astconv.rs 99.7 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20 21 22 23 24
//! `AstConv` instance; in this phase, the `get_item_type_scheme()`
//! function triggers a recursive call to `type_scheme_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type_scheme()` just looks up the item type in
//! `tcx.tcache` (using `ty::lookup_item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use rustc_const_eval::eval_length;
52
use hir::{self, SelfKind};
53
use hir::def::{Def, PathResolution};
54
use hir::def_id::DefId;
55
use hir::print as pprust;
56
use middle::resolve_lifetime as rl;
57
use rustc::lint;
58
use rustc::ty::subst::{Kind, Subst, Substs};
59 60 61
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, ToPredicate, TypeFoldable};
use rustc::ty::wf::object_region_bounds;
62
use rustc_back::slice;
63
use require_c_abi_if_variadic;
64
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
65 66
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope,
             ElisionFailureInfo, ElidedLifetime};
67
use rscope::{AnonTypeScope, MaybeWithAnonTypes};
68
use util::common::{ErrorReported, FN_OUTPUT_NAME};
69
use util::nodemap::{NodeMap, FnvHashSet};
70

71
use std::cell::RefCell;
N
Niko Matsakis 已提交
72
use syntax::{abi, ast};
73
use syntax::feature_gate::{GateIssue, emit_feature_err};
74
use syntax::parse::token::{self, keywords};
75 76
use syntax_pos::{Span, Pos};
use errors::DiagnosticBuilder;
77

78 79
pub trait AstConv<'gcx, 'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
80

81 82 83
    /// A cache used for the result of `ast_ty_to_ty_cache`
    fn ast_ty_to_ty_cache(&self) -> &RefCell<NodeMap<Ty<'tcx>>>;

84 85 86 87
    /// Returns the generic type and lifetime parameters for an item.
    fn get_generics(&self, span: Span, id: DefId)
                    -> Result<&'tcx ty::Generics<'tcx>, ErrorReported>;

88 89 90
    /// Identify the type scheme for an item with a type, like a type
    /// alias, fn, or struct. This allows you to figure out the set of
    /// type parameters defined on the item.
N
Niko Matsakis 已提交
91
    fn get_item_type_scheme(&self, span: Span, id: DefId)
92
                            -> Result<ty::TypeScheme<'tcx>, ErrorReported>;
93

94 95
    /// Returns the `TraitDef` for a given trait. This allows you to
    /// figure out the set of type parameters defined on the trait.
N
Niko Matsakis 已提交
96
    fn get_trait_def(&self, span: Span, id: DefId)
97
                     -> Result<&'tcx ty::TraitDef<'tcx>, ErrorReported>;
N
Nick Cameron 已提交
98

99 100 101
    /// Ensure that the super-predicates for the trait with the given
    /// id are available and also for the transitive set of
    /// super-predicates.
N
Niko Matsakis 已提交
102
    fn ensure_super_predicates(&self, span: Span, id: DefId)
103 104 105 106
                               -> Result<(), ErrorReported>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
107 108
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
109

110 111
    /// Returns true if the trait with id `trait_def_id` defines an
    /// associated type with the name `name`.
N
Niko Matsakis 已提交
112
    fn trait_defines_associated_type_named(&self, trait_def_id: DefId, name: ast::Name)
113 114
                                           -> bool;

N
Nick Cameron 已提交
115 116 117 118
    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
119
    fn get_free_substs(&self) -> Option<&Substs<'tcx>>;
120

121
    /// What type should we use when a type is omitted?
122 123 124 125 126
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;

    /// Same as ty_infer, but with a known type parameter definition.
    fn ty_infer_for_def(&self,
                        _def: &ty::TypeParameterDef<'tcx>,
127
                        _substs: &[Kind<'tcx>],
128 129 130
                        span: Span) -> Ty<'tcx> {
        self.ty_infer(span)
    }
131

132 133 134 135 136 137 138 139 140 141 142
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
143
                                        -> Ty<'tcx>;
144 145 146 147 148

