type_at(0));
955
        }
956

957
        decl_ty.subst(self.tcx(), substs)
958 959
    }

960 961 962 963 964 965
    fn ast_ty_to_object_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  ty: &hir::Ty,
                                  bounds: &[hir::TyParamBound])
                                  -> Ty<'tcx>
966 967 968 969 970 971 972 973 974 975 976 977
    {
        /*!
         * In a type like `Foo + Send`, we want to wait to collect the
         * full set of bounds before we make the object type, because we
         * need them to infer a region bound.  (For example, if we tried
         * made a type from just `Foo`, then it wouldn't be enough to
         * infer a 'static bound, and hence the user would get an error.)
         * So this function is used when we're dealing with a sum type to
         * convert the LHS. It only accepts a type that refers to a trait
         * name, and reports an error otherwise.
         */

978
        let tcx = self.tcx();
979 980
        match ty.node {
            hir::TyPath(None, ref path) => {
981
                let resolution = tcx.expect_resolution(ty.id);
982 983
                match resolution.base_def {
                    Def::Trait(trait_def_id) if resolution.depth == 0 => {
984 985 986 987 988 989 990 991
                        self.trait_path_to_object_type(rscope,
                                                       path.span,
                                                       PathParamMode::Explicit,
                                                       trait_def_id,
                                                       ty.id,
                                                       path.segments.last().unwrap(),
                                                       span,
                                                       partition_bounds(tcx, span, bounds))
992 993
                    }
                    _ => {
994
                        struct_span_err!(tcx.sess, ty.span, E0172,
R
Roy Brunton 已提交
995 996 997
                                  "expected a reference to a trait")
                            .span_label(ty.span, &format!("expected a trait"))
                            .emit();
998
                        tcx.types.err
999
                    }
1000 1001
                }
            }
1002
            _ => {
1003
                let mut err = struct_span_err!(tcx.sess, ty.span, E0178,
1004 1005 1006
                                               "expected a path on the left-hand side \
                                                of `+`, not `{}`",
                                               pprust::ty_to_string(ty));
A
Adam Medziński 已提交
1007
                err.span_label(ty.span, &format!("expected a path"));
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
                let hi = bounds.iter().map(|x| match *x {
                    hir::TraitTyParamBound(ref tr, _) => tr.span.hi,
                    hir::RegionTyParamBound(ref r) => r.span.hi,
                }).max_by_key(|x| x.to_usize());
                let full_span = hi.map(|hi| Span {
                    lo: ty.span.lo,
                    hi: hi,
                    expn_id: ty.span.expn_id,
                });
                match (&ty.node, full_span) {
                    (&hir::TyRptr(None, ref mut_ty), Some(full_span)) => {
                        let mutbl_str = if mut_ty.mutbl == hir::MutMutable { "mut " } else { "" };
                        err.span_suggestion(full_span, "try adding parentheses (per RFC 438):",
                                            format!("&{}({} +{})",
                                                    mutbl_str,
                                                    pprust::ty_to_string(&mut_ty.ty),
                                                    pprust::bounds_to_string(bounds)));
                    }
                    (&hir::TyRptr(Some(ref lt), ref mut_ty), Some(full_span)) => {
                        let mutbl_str = if mut_ty.mutbl == hir::MutMutable { "mut " } else { "" };
                        err.span_suggestion(full_span, "try adding parentheses (per RFC 438):",
                                            format!("&{} {}({} +{})",
                                                    pprust::lifetime_to_string(lt),
                                                    mutbl_str,
                                                    pprust::ty_to_string(&mut_ty.ty),
                                                    pprust::bounds_to_string(bounds)));
                    }
1035

1036 1037 1038 1039
                    _ => {
                        help!(&mut err,
                                   "perhaps you forgot parentheses? (per RFC 438)");
                    }
1040
                }
1041
                err.emit();
1042
                tcx.types.err
1043 1044
            }
        }
1045
    }
1046

1047 1048 1049 1050 1051 1052
    /// Transform a PolyTraitRef into a PolyExistentialTraitRef by
    /// removing the dummy Self type (TRAIT_OBJECT_DUMMY_SELF).
    fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
                                -> ty::ExistentialTraitRef<'tcx> {
        assert_eq!(trait_ref.self_ty().sty, TRAIT_OBJECT_DUMMY_SELF);
        ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
1053
    }
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    fn trait_path_to_object_type(&self,
                                 rscope: &RegionScope,
                                 path_span: Span,
                                 param_mode: PathParamMode,
                                 trait_def_id: DefId,
                                 trait_path_ref_id: ast::NodeId,
                                 trait_segment: &hir::PathSegment,
                                 span: Span,
                                 partitioned_bounds: PartitionedBounds)
                                 -> Ty<'tcx> {
1065
        let tcx = self.tcx();
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

        let mut projection_bounds = vec![];
        let dummy_self = tcx.mk_ty(TRAIT_OBJECT_DUMMY_SELF);
        let principal = self.ast_path_to_poly_trait_ref(rscope,
                                                        path_span,
                                                        param_mode,
                                                        trait_def_id,
                                                        dummy_self,
                                                        trait_path_ref_id,
                                                        trait_segment,
                                                        &mut projection_bounds);

        let PartitionedBounds { builtin_bounds,
                                trait_bounds,
                                region_bounds } =
            partitioned_bounds;

        if !trait_bounds.is_empty() {
            let b = &trait_bounds[0];
            let span = b.trait_ref.path.span;
            struct_span_err!(self.tcx().sess, span, E0225,
                             "only the builtin traits can be used as closure or object bounds")
                .span_label(span, &format!("non-builtin trait used as bounds"))
                .emit();
        }

        // Erase the dummy_self (TRAIT_OBJECT_DUMMY_SELF) used above.
        let existential_principal = principal.map_bound(|trait_ref| {
            self.trait_ref_to_existential(trait_ref)
        });
        let existential_projections = projection_bounds.iter().map(|bound| {
            bound.map_bound(|b| {
                let p = b.projection_ty;
                ty::ExistentialProjection {
                    trait_ref: self.trait_ref_to_existential(p.trait_ref),
                    item_name: p.item_name,
                    ty: b.ty
                }
            })
        }).collect();

        let region_bound =
            self.compute_object_lifetime_bound(span,
                                               &region_bounds,
                                               existential_principal,
                                               builtin_bounds);

        let region_bound = match region_bound {
            Some(r) => r,
            None => {
1116
                tcx.mk_region(match rscope.object_lifetime_default(span) {
1117 1118 1119 1120 1121 1122 1123
                    Some(r) => r,
                    None => {
                        span_err!(self.tcx().sess, span, E0228,
                                  "the lifetime bound for this object type cannot be deduced \
                                   from context; please supply an explicit bound");
                        ty::ReStatic
                    }
1124
                })
1125
            }
1126
        };
1127 1128

        debug!("region_bound: {:?}", region_bound);
1129

1130 1131 1132 1133
        // ensure the super predicates and stop if we encountered an error
        if self.ensure_super_predicates(span, principal.def_id()).is_err() {
            return tcx.types.err;
        }
1134