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
149
                    _trait_ref: ty::TraitRef<'tcx>,
150
                    _item_name: ast::Name)
N
Nick Cameron 已提交
151
                    -> Ty<'tcx>;
152 153 154 155 156 157

    /// Invoked when we encounter an error from some prior pass
    /// (e.g. resolve) that is translated into a ty-error. This is
    /// used to help suppress derived errors typeck might otherwise
    /// report.
    fn set_tainted_by_errors(&self);
158 159
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

type TraitAndProjections<'tcx> = (ty::PolyTraitRef<'tcx>, Vec<ty::PolyProjectionPredicate<'tcx>>);

176 177 178 179 180
/// Dummy type used for the `Self` of a `TraitRef` created for converting
/// a trait object, and which gets removed in `ExistentialTraitRef`.
/// This type must not appear anywhere in other converted types.
const TRAIT_OBJECT_DUMMY_SELF: ty::TypeVariants<'static> = ty::TyInfer(ty::FreshTy(0));

181 182 183
pub fn ast_region_to_region<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            lifetime: &hir::Lifetime)
                                            -> &'tcx ty::Region {
184
    let r = match tcx.named_region_map.defs.get(&lifetime.id) {
185 186
        None => {
            // should have been recorded by the `resolve_lifetime` pass
187
            span_bug!(lifetime.span, "unresolved lifetime");
188
        }
189

190
        Some(&rl::DefStaticRegion) => {
191
            ty::ReStatic
192 193
        }

194
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
195 196 197 198 199 200 201 202 203 204 205 206 207 208
            // If this region is declared on a function, it will have
            // an entry in `late_bound`, but if it comes from
            // `for<'a>` in some type or something, it won't
            // necessarily have one. In that case though, we won't be
            // changed from late to early bound, so we can just
            // substitute false.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
            ty::ReLateBound(debruijn, ty::BrNamed(tcx.map.local_def_id(id),
                                                  lifetime.name,
                                                  issue_32330))
209 210
        }

211
        Some(&rl::DefEarlyBoundRegion(index, _)) => {
212 213 214 215
            ty::ReEarlyBound(ty::EarlyBoundRegion {
                index: index,
                name: lifetime.name
            })
216 217
        }

218
        Some(&rl::DefFreeRegion(scope, id)) => {
219 220 221 222 223 224 225
            // As in DefLateBoundRegion above, could be missing for some late-bound
            // regions, but also for early-bound regions.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
226
            ty::ReFree(ty::FreeRegion {
227
                    scope: scope.to_code_extent(&tcx.region_maps),
228
                    bound_region: ty::BrNamed(tcx.map.local_def_id(id),
229 230 231 232 233
                                              lifetime.name,
                                              issue_32330)
            })

                // (*) -- not late-bound, won't change
234 235 236
        }
    };

237 238
    debug!("ast_region_to_region(lifetime={:?} id={}) yields {:?}",
           lifetime,
239
           lifetime.id,
240
           r);
241

242
    tcx.mk_region(r)
243 244
}

245
fn report_elision_failure(
N
Nick Cameron 已提交
246
    db: &mut DiagnosticBuilder,
247 248 249 250
    params: Vec<ElisionFailureInfo>)
{
    let mut m = String::new();
    let len = params.len();
251

252 253 254 255 256 257 258
    let elided_params: Vec<_> = params.into_iter()
                                       .filter(|info| info.lifetime_count > 0)
                                       .collect();

    let elided_len = elided_params.len();

    for (i, info) in elided_params.into_iter().enumerate() {
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        let ElisionFailureInfo {
            name, lifetime_count: n, have_bound_regions
        } = info;

        let help_name = if name.is_empty() {
            format!("argument {}", i + 1)
        } else {
            format!("`{}`", name)
        };

        m.push_str(&(if n == 1 {
            help_name
        } else {
            format!("one of {}'s {} elided {}lifetimes", help_name, n,
                    if have_bound_regions { "free " } else { "" } )
        })[..]);

276
        if elided_len == 2 && i == 0 {
277
            m.push_str(" or ");
278
        } else if i + 2 == elided_len {
279
            m.push_str(", or ");
280
        } else if i != elided_len - 1 {
281 282
            m.push_str(", ");
        }
283

284
    }
285

286
    if len == 0 {
287 288 289 290 291
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    there is no value for it to be borrowed from");
        help!(db,
                   "consider giving it a 'static lifetime");
292
    } else if elided_len == 0 {
293 294 295 296 297 298 299
        help!(db,
                   "this function's return type contains a borrowed value with \
                    an elided lifetime, but the lifetime cannot be derived from \
                    the arguments");
        help!(db,
                   "consider giving it an explicit bounded or 'static \
                    lifetime");
300
    } else if elided_len == 1 {
301 302 303 304
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say which {} it is borrowed from",
                   m);
305
    } else {
306 307 308 309
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say whether it is borrowed from {}",
                   m);
310 311 312
    }
}

313
impl<'o, 'gcx: 'tcx, 'tcx> AstConv<'gcx, 'tcx>+'o {
314 315 316
    pub fn opt_ast_region_to_region(&self,
        rscope: &RegionScope,
        default_span: Span,
317
        opt_lifetime: &Option<hir::Lifetime>) -> &'tcx ty::Region
318 319 320 321 322
    {
        let r = match *opt_lifetime {
            Some(ref lifetime) => {
                ast_region_to_region(self.tcx(), lifetime)
            }
323

324
            None => self.tcx().mk_region(match rscope.anon_regions(default_span, 1) {
325 326
                Ok(rs) => rs[0],
                Err(params) => {
327 328 329 330 331 332
                    let ampersand_span = Span { hi: default_span.lo, ..default_span};

                    let mut err = struct_span_err!(self.tcx().sess, ampersand_span, E0106,
                                                 "missing lifetime specifier");
                    err.span_label(ampersand_span, &format!("expected lifetime parameter"));

333 334 335 336 337
                    if let Some(params) = params {
                        report_elision_failure(&mut err, params);
                    }
                    err.emit();
                    ty::ReStatic
338
                }
339
            })
340
        };
341

342 343 344
        debug!("opt_ast_region_to_region(opt_lifetime={:?}) yields {:?}",
                opt_lifetime,
                r);
345

346 347
        r
    }
348

349 350 351 352 353 354
    /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
    /// returns an appropriate set of substitutions for this particular reference to `I`.
    pub fn ast_path_substs_for_ty(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
355
        def_id: DefId,
356
        item_segment: &hir::PathSegment)
357
        -> &'tcx Substs<'tcx>
358 359 360
    {
        let tcx = self.tcx();

361 362
        match item_segment.parameters {
            hir::AngleBracketedParameters(_) => {}
363
            hir::ParenthesizedParameters(..) => {
364 365 366 367 368
                struct_span_err!(tcx.sess, span, E0214,
                          "parenthesized parameters may only be used with a trait")
                    .span_label(span, &format!("only traits may use parentheses"))
                    .emit();

369
                return Substs::for_item(tcx, def_id, |_, _| {
370
                    tcx.mk_region(ty::ReStatic)
371 372
                }, |_, _| {
                    tcx.types.err
373
                });
374
            }
375 376 377 378 379 380
        }

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_path(rscope,
                                            span,
                                            param_mode,
381
                                            def_id,
382 383
                                            &item_segment.parameters,
                                            None);
384

385
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
386

387
        substs
388
    }
389

390 391 392 393 394 395
    /// Given the type/region arguments provided to some path (along with
    /// an implicit Self, if this is a trait reference) returns the complete
    /// set of substitutions. This may involve applying defaulted type parameters.
    ///
    /// Note that the type listing given here is *exactly* what the user provided.
    fn create_substs_for_ast_path(&self,
396 397
        rscope: &RegionScope,
        span: Span,
398
        param_mode: PathParamMode,
399
        def_id: DefId,
400 401 402
        parameters: &hir::PathParameters,
        self_ty: Option<Ty<'tcx>>)
        -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
403 404 405
    {
        let tcx = self.tcx();