1135 1136 1137 1138 1139 1140 1141
        // check that there are no gross object safety violations,
        // most importantly, that the supertraits don't contain Self,
        // to avoid ICE-s.
        let object_safety_violations =
            tcx.astconv_object_safety_violations(principal.def_id());
        if !object_safety_violations.is_empty() {
            tcx.report_object_safety_error(
1142 1143
                span, principal.def_id(), object_safety_violations)
                .emit();
1144 1145
            return tcx.types.err;
        }
1146

1147
        let mut associated_types = FxHashSet::default();
1148
        for tr in traits::supertraits(tcx, principal) {
1149 1150 1151
            associated_types.extend(tcx.associated_items(tr.def_id())
                .filter(|item| item.kind == ty::AssociatedKind::Type)
                .map(|item| (tr.def_id(), item.name)));
1152
        }
1153

1154
        for projection_bound in &projection_bounds {
1155 1156 1157 1158 1159 1160
            let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
                        projection_bound.0.projection_ty.item_name);
            associated_types.remove(&pair);
        }

        for (trait_def_id, name) in associated_types {
1161
            struct_span_err!(tcx.sess, span, E0191,
1162 1163
                "the value of the associated type `{}` (from the trait `{}`) must be specified",
                        name,
1164 1165 1166 1167
                        tcx.item_path_str(trait_def_id))
                        .span_label(span, &format!(
                            "missing associated type `{}` value", name))
                        .emit();
1168
        }
1169

1170 1171 1172 1173 1174 1175 1176 1177
        let ty = tcx.mk_trait(ty::TraitObject {
            principal: existential_principal,
            region_bound: region_bound,
            builtin_bounds: builtin_bounds,
            projection_bounds: existential_projections
        });
        debug!("trait_object_type: {:?}", ty);
        ty
1178 1179
    }

1180 1181 1182 1183 1184
    fn report_ambiguous_associated_type(&self,
                                        span: Span,
                                        type_str: &str,
                                        trait_str: &str,
                                        name: &str) {
K
Keith Yeung 已提交
1185 1186 1187 1188 1189 1190
        struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type")
            .span_label(span, &format!("ambiguous associated type"))
            .note(&format!("specify the type using the syntax `<{} as {}>::{}`",
                  type_str, trait_str, name))
            .emit();

1191
    }
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    // Search for a bound on a type parameter which includes the associated item
    // given by assoc_name. ty_param_node_id is the node id for the type parameter
    // (which might be `Self`, but only if it is the `Self` of a trait, not an
    // impl). This function will fail if there are no suitable bounds or there is
    // any ambiguity.
    fn find_bound_for_assoc_item(&self,
                                 ty_param_node_id: ast::NodeId,
                                 ty_param_name: ast::Name,
                                 assoc_name: ast::Name,
                                 span: Span)
                                 -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();
1206

1207 1208 1209 1210 1211 1212
        let bounds = match self.get_type_parameter_bounds(span, ty_param_node_id) {
            Ok(v) => v,
            Err(ErrorReported) => {
                return Err(ErrorReported);
            }
        };
N
Nick Cameron 已提交
1213

1214 1215
        // Ensure the super predicates and stop if we encountered an error.
        if bounds.iter().any(|b| self.ensure_super_predicates(span, b.def_id()).is_err()) {
1216
            return Err(ErrorReported);
N
Nick Cameron 已提交
1217
        }
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        // Check that there is exactly one way to find an associated type with the
        // correct name.
        let suitable_bounds: Vec<_> =
            traits::transitive_bounds(tcx, &bounds)
            .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name))
            .collect();

        self.one_bound_for_assoc_type(suitable_bounds,
                                      &ty_param_name.as_str(),
                                      &assoc_name.as_str(),
                                      span)
1230
    }
1231

1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    // Checks that bounds contains exactly one element and reports appropriate
    // errors otherwise.
    fn one_bound_for_assoc_type(&self,
                                bounds: Vec<ty::PolyTraitRef<'tcx>>,
                                ty_param_name: &str,
                                assoc_name: &str,
                                span: Span)
        -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        if bounds.is_empty() {
J
Jesus Garlea 已提交
1243
            struct_span_err!(self.tcx().sess, span, E0220,
1244 1245
                      "associated type `{}` not found for `{}`",
                      assoc_name,
J
Jesus Garlea 已提交
1246 1247 1248
                      ty_param_name)
              .span_label(span, &format!("associated type `{}` not found", assoc_name))
              .emit();
1249 1250
            return Err(ErrorReported);
        }
1251

1252
        if bounds.len() > 1 {
M
Mikhail Modin 已提交
1253
            let spans = bounds.iter().map(|b| {
1254
                self.tcx().associated_items(b.def_id()).find(|item| {
J
Jeffrey Seyfried 已提交
1255
                    item.kind == ty::AssociatedKind::Type && item.name == assoc_name
M
Mikhail Modin 已提交
1256
                })
1257
                .and_then(|item| self.tcx().map.as_local_node_id(item.def_id))
M
Mikhail Modin 已提交
1258 1259 1260
                .and_then(|node_id| self.tcx().map.opt_span(node_id))
            });

1261 1262 1263 1264 1265 1266
            let mut err = struct_span_err!(
                self.tcx().sess, span, E0221,
                "ambiguous associated type `{}` in bounds of `{}`",
                assoc_name,
                ty_param_name);
            err.span_label(span, &format!("ambiguous associated type `{}`", assoc_name));
1267

M
Mikhail Modin 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
            for span_and_bound in spans.zip(&bounds) {
                if let Some(span) = span_and_bound.0 {
                    err.span_label(span, &format!("ambiguous `{}` from `{}`",
                                                  assoc_name,
                                                  span_and_bound.1));
                } else {
                    span_note!(&mut err, span,
                               "associated type `{}` could derive from `{}`",
                               ty_param_name,
                               span_and_bound.1);
                }
1279 1280
            }
            err.emit();
1281 1282
        }