406
        debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
407
               parameters={:?})",
408
               def_id, self_ty, parameters);
409 410 411 412 413 414 415 416 417 418 419 420

        let (lifetimes, num_types_provided) = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                if param_mode == PathParamMode::Optional && data.types.is_empty() {
                    (&data.lifetimes[..], None)
                } else {
                    (&data.lifetimes[..], Some(data.types.len()))
                }
            }
            hir::ParenthesizedParameters(_) => (&[][..], Some(1))
        };

421 422 423
        // If the type is parameterized by this region, then replace this
        // region with the current anon region binding (in other words,
        // whatever & would get replaced with).
424 425 426 427 428 429 430 431
        let decl_generics = match self.get_generics(span, def_id) {
            Ok(generics) => generics,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
432
        let expected_num_region_params = decl_generics.regions.len();
433
        let supplied_num_region_params = lifetimes.len();
434
        let regions = if expected_num_region_params == supplied_num_region_params {
435
            lifetimes.iter().map(|l| *ast_region_to_region(tcx, l)).collect()
436 437 438
        } else {
            let anon_regions =
                rscope.anon_regions(span, expected_num_region_params);
439

440 441 442 443 444
            if supplied_num_region_params != 0 || anon_regions.is_err() {
                report_lifetime_number_error(tcx, span,
                                             supplied_num_region_params,
                                             expected_num_region_params);
            }
445

446 447 448 449 450
            match anon_regions {
                Ok(anon_regions) => anon_regions,
                Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
            }
        };
451

452
        // If a self-type was declared, one should be provided.
453
        assert_eq!(decl_generics.has_self, self_ty.is_some());
454

455 456
        // Check the number of type parameters supplied by the user.
        if let Some(num_provided) = num_types_provided {
457
            let ty_param_defs = &decl_generics.types[self_ty.is_some() as usize..];
458
            check_type_argument_count(tcx, span, num_provided, ty_param_defs);
459
        }
460

461 462 463 464 465 466 467 468 469
        let is_object = self_ty.map_or(false, |ty| ty.sty == TRAIT_OBJECT_DUMMY_SELF);
        let default_needs_object_self = |p: &ty::TypeParameterDef<'tcx>| {
            if let Some(ref default) = p.default {
                if is_object && default.has_self_ty() {
                    // There is no suitable inference default for a type parameter
                    // that references self, in an object type.
                    return true;
                }
            }
470

471 472 473 474
            false
        };

        let mut output_assoc_binding = None;
475
        let substs = Substs::for_item(tcx, def_id, |def, _| {
476 477
            let i = def.index as usize - self_ty.is_some() as usize;
            tcx.mk_region(regions[i])
478 479
        }, |def, substs| {
            let i = def.index as usize;
480 481 482 483 484 485

            // Handle Self first, so we can adjust the index to match the AST.
            if let (0, Some(ty)) = (i, self_ty) {
                return ty;
            }

486
            let i = i - self_ty.is_some() as usize - decl_generics.regions.len();
487
            if num_types_provided.map_or(false, |n| i < n) {
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
                // A provided type parameter.
                match *parameters {
                    hir::AngleBracketedParameters(ref data) => {
                        self.ast_ty_arg_to_ty(rscope, Some(def), substs, &data.types[i])
                    }
                    hir::ParenthesizedParameters(ref data) => {
                        assert_eq!(i, 0);
                        let (ty, assoc) =
                            self.convert_parenthesized_parameters(rscope, substs, data);
                        output_assoc_binding = Some(assoc);
                        ty
                    }
                }
            } else if num_types_provided.is_none() {
                // No type parameters were provided, we can infer all.
                let ty_var = if !default_needs_object_self(def) {
                    self.ty_infer_for_def(def, substs, span)
                } else {
                    self.ty_infer(span)
                };
                ty_var
            } else if let Some(default) = def.default {
                // No type parameter provided, but a default exists.
511

512 513 514 515 516
                // If we are converting an object type, then the
                // `Self` parameter is unknown. However, some of the
                // other type parameters may reference `Self` in their
                // defaults. This will lead to an ICE if we are not
                // careful!
517
                if default_needs_object_self(def) {
Z
zjhmale 已提交
518 519 520 521 522 523 524
                    struct_span_err!(tcx.sess, span, E0393,
                                     "the type parameter `{}` must be explicitly specified",
                                     def.name)
                        .span_label(span, &format!("missing reference to `{}`", def.name))
                        .note(&format!("because of the default `Self` reference, \
                                        type parameters must be specified on object types"))
                        .emit();
525
                    tcx.types.err
526 527
                } else {
                    // This is a default type parameter.
528
                    default.subst_spanned(tcx, substs, Some(span))
529
                }
530
            } else {
531 532
                // We've already errored above about the mismatch.
                tcx.types.err
S
Sean Bowe 已提交
533
            }
534
        });
S
Sean Bowe 已提交
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549
        let assoc_bindings = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                data.bindings.iter().map(|b| {
                    ConvertedBinding {
                        item_name: b.name,
                        ty: self.ast_ty_to_ty(rscope, &b.ty),
                        span: b.span
                    }
                }).collect()
            }
            hir::ParenthesizedParameters(ref data) => {
                vec![output_assoc_binding.unwrap_or_else(|| {
                    // This is an error condition, but we should
                    // get the associated type binding anyway.
550
                    self.convert_parenthesized_parameters(rscope, substs, data).1
551 552
                })]
            }
553
        };
S
Sean Bowe 已提交
554

555 556
        debug!("create_substs_for_ast_path(decl_generics={:?}, self_ty={:?}) -> {:?}",
               decl_generics, self_ty, substs);
S
Sean Bowe 已提交
557

558
        (substs, assoc_bindings)
559
    }
560

561 562 563
    /// Returns the appropriate lifetime to use for any output lifetimes
    /// (if one exists) and a vector of the (pattern, number of lifetimes)
    /// corresponding to each input type/pattern.
564 565 566 567
    fn find_implied_output_region<F>(&self,
                                     input_tys: &[Ty<'tcx>],
                                     input_pats: F) -> ElidedLifetime
        where F: FnOnce() -> Vec<String>
568 569 570 571 572
    {
        let tcx = self.tcx();
        let mut lifetimes_for_params = Vec::new();
        let mut possible_implied_output_region = None;

573
        for input_type in input_tys.iter() {
574 575 576 577 578 579 580 581 582 583 584 585
            let mut regions = FnvHashSet();
            let have_bound_regions = tcx.collect_regions(input_type, &mut regions);

            debug!("find_implied_output_regions: collected {:?} from {:?} \
                    have_bound_regions={:?}", &regions, input_type, have_bound_regions);

            if regions.len() == 1 {
                // there's a chance that the unique lifetime of this
                // iteration will be the appropriate lifetime for output
                // parameters, so lets store it.
                possible_implied_output_region = regions.iter().cloned().next();
            }
586

587 588 589
            // Use a placeholder for `name` because computing it can be
            // expensive and we don't want to do it until we know it's
            // necessary.
590
            lifetimes_for_params.push(ElisionFailureInfo {
591
                name: String::new(),
592 593 594
                lifetime_count: regions.len(),
                have_bound_regions: have_bound_regions
            });
595 596
        }

597
        if lifetimes_for_params.iter().map(|e| e.lifetime_count).sum::<usize>() == 1 {
598
            Ok(*possible_implied_output_region.unwrap())
599
        } else {
600 601 602 603 604
            // Fill in the expensive `name` fields now that we know they're
            // needed.
            for (info, input_pat) in lifetimes_for_params.iter_mut().zip(input_pats()) {
                info.name = input_pat;
            }
605 606
            Err(Some(lifetimes_for_params))
        }
607
    }
608

609 610
    fn convert_ty_with_lifetime_elision(&self,
                                        elided_lifetime: ElidedLifetime,
611 612
                                        ty: &hir::Ty,
                                        anon_scope: Option<AnonTypeScope>)
613 614 615 616 617
                                        -> Ty<'tcx>
    {
        match elided_lifetime {
            Ok(implied_output_region) => {
                let rb = ElidableRscope::new(implied_output_region);
618
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
619 620 621 622 623 624
            }
            Err(param_lifetimes) => {
                // All regions must be explicitly specified in the output
                // if the lifetime elision rules do not apply. This saves
                // the user from potentially-confusing errors.
                let rb = UnelidableRscope::new(param_lifetimes);
625
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
626
            }
627 628 629
        }
    }