1283 1284
        Ok(bounds[0].clone())
    }
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    // Create a type from a path to an associated type.
    // For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
    // and item_segment is the path segment for D. We return a type and a def for
    // the whole path.
    // Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
    // parameter or Self.
    fn associated_path_def_to_ty(&self,
                                 span: Span,
                                 ty: Ty<'tcx>,
                                 ty_path_def: Def,
                                 item_segment: &hir::PathSegment)
                                 -> (Ty<'tcx>, Def)
    {
        let tcx = self.tcx();
V
Vadim Petrochenkov 已提交
1300
        let assoc_name = item_segment.name;
1301 1302 1303 1304 1305 1306 1307 1308

        debug!("associated_path_def_to_ty: {:?}::{}", ty, assoc_name);

        tcx.prohibit_type_params(slice::ref_slice(item_segment));

        // Find the type of the associated item, and the trait where the associated
        // item is declared.
        let bound = match (&ty.sty, ty_path_def) {
1309
            (_, Def::SelfTy(Some(_), Some(impl_def_id))) => {
1310 1311
                // `Self` in an impl of a trait - we have a concrete self type and a
                // trait reference.
1312
                let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
1313 1314 1315 1316 1317 1318
                let trait_ref = if let Some(free_substs) = self.get_free_substs() {
                    trait_ref.subst(tcx, free_substs)
                } else {
                    trait_ref
                };

1319
                if self.ensure_super_predicates(span, trait_ref.def_id).is_err() {
1320
                    return (tcx.types.err, Def::Err);
1321
                }
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
                let candidates: Vec<ty::PolyTraitRef> =
                    traits::supertraits(tcx, ty::Binder(trait_ref))
                    .filter(|r| self.trait_defines_associated_type_named(r.def_id(),
                                                                         assoc_name))
                    .collect();

                match self.one_bound_for_assoc_type(candidates,
                                                    "Self",
                                                    &assoc_name.as_str(),
                                                    span) {
                    Ok(bound) => bound,
1334
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1335
                }
1336
            }
1337 1338 1339 1340 1341 1342 1343
            (&ty::TyParam(_), Def::SelfTy(Some(trait_did), None)) => {
                let trait_node_id = tcx.map.as_local_node_id(trait_did).unwrap();
                match self.find_bound_for_assoc_item(trait_node_id,
                                                     keywords::SelfType.name(),
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1344
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1345
                }
1346
            }
1347
            (&ty::TyParam(_), Def::TyParam(param_did)) => {
1348
                let param_node_id = tcx.map.as_local_node_id(param_did).unwrap();
1349
                let param_name = tcx.type_parameter_def(param_node_id).name;
1350 1351 1352 1353 1354
                match self.find_bound_for_assoc_item(param_node_id,
                                                     param_name,
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1355
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1356
                }
1357
            }
1358
            _ => {
1359 1360 1361 1362 1363 1364 1365
                // Don't print TyErr to the user.
                if !ty.references_error() {
                    self.report_ambiguous_associated_type(span,
                                                          &ty.to_string(),
                                                          "Trait",
                                                          &assoc_name.as_str());
                }
1366
                return (tcx.types.err, Def::Err);
1367
            }
1368
        };
1369

1370 1371 1372
        let trait_did = bound.0.def_id;
        let ty = self.projected_ty_from_poly_trait_ref(span, bound, assoc_name);

1373 1374
        let item = tcx.associated_items(trait_did).find(|i| i.name == assoc_name);
        (ty, Def::AssociatedTy(item.expect("missing associated type").def_id))
1375
    }
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    fn qpath_to_ty(&self,
                   rscope: &RegionScope,
                   span: Span,
                   param_mode: PathParamMode,
                   opt_self_ty: Option<Ty<'tcx>>,
                   trait_def_id: DefId,
                   trait_segment: &hir::PathSegment,
                   item_segment: &hir::PathSegment)
                   -> Ty<'tcx>
    {
        let tcx = self.tcx();
1388

1389
        tcx.prohibit_type_params(slice::ref_slice(item_segment));
1390

1391 1392 1393 1394 1395 1396 1397
        let self_ty = if let Some(ty) = opt_self_ty {
            ty
        } else {
            let path_str = tcx.item_path_str(trait_def_id);
            self.report_ambiguous_associated_type(span,
                                                  "Type",
                                                  &path_str,
V
Vadim Petrochenkov 已提交
1398
                                                  &item_segment.name.as_str());
1399 1400
            return tcx.types.err;
        };
1401

1402
        debug!("qpath_to_ty: self_type={:?}", self_ty);
1403

1404 1405 1406 1407
        let trait_ref = self.ast_path_to_mono_trait_ref(rscope,
                                                        span,
                                                        param_mode,
                                                        trait_def_id,
1408
                                                        self_ty,
1409
                                                        trait_segment);
1410

1411
        debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1412

V
Vadim Petrochenkov 已提交
1413
        self.projected_ty(span, trait_ref, item_segment.name)
1414
    }
1415

1416 1417 1418 1419 1420 1421 1422
    /// Convert a type supplied as value for a type argument from AST into our
    /// our internal representation. This is the same as `ast_ty_to_ty` but that
    /// it applies the object lifetime default.
    ///
    /// # Parameters
    ///
    /// * `this`, `rscope`: the surrounding context
1423
    /// * `def`: the type parameter being instantiated (if available)
1424 1425 1426
    /// * `region_substs`: a partial substitution consisting of
    ///   only the region type parameters being supplied to this type.
    /// * `ast_ty`: the ast representation of the type being supplied
1427 1428 1429
    fn ast_ty_arg_to_ty(&self,
                        rscope: &RegionScope,
                        def: Option<&ty::TypeParameterDef<'tcx>>,
1430
                        region_substs: &[Kind<'tcx>],
1431 1432
                        ast_ty: &hir::Ty)
                        -> Ty<'tcx>
1433 1434
    {
        let tcx = self.tcx();
1435

1436
        if let Some(def) = def {
1437 1438 1439 1440 1441 1442
            let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
            let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
            self.ast_ty_to_ty(rscope1, ast_ty)
        } else {
            self.ast_ty_to_ty(rscope, ast_ty)
        }
1443 1444
    }

1445 1446 1447 1448 1449 1450 1451
    // Check the base def in a PathResolution and convert it to a Ty. If there are
    // associated types in the PathResolution, these will need to be separately
    // resolved.
    fn base_def_to_ty(&self,
                      rscope: &RegionScope,
                      span: Span,
                      param_mode: PathParamMode,
1452
                      def: Def,
1453
                      opt_self_ty: Option<Ty<'tcx>>,
1454
                      base_path_ref_id: ast::NodeId,
V
Vadim Petrochenkov 已提交
1455 1456
                      base_segments: &[hir::PathSegment],
                      permit_variants: bool)
1457 1458 1459
                      -> Ty<'tcx> {
        let tcx = self.tcx();