630 631
    fn convert_parenthesized_parameters(&self,
                                        rscope: &RegionScope,
632
                                        region_substs: &[Kind<'tcx>],
633
                                        data: &hir::ParenthesizedParameterData)
634
                                        -> (Ty<'tcx>, ConvertedBinding<'tcx>)
635
    {
636 637
        let anon_scope = rscope.anon_type_scope();
        let binding_rscope = MaybeWithAnonTypes::new(BindingRscope::new(), anon_scope);
638
        let inputs = self.tcx().mk_type_list(data.inputs.iter().map(|a_t| {
639
            self.ast_ty_arg_to_ty(&binding_rscope, None, region_substs, a_t)
640
        }));
641 642
        let inputs_len = inputs.len();
        let input_params = || vec![String::new(); inputs_len];
643
        let implied_output_region = self.find_implied_output_region(&inputs, input_params);
644

645 646
        let (output, output_span) = match data.output {
            Some(ref output_ty) => {
647 648 649
                (self.convert_ty_with_lifetime_elision(implied_output_region,
                                                       &output_ty,
                                                       anon_scope),
650 651 652 653 654 655
                 output_ty.span)
            }
            None => {
                (self.tcx().mk_nil(), data.span)
            }
        };
656

657 658 659 660 661
        let output_binding = ConvertedBinding {
            item_name: token::intern(FN_OUTPUT_NAME),
            ty: output,
            span: output_span
        };
662

663
        (self.tcx().mk_ty(ty::TyTuple(inputs)), output_binding)
664
    }
665

666 667 668
    pub fn instantiate_poly_trait_ref(&self,
        rscope: &RegionScope,
        ast_trait_ref: &hir::PolyTraitRef,
669
        self_ty: Ty<'tcx>,
670 671 672 673 674 675 676 677 678 679
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
    {
        let trait_ref = &ast_trait_ref.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_poly_trait_ref(rscope,
                                        trait_ref.path.span,
                                        PathParamMode::Explicit,
                                        trait_def_id,
                                        self_ty,
680
                                        trait_ref.ref_id,
681 682 683
                                        trait_ref.path.segments.last().unwrap(),
                                        poly_projections)
    }
684

685 686 687 688 689 690 691 692 693
    /// Instantiates the path for the given trait reference, assuming that it's
    /// bound to a valid trait type. Returns the def_id for the defining trait.
    /// Fails if the type is a type other than a trait type.
    ///
    /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
    /// are disallowed. Otherwise, they are pushed onto the vector given.
    pub fn instantiate_mono_trait_ref(&self,
        rscope: &RegionScope,
        trait_ref: &hir::TraitRef,
694
        self_ty: Ty<'tcx>)
695 696 697 698 699 700 701 702 703 704
        -> ty::TraitRef<'tcx>
    {
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_mono_trait_ref(rscope,
                                        trait_ref.path.span,
                                        PathParamMode::Explicit,
                                        trait_def_id,
                                        self_ty,
                                        trait_ref.path.segments.last().unwrap())
    }
705

706 707
    fn trait_def_id(&self, trait_ref: &hir::TraitRef) -> DefId {
        let path = &trait_ref.path;
708
        match self.tcx().expect_def(trait_ref.ref_id) {
709 710 711 712 713 714 715 716
            Def::Trait(trait_def_id) => trait_def_id,
            Def::Err => {
                self.tcx().sess.fatal("cannot continue compilation due to previous error");
            }
            _ => {
                span_fatal!(self.tcx().sess, path.span, E0245, "`{}` is not a trait",
                            path);
            }
N
Niko Matsakis 已提交
717 718 719
        }
    }