1460 1461 1462 1463
        debug!("base_def_to_ty(def={:?}, opt_self_ty={:?}, base_segments={:?})",
               def, opt_self_ty, base_segments);

        match def {
1464 1465 1466 1467 1468
            Def::Trait(trait_def_id) => {
                // N.B. this case overlaps somewhat with
                // TyObjectSum, see that fn for details

                tcx.prohibit_type_params(base_segments.split_last().unwrap().1);
1469 1470 1471 1472 1473 1474 1475 1476 1477

                self.trait_path_to_object_type(rscope,
                                               span,
                                               param_mode,
                                               trait_def_id,
                                               base_path_ref_id,
                                               base_segments.last().unwrap(),
                                               span,
                                               partition_bounds(tcx, span, &[]))
1478
            }
1479
            Def::Enum(did) | Def::TyAlias(did) | Def::Struct(did) | Def::Union(did) => {
1480 1481 1482 1483 1484 1485 1486
                tcx.prohibit_type_params(base_segments.split_last().unwrap().1);
                self.ast_path_to_ty(rscope,
                                    span,
                                    param_mode,
                                    did,
                                    base_segments.last().unwrap())
            }
V
Vadim Petrochenkov 已提交
1487 1488 1489 1490
            Def::Variant(did) if permit_variants => {
                // Convert "variant type" as if it were a real type.
                // The resulting `Ty` is type of the variant's enum for now.
                tcx.prohibit_type_params(base_segments.split_last().unwrap().1);
V
Vadim Petrochenkov 已提交
1491 1492 1493 1494 1495
                self.ast_path_to_ty(rscope,
                                    span,
                                    param_mode,
                                    tcx.parent_def_id(did).unwrap(),
                                    base_segments.last().unwrap())
V
Vadim Petrochenkov 已提交
1496
            }
1497
            Def::TyParam(did) => {
1498
                tcx.prohibit_type_params(base_segments);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

                let node_id = tcx.map.as_local_node_id(did).unwrap();
                let param = tcx.ty_param_defs.borrow().get(&node_id)
                               .map(ty::ParamTy::for_def);
                if let Some(p) = param {
                    p.to_ty(tcx)
                } else {
                    // Only while computing defaults of earlier type
                    // parameters can a type parameter be missing its def.
                    struct_span_err!(tcx.sess, span, E0128,
                                     "type parameters with a default cannot use \
                                      forward declared identifiers")
                        .span_label(span, &format!("defaulted type parameters \
                                                    cannot be forward declared"))
                        .emit();
                    tcx.types.err
                }
1516
            }
1517
            Def::SelfTy(_, Some(def_id)) => {
1518
                // Self in impl (we know the concrete type).
1519

1520
                tcx.prohibit_type_params(base_segments);
1521
                let ty = tcx.item_type(def_id);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
                if let Some(free_substs) = self.get_free_substs() {
                    ty.subst(tcx, free_substs)
                } else {
                    ty
                }
            }
            Def::SelfTy(Some(_), None) => {
                // Self in trait.
                tcx.prohibit_type_params(base_segments);
                tcx.mk_self_type()
            }
1533
            Def::AssociatedTy(def_id) => {
1534
                tcx.prohibit_type_params(&base_segments[..base_segments.len()-2]);
1535
                let trait_did = tcx.parent_def_id(def_id).unwrap();
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
                self.qpath_to_ty(rscope,
                                 span,
                                 param_mode,
                                 opt_self_ty,
                                 trait_did,
                                 &base_segments[base_segments.len()-2],
                                 base_segments.last().unwrap())
            }
            Def::Mod(..) => {
                // Used as sentinel by callers to indicate the `<T>::A::B::C` form.
                // FIXME(#22519) This part of the resolution logic should be
                // avoided entirely for that form, once we stop needed a Def
                // for `associated_path_def_to_ty`.
                // Fixing this will also let use resolve <Self>::Foo the same way we
                // resolve Self::Foo, at the moment we can't resolve the former because
                // we don't have the trait information around, which is just sad.

                assert!(base_segments.is_empty());

                opt_self_ty.expect("missing T in <T>::a::b::c")
            }
            Def::PrimTy(prim_ty) => {
                tcx.prim_ty_to_ty(base_segments, prim_ty)
            }
            Def::Err => {
                self.set_tainted_by_errors();
                return self.tcx().types.err;
            }
            _ => {
S
ShyamSundarB 已提交
1565 1566 1567 1568 1569
                struct_span_err!(tcx.sess, span, E0248,
                           "found value `{}` used as a type",
                            tcx.item_path_str(def.def_id()))
                           .span_label(span, &format!("value used as a type"))
                           .emit();
1570
                return self.tcx().types.err;
1571
            }
1572
        }
1573
    }
1574

1575 1576
    // Resolve possibly associated type path into a type and final definition.
    // Note that both base_segments and assoc_segments may be empty, although not at same time.
1577 1578 1579 1580
    pub fn finish_resolving_def_to_ty(&self,
                                      rscope: &RegionScope,
                                      span: Span,
                                      param_mode: PathParamMode,
1581
                                      base_def: Def,
1582
                                      opt_self_ty: Option<Ty<'tcx>>,
1583
                                      base_path_ref_id: ast::NodeId,
1584
                                      base_segments: &[hir::PathSegment],
V
Vadim Petrochenkov 已提交
1585 1586
                                      assoc_segments: &[hir::PathSegment],
                                      permit_variants: bool)
1587
                                      -> (Ty<'tcx>, Def) {
1588 1589
        // Convert the base type.
        debug!("finish_resolving_def_to_ty(base_def={:?}, \
1590 1591
                base_segments={:?}, \
                assoc_segments={:?})",
1592
               base_def,
1593 1594
               base_segments,
               assoc_segments);
1595 1596 1597 1598 1599 1600
        let base_ty = self.base_def_to_ty(rscope,
                                          span,
                                          param_mode,
                                          base_def,
                                          opt_self_ty,
                                          base_path_ref_id,
V
Vadim Petrochenkov 已提交
1601 1602
                                          base_segments,
                                          permit_variants);
1603 1604
        debug!("finish_resolving_def_to_ty: base_def_to_ty returned {:?}", base_ty);

1605
        // If any associated type segments remain, attempt to resolve them.
1606
        let (mut ty, mut def) = (base_ty, base_def);
1607
        for segment in assoc_segments {
1608
            debug!("finish_resolving_def_to_ty: segment={:?}", segment);
1609 1610 1611 1612 1613 1614
            // This is pretty bad (it will fail except for T::A and Self::A).
            let (new_ty, new_def) = self.associated_path_def_to_ty(span, ty, def, segment);
            ty = new_ty;
            def = new_def;

            if def == Def::Err {
1615 1616
                break;
            }
1617
        }
1618
        (ty, def)
1619 1620
    }

1621 1622 1623 1624 1625
    /// Parses the programmer's textual representation of a type into our
    /// internal notion of a type.
    pub fn ast_ty_to_ty(&self, rscope: &RegionScope, ast_ty: &hir::Ty) -> Ty<'tcx> {
        debug!("ast_ty_to_ty(id={:?}, ast_ty={:?})",
               ast_ty.id, ast_ty);
1626

1627
        let tcx = self.tcx();
1628

1629
        let cache = self.ast_ty_to_ty_cache();
1630 1631
        if let Some(ty) = cache.borrow().get(&ast_ty.id) {
            return ty;
1632 1633 1634
        }

        let result_ty = match ast_ty.node {
1635
            hir::TySlice(ref ty) => {
1636
                tcx.mk_slice(self.ast_ty_to_ty(rscope, &ty))
1637
            }
1638
            hir::TyObjectSum(ref ty, ref bounds) => {
1639
                self.ast_ty_to_object_trait_ref(rscope, ast_ty.span, ty, bounds)
1640
            }
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
            hir::TyPtr(ref mt) => {
                tcx.mk_ptr(ty::TypeAndMut {
                    ty: self.ast_ty_to_ty(rscope, &mt.ty),
                    mutbl: mt.mutbl
                })
            }
            hir::TyRptr(ref region, ref mt) => {
                let r = self.opt_ast_region_to_region(rscope, ast_ty.span, region);
                debug!("TyRef r={:?}", r);
                let rscope1 =
                    &ObjectLifetimeDefaultRscope::new(
                        rscope,
                        ty::ObjectLifetimeDefault::Specific(r));
                let t = self.ast_ty_to_ty(rscope1, &mt.ty);
1655
                tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
1656
            }
A
Andrew Cann 已提交
1657 1658
            hir::TyNever => {
                tcx.types.never
1659
            },
1660
            hir::TyTup(ref fields) => {
1661
                tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(rscope, &t)))
1662 1663 1664
            }
            hir::TyBareFn(ref bf) => {
                require_c_abi_if_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
1665
                let anon_scope = rscope.anon_type_scope();
1666 1667 1668 1669 1670 1671
                let bare_fn_ty = self.ty_of_method_or_bare_fn(bf.unsafety,
                                                              bf.abi,
                                                              None,
                                                              &bf.decl,
                                                              anon_scope,
                                                              anon_scope);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

                // Find any late-bound regions declared in return type that do
                // not appear in the arguments. These are not wellformed.
                //
                // Example:
                //
                //     for<'a> fn() -> &'a str <-- 'a is bad
                //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
                //
                // Note that we do this check **here** and not in
                // `ty_of_bare_fn` because the latter is also used to make
                // the types for fn items, and we do not want to issue a
                // warning then. (Once we fix #32330, the regions we are
                // checking for here would be considered early bound
                // anyway.)
                let inputs = bare_fn_ty.sig.inputs();
                let late_bound_in_args = tcx.collect_constrained_late_bound_regions(&inputs);
                let output = bare_fn_ty.sig.output();
                let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
                for br in late_bound_in_ret.difference(&late_bound_in_args) {
                    let br_name = match *br {
1693
                        ty::BrNamed(_, name, _) => name,
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
                        _ => {
                            span_bug!(
                                bf.decl.output.span(),
                                "anonymous bound region {:?} in return but not args",
                                br);
                        }
                    };
                    tcx.sess.add_lint(
                        lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                        ast_ty.id,
                        ast_ty.span,
                        format!("return type references lifetime `{}`, \
                                 which does not appear in the trait input types",
                                br_name));
                }
                tcx.mk_fn_ptr(bare_fn_ty)
1710 1711
            }
            hir::TyPolyTraitRef(ref bounds) => {
1712
                self.conv_object_ty_poly_trait_ref(rscope, ast_ty.span, bounds)
1713
            }
1714 1715 1716 1717 1718
            hir::TyImplTrait(ref bounds) => {
                use collect::{compute_bounds, SizedByDefault};

                // Create the anonymized type.
                let def_id = tcx.map.local_def_id(ast_ty.id);
1719
                if let Some(anon_scope) = rscope.anon_type_scope() {
1720
                    let substs = anon_scope.fresh_substs(self, ast_ty.span);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
                    let ty = tcx.mk_anon(tcx.map.local_def_id(ast_ty.id), substs);

                    // Collect the bounds, i.e. the `A+B+'c` in `impl A+B+'c`.
                    let bounds = compute_bounds(self, ty, bounds,
                                                SizedByDefault::Yes,
                                                Some(anon_scope),
                                                ast_ty.span);
                    let predicates = bounds.predicates(tcx, ty);
                    let predicates = tcx.lift_to_global(&predicates).unwrap();
                    tcx.predicates.borrow_mut().insert(def_id, ty::GenericPredicates {
1731
                        parent: None,
1732
                        predicates: predicates
1733 1734 1735
                    });

                    ty
1736 1737 1738 1739
                } else {
                    span_err!(tcx.sess, ast_ty.span, E0562,
                              "`impl Trait` not allowed outside of function \
                               and inherent method return types");
1740 1741
                    tcx.types.err
                }
1742
            }
1743
            hir::TyPath(ref maybe_qself, ref path) => {
1744
                debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
1745
                let path_res = tcx.expect_resolution(ast_ty.id);
1746 1747 1748 1749
                let base_ty_end = path.segments.len() - path_res.depth;
                let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                    self.ast_ty_to_ty(rscope, &qself.ty)
                });
1750 1751 1752 1753 1754 1755 1756
                let (ty, def) = self.finish_resolving_def_to_ty(rscope,
                                                                ast_ty.span,
                                                                PathParamMode::Explicit,
                                                                path_res.base_def,
                                                                opt_self_ty,
                                                                ast_ty.id,
                                                                &path.segments[..base_ty_end],
V
Vadim Petrochenkov 已提交
1757 1758
                                                                &path.segments[base_ty_end..],
                                                                false);
1759 1760 1761 1762

                // Write back the new resolution.
                if path_res.depth != 0 {
                    tcx.def_map.borrow_mut().insert(ast_ty.id, PathResolution::new(def));
1763
                }
1764

1765 1766
                ty
            }
1767
            hir::TyArray(ref ty, ref e) => {
1768 1769 1770 1771
                if let Ok(length) = eval_length(tcx.global_tcx(), &e, "array length") {
                    tcx.mk_array(self.ast_ty_to_ty(rscope, &ty), length)
                } else {
                    self.tcx().types.err
1772 1773
                }
            }
1774
            hir::TyTypeof(ref _e) => {
G
Gavin Baker 已提交
1775 1776 1777 1778 1779
                struct_span_err!(tcx.sess, ast_ty.span, E0516,
                                 "`typeof` is a reserved keyword but unimplemented")
                    .span_label(ast_ty.span, &format!("reserved keyword"))
                    .emit();

1780 1781 1782 1783 1784 1785 1786
                tcx.types.err
            }
            hir::TyInfer => {
                // TyInfer also appears as the type of arguments or return
                // values in a ExprClosure, or as
                // the type of local variables. Both of these cases are
                // handled specially and will not descend into this routine.
1787
                self.ty_infer(ast_ty.span)
1788
            }
1789 1790 1791 1792 1793
        };

        cache.borrow_mut().insert(ast_ty.id, result_ty);

        result_ty
1794
    }
1795

1796 1797 1798 1799 1800 1801 1802 1803
    pub fn ty_of_arg(&self,
                     rscope: &RegionScope,
                     a: &hir::Arg,
                     expected_ty: Option<Ty<'tcx>>)
                     -> Ty<'tcx>
    {
        match a.ty.node {
            hir::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
1804
            hir::TyInfer => self.ty_infer(a.ty.span),
1805 1806
            _ => self.ast_ty_to_ty(rscope, &a.ty),
        }
1807
    }
1808

1809 1810
    pub fn ty_of_method(&self,
                        sig: &hir::MethodSig,
1811 1812
                        untransformed_self_ty: Ty<'tcx>,
                        anon_scope: Option<AnonTypeScope>)
1813
                        -> &'tcx ty::BareFnTy<'tcx> {
1814 1815 1816 1817 1818 1819
        self.ty_of_method_or_bare_fn(sig.unsafety,
                                     sig.abi,
                                     Some(untransformed_self_ty),
                                     &sig.decl,
                                     None,
                                     anon_scope)
1820
    }
1821

1822
    pub fn ty_of_bare_fn(&self,
1823 1824
                         unsafety: hir::Unsafety,
                         abi: abi::Abi,
1825 1826
                         decl: &hir::FnDecl,
                         anon_scope: Option<AnonTypeScope>)
1827
                         -> &'tcx ty::BareFnTy<'tcx> {
1828
        self.ty_of_method_or_bare_fn(unsafety, abi, None, decl, None, anon_scope)
1829
    }
1830

1831 1832 1833 1834 1835 1836 1837
    fn ty_of_method_or_bare_fn(&self,
                               unsafety: hir::Unsafety,
                               abi: abi::Abi,
                               opt_untransformed_self_ty: Option<Ty<'tcx>>,
                               decl: &hir::FnDecl,
                               arg_anon_scope: Option<AnonTypeScope>,
                               ret_anon_scope: Option<AnonTypeScope>)
1838
                               -> &'tcx ty::BareFnTy<'tcx>
1839 1840 1841 1842 1843
    {
        debug!("ty_of_method_or_bare_fn");

        // New region names that appear inside of the arguments of the function
        // declaration are bound to that function type.
1844
        let rb = MaybeWithAnonTypes::new(BindingRscope::new(), arg_anon_scope);
1845 1846 1847 1848 1849 1850

        // `implied_output_region` is the region that will be assumed for any
        // region parameters in the return type. In accordance with the rules for
        // lifetime elision, we can determine it in two ways. First (determined
        // here), if self is by-reference, then the implied output region is the
        // region of the self parameter.
1851
        let (self_ty, explicit_self) = match (opt_untransformed_self_ty, decl.get_self()) {
1852 1853 1854
            (Some(untransformed_self_ty), Some(explicit_self)) => {
                let self_type = self.determine_self_type(&rb, untransformed_self_ty,
                                                         &explicit_self);
1855
                (Some(self_type), Some(ExplicitSelf::determine(untransformed_self_ty, self_type)))
1856
            }
1857
            _ => (None, None),
1858
        };
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
        // HACK(eddyb) replace the fake self type in the AST with the actual type.
        let arg_params = if self_ty.is_some() {
            &decl.inputs[1..]
        } else {
            &decl.inputs[..]
        };
        let arg_tys: Vec<Ty> =
            arg_params.iter().map(|a| self.ty_of_arg(&rb, a, None)).collect();

        // Second, if there was exactly one lifetime (either a substitution or a
        // reference) in the arguments, then any anonymous regions in the output
        // have that lifetime.
1872 1873
        let implied_output_region = match explicit_self {
            Some(ExplicitSelf::ByReference(region, _)) => Ok(*region),
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
            _ => {
                // `pat_to_string` is expensive and
                // `find_implied_output_region` only needs its result when
                // there's an error. So we wrap it in a closure to avoid
                // calling it until necessary.
                let arg_pats = || {
                    arg_params.iter().map(|a| pprust::pat_to_string(&a.pat)).collect()
                };
                self.find_implied_output_region(&arg_tys, arg_pats)
            }
1884
        };
1885

1886 1887
        let output_ty = match decl.output {
            hir::Return(ref output) =>
1888 1889 1890 1891
                self.convert_ty_with_lifetime_elision(implied_output_region,
                                                      &output,
                                                      ret_anon_scope),
            hir::DefaultReturn(..) => self.tcx().mk_nil(),
1892
        };
1893

1894 1895 1896 1897 1898
        let input_tys = self_ty.into_iter().chain(arg_tys).collect();

        debug!("ty_of_method_or_bare_fn: input_tys={:?}", input_tys);
        debug!("ty_of_method_or_bare_fn: output_ty={:?}", output_ty);

1899
        self.tcx().mk_bare_fn(ty::BareFnTy {
1900 1901 1902
            unsafety: unsafety,
            abi: abi,
            sig: ty::Binder(ty::FnSig {
1903
                inputs: input_tys,
1904 1905 1906
                output: output_ty,
                variadic: decl.variadic
            }),
1907
        })
1908
    }
1909

1910 1911
    fn determine_self_type<'a>(&self,
                               rscope: &RegionScope,
1912 1913
                               untransformed_self_ty: Ty<'tcx>,
                               explicit_self: &hir::ExplicitSelf)
1914
                               -> Ty<'tcx>
1915
    {
1916 1917
        match explicit_self.node {
            SelfKind::Value(..) => untransformed_self_ty,
1918
            SelfKind::Region(ref lifetime, mutability) => {
1919
                let region =
1920 1921 1922 1923
                    self.opt_ast_region_to_region(
                                             rscope,
                                             explicit_self.span,
                                             lifetime);
1924
                self.tcx().mk_ref(region,
1925
                    ty::TypeAndMut {
1926
                        ty: untransformed_self_ty,
1927
                        mutbl: mutability
1928
                    })
1929
            }
1930
            SelfKind::Explicit(ref ast_type, _) => self.ast_ty_to_ty(rscope, &ast_type)
1931 1932
        }
    }
1933

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    pub fn ty_of_closure(&self,
        unsafety: hir::Unsafety,
        decl: &hir::FnDecl,
        abi: abi::Abi,
        expected_sig: Option<ty::FnSig<'tcx>>)
        -> ty::ClosureTy<'tcx>
    {
        debug!("ty_of_closure(expected_sig={:?})",
               expected_sig);

        // new region names that appear inside of the fn decl are bound to
        // that function type
        let rb = rscope::BindingRscope::new();

        let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
            let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
                // no guarantee that the correct number of expected args
                // were supplied
                if i < e.inputs.len() {
                    Some(e.inputs[i])
                } else {
                    None
                }
            });
            self.ty_of_arg(&rb, a, expected_arg_ty)
        }).collect();
1960

1961
        let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
1962

1963 1964 1965 1966 1967
        let is_infer = match decl.output {
            hir::Return(ref output) if output.node == hir::TyInfer => true,
            hir::DefaultReturn(..) => true,
            _ => false
        };
1968

1969 1970 1971
        let output_ty = match decl.output {
            _ if is_infer && expected_ret_ty.is_some() =>
                expected_ret_ty.unwrap(),
1972
            _ if is_infer => self.ty_infer(decl.output.span()),
1973
            hir::Return(ref output) =>
1974
                self.ast_ty_to_ty(&rb, &output),
1975 1976
            hir::DefaultReturn(..) => bug!(),
        };
1977

1978 1979
        debug!("ty_of_closure: input_tys={:?}", input_tys);
        debug!("ty_of_closure: output_ty={:?}", output_ty);
1980

1981 1982 1983 1984 1985 1986 1987
        ty::ClosureTy {
            unsafety: unsafety,
            abi: abi,
            sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                       output: output_ty,
                                       variadic: decl.variadic}),
        }
1988
    }
1989

1990
    fn conv_object_ty_poly_trait_ref(&self,
1991 1992 1993 1994 1995 1996 1997
        rscope: &RegionScope,
        span: Span,
        ast_bounds: &[hir::TyParamBound])
        -> Ty<'tcx>
    {
        let mut partitioned_bounds = partition_bounds(self.tcx(), span, &ast_bounds[..]);

1998 1999
        let trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
            partitioned_bounds.trait_bounds.remove(0)
2000 2001 2002 2003 2004
        } else {
            span_err!(self.tcx().sess, span, E0224,
                      "at least one non-builtin trait is required for an object type");
            return self.tcx().types.err;
        };
2005

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        let trait_ref = &trait_bound.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.trait_path_to_object_type(rscope,
                                       trait_ref.path.span,
                                       PathParamMode::Explicit,
                                       trait_def_id,
                                       trait_ref.ref_id,
                                       trait_ref.path.segments.last().unwrap(),
                                       span,
                                       partitioned_bounds)
2016
    }
2017

2018 2019 2020 2021 2022 2023 2024 2025
    /// Given the bounds on an object, determines what single region bound (if any) we can
    /// use to summarize this type. The basic idea is that we will use the bound the user
    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
    /// for region bounds. It may be that we can derive no bound at all, in which case
    /// we return `None`.
    fn compute_object_lifetime_bound(&self,
        span: Span,
        explicit_region_bounds: &[&hir::Lifetime],
2026
        principal_trait_ref: ty::PolyExistentialTraitRef<'tcx>,
2027
        builtin_bounds: ty::BuiltinBounds)
2028
        -> Option<&'tcx ty::Region> // if None, use the default
2029 2030
    {
        let tcx = self.tcx();
2031

2032 2033 2034 2035 2036
        debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
               principal_trait_ref={:?}, builtin_bounds={:?})",
               explicit_region_bounds,
               principal_trait_ref,
               builtin_bounds);
2037

2038 2039 2040 2041
        if explicit_region_bounds.len() > 1 {
            span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
                "only a single explicit lifetime bound is permitted");
        }
2042

2043 2044 2045 2046 2047
        if !explicit_region_bounds.is_empty() {
            // Explicitly specified region bound. Use that.
            let r = explicit_region_bounds[0];
            return Some(ast_region_to_region(tcx, r));
        }
2048

2049 2050
        if let Err(ErrorReported) =
                self.ensure_super_predicates(span, principal_trait_ref.def_id()) {
2051
            return Some(tcx.mk_region(ty::ReStatic));
2052
        }
2053

2054 2055 2056
        // No explicit region bound specified. Therefore, examine trait
        // bounds and see if we can derive region bounds from those.
        let derived_region_bounds =
2057
            object_region_bounds(tcx, principal_trait_ref, builtin_bounds);
2058

2059 2060 2061 2062 2063
        // If there are no derived region bounds, then report back that we
        // can find no region bound. The caller will use the default.
        if derived_region_bounds.is_empty() {
            return None;
        }
2064

2065 2066
        // If any of the derived region bounds are 'static, that is always
        // the best choice.
2067 2068
        if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
            return Some(tcx.mk_region(ty::ReStatic));
2069
        }
2070

2071 2072 2073 2074 2075 2076 2077 2078 2079
        // Determine whether there is exactly one unique region in the set
        // of derived region bounds. If so, use that. Otherwise, report an
        // error.
        let r = derived_region_bounds[0];
        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
            span_err!(tcx.sess, span, E0227,
                      "ambiguous lifetime bound, explicit lifetime bound required");
        }
        return Some(r);
2080
    }
2081
}
2082 2083 2084

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
2085 2086
    pub trait_bounds: Vec<&'a hir::PolyTraitRef>,
    pub region_bounds: Vec<&'a hir::Lifetime>,
2087 2088
}

S
Steve Klabnik 已提交
2089 2090
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
2091 2092 2093 2094
pub fn partition_bounds<'a, 'b, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            _span: Span,
                                            ast_bounds: &'b [hir::TyParamBound])
                                            -> PartitionedBounds<'b>
2095
{
2096
    let mut builtin_bounds = ty::BuiltinBounds::empty();
2097 2098
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
2099
    for ast_bound in ast_bounds {
2100
        match *ast_bound {
2101
            hir::TraitTyParamBound(ref b, hir::TraitBoundModifier::None) => {
2102
                match tcx.expect_def(b.trait_ref.ref_id) {
2103
                    Def::Trait(trait_did) => {
2104
                        if tcx.try_add_builtin_trait(trait_did,
2105
                                                     &mut builtin_bounds) {
2106 2107
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
2108
                            if !parameters.types().is_empty() {
2109
                                check_type_argument_count(tcx, b.trait_ref.path.span,
2110
                                                          parameters.types().len(), &[]);
2111
                            }
2112
                            if !parameters.lifetimes().is_empty() {
2113 2114
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
2115
                            }
2116
                            continue; // success
2117 2118
                        }
                    }
2119 2120 2121 2122
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
2123
                }
2124 2125
                trait_bounds.push(b);
            }
2126 2127
            hir::TraitTyParamBound(_, hir::TraitBoundModifier::Maybe) => {}
            hir::RegionTyParamBound(ref l) => {
2128 2129
                region_bounds.push(l);
            }
2130
        }
2131 2132 2133 2134 2135 2136
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
2137 2138
    }
}
2139

2140
fn check_type_argument_count(tcx: TyCtxt, span: Span, supplied: usize,
2141 2142 2143
                             ty_param_defs: &[ty::TypeParameterDef]) {
    let accepted = ty_param_defs.len();
    let required = ty_param_defs.iter().take_while(|x| x.default.is_none()) .count();
2144 2145 2146 2147 2148 2149
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
2150
        let arguments_plural = if required == 1 { "" } else { "s" };
2151 2152 2153 2154 2155 2156 2157 2158 2159

        struct_span_err!(tcx.sess, span, E0243,
                "wrong number of type arguments: {} {}, found {}",
                expected, required, supplied)
            .span_label(span,
                &format!("{} {} type argument{}",
                    expected,
                    required,
                    arguments_plural))
2160
            .emit();
2161
    } else if supplied > accepted {
2162
        let expected = if required < accepted {
2163
            format!("expected at most {}", accepted)
2164
        } else {
2165
            format!("expected {}", accepted)
2166
        };
2167
        let arguments_plural = if accepted == 1 { "" } else { "s" };
2168

2169 2170 2171
        struct_span_err!(tcx.sess, span, E0244,
                "wrong number of type arguments: {}, found {}",
                expected, supplied)
2172 2173
            .span_label(
                span,
2174 2175 2176
                &format!("{} type argument{}",
                    if accepted == 0 { "expected no" } else { &expected },
                    arguments_plural)
2177 2178
            )
            .emit();
2179 2180 2181
    }
}

2182
fn report_lifetime_number_error(tcx: TyCtxt, span: Span, number: usize, expected: usize) {
O
Omer Sheikh 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
    let label = if number < expected {
        if expected == 1 {
            format!("expected {} lifetime parameter", expected)
        } else {
            format!("expected {} lifetime parameters", expected)
        }
    } else {
        let additional = number - expected;
        if additional == 1 {
            "unexpected lifetime parameter".to_string()
        } else {
            format!("{} unexpected lifetime parameters", additional)
        }
    };
    struct_span_err!(tcx.sess, span, E0107,
                     "wrong number of lifetime parameters: expected {}, found {}",
                     expected, number)
        .span_label(span, &label)
        .emit();
2202
}
2203 2204 2205 2206 2207

// A helper struct for conveniently grouping a set of bounds which we pass to
// and return from functions in multiple places.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct Bounds<'tcx> {
2208
    pub region_bounds: Vec<&'tcx ty::Region>,
2209 2210 2211 2212 2213
    pub builtin_bounds: ty::BuiltinBounds,
    pub trait_bounds: Vec<ty::PolyTraitRef<'tcx>>,
    pub projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
}

2214 2215
impl<'a, 'gcx, 'tcx> Bounds<'tcx> {
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, param_ty: Ty<'tcx>)
2216
                      -> Vec<ty::Predicate<'tcx>>
2217 2218 2219 2220
    {
        let mut vec = Vec::new();

        for builtin_bound in &self.builtin_bounds {
2221
            match tcx.trait_ref_for_builtin_bound(builtin_bound, param_ty) {
2222
                Ok(trait_ref) => { vec.push(trait_ref.to_predicate()); }
2223 2224 2225 2226 2227 2228 2229
                Err(ErrorReported) => { }
            }
        }

        for &region_bound in &self.region_bounds {
            // account for the binder being introduced below; no need to shift `param_ty`
            // because, at present at least, it can only refer to early-bound regions
2230
            let region_bound = tcx.mk_region(ty::fold::shift_region(*region_bound, 1));
2231
            vec.push(ty::Binder(ty::OutlivesPredicate(param_ty, region_bound)).to_predicate());
2232 2233 2234
        }

        for bound_trait_ref in &self.trait_bounds {
2235
            vec.push(bound_trait_ref.to_predicate());
2236 2237 2238
        }

        for projection in &self.projection_bounds {
2239
            vec.push(projection.to_predicate());
2240 2241 2242 2243 2244
        }

        vec
    }
}
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305

pub enum ExplicitSelf<'tcx> {
    ByValue,
    ByReference(&'tcx ty::Region, hir::Mutability),
    ByBox
}

impl<'tcx> ExplicitSelf<'tcx> {
    /// We wish to (for now) categorize an explicit self
    /// declaration like `self: SomeType` into either `self`,
    /// `&self`, `&mut self`, or `Box<self>`. We do this here
    /// by some simple pattern matching. A more precise check
    /// is done later in `check_method_self_type()`.
    ///
    /// Examples:
    ///
    /// ```
    /// impl Foo for &T {
    ///     // Legal declarations:
    ///     fn method1(self: &&T); // ExplicitSelf::ByReference
    ///     fn method2(self: &T); // ExplicitSelf::ByValue
    ///     fn method3(self: Box<&T>); // ExplicitSelf::ByBox
    ///
    ///     // Invalid cases will be caught later by `check_method_self_type`:
    ///     fn method_err1(self: &mut T); // ExplicitSelf::ByReference
    /// }
    /// ```
    ///
    /// To do the check we just count the number of "modifiers"
    /// on each type and compare them. If they are the same or
    /// the impl has more, we call it "by value". Otherwise, we
    /// look at the outermost modifier on the method decl and
    /// call it by-ref, by-box as appropriate. For method1, for
    /// example, the impl type has one modifier, but the method
    /// type has two, so we end up with
    /// ExplicitSelf::ByReference.
    pub fn determine(untransformed_self_ty: Ty<'tcx>,
                     self_arg_ty: Ty<'tcx>)
                     -> ExplicitSelf<'tcx> {
        fn count_modifiers(ty: Ty) -> usize {
            match ty.sty {
                ty::TyRef(_, mt) => count_modifiers(mt.ty) + 1,
                ty::TyBox(t) => count_modifiers(t) + 1,
                _ => 0,
            }
        }

        let impl_modifiers = count_modifiers(untransformed_self_ty);
        let method_modifiers = count_modifiers(self_arg_ty);

        if impl_modifiers >= method_modifiers {
            ExplicitSelf::ByValue
        } else {
            match self_arg_ty.sty {
                ty::TyRef(r, mt) => ExplicitSelf::ByReference(r, mt.mutbl),
                ty::TyBox(_) => ExplicitSelf::ByBox,
                _ => ExplicitSelf::ByValue,
            }
        }
    }
}