720 721 722 723 724
    fn ast_path_to_poly_trait_ref(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
        trait_def_id: DefId,
725
        self_ty: Ty<'tcx>,
726
        path_id: ast::NodeId,
727 728 729
        trait_segment: &hir::PathSegment,
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
730
    {
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
        debug!("ast_path_to_poly_trait_ref(trait_segment={:?})", trait_segment);
        // The trait reference introduces a binding level here, so
        // we need to shift the `rscope`. It'd be nice if we could
        // do away with this rscope stuff and work this knowledge
        // into resolve_lifetimes, as we do with non-omitted
        // lifetimes. Oh well, not there yet.
        let shifted_rscope = &ShiftedRscope::new(rscope);

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(shifted_rscope,
                                                 span,
                                                 param_mode,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        let poly_trait_ref = ty::Binder(ty::TraitRef::new(trait_def_id, substs));

748 749 750 751 752 753 754 755
        poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
            // specify type to assert that error was already reported in Err case:
            let predicate: Result<_, ErrorReported> =
                self.ast_type_binding_to_poly_projection_predicate(path_id,
                                                                   poly_trait_ref,
                                                                   binding);
            predicate.ok() // ok to ignore Err() because ErrorReported (see above)
        }));
756 757 758 759

        debug!("ast_path_to_poly_trait_ref(trait_segment={:?}, projections={:?}) -> {:?}",
               trait_segment, poly_projections, poly_trait_ref);
        poly_trait_ref
760 761
    }

762 763 764 765 766
    fn ast_path_to_mono_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  param_mode: PathParamMode,
                                  trait_def_id: DefId,
767
                                  self_ty: Ty<'tcx>,
768 769 770 771 772 773 774 775 776 777 778 779 780
                                  trait_segment: &hir::PathSegment)
                                  -> ty::TraitRef<'tcx>
    {
        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(rscope,
                                                 span,
                                                 param_mode,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
        ty::TraitRef::new(trait_def_id, substs)
    }
781

782 783 784 785 786
    fn create_substs_for_ast_trait_ref(&self,
                                       rscope: &RegionScope,
                                       span: Span,
                                       param_mode: PathParamMode,
                                       trait_def_id: DefId,
787
                                       self_ty: Ty<'tcx>,
788 789 790 791 792 793 794 795 796 797 798 799 800 801
                                       trait_segment: &hir::PathSegment)
                                       -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
    {
        debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
               trait_segment);

        let trait_def = match self.get_trait_def(span, trait_def_id) {
            Ok(trait_def) => trait_def,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
802

803 804
        match trait_segment.parameters {
            hir::AngleBracketedParameters(_) => {
805 806 807
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
808
                    emit_feature_err(&self.tcx().sess.parse_sess,
809 810 811 812 813 814
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        the precise format of `Fn`-family traits' \
                        type parameters is subject to change. \
                        Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead");
                }
815
            }
816
            hir::ParenthesizedParameters(_) => {
817 818 819
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
820
                    emit_feature_err(&self.tcx().sess.parse_sess,
821 822 823 824
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        parenthetical notation is only stable when used with `Fn`-family traits");
                }
825
            }
826
        }
827

828 829 830
        self.create_substs_for_ast_path(rscope,
                                        span,
                                        param_mode,
831
                                        trait_def_id,
832 833
                                        &trait_segment.parameters,
                                        Some(self_ty))
834
    }
835

836 837 838
    fn ast_type_binding_to_poly_projection_predicate(
        &self,
        path_id: ast::NodeId,
839
        trait_ref: ty::PolyTraitRef<'tcx>,
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
        binding: &ConvertedBinding<'tcx>)
        -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();

        // Given something like `U : SomeTrait<T=X>`, we want to produce a
        // predicate like `<U as SomeTrait>::T = X`. This is somewhat
        // subtle in the event that `T` is defined in a supertrait of
        // `SomeTrait`, because in that case we need to upcast.
        //
        // That is, consider this case:
        //
        // ```
        // trait SubTrait : SuperTrait<int> { }
        // trait SuperTrait<A> { type T; }
        //
        // ... B : SubTrait<T=foo> ...
        // ```
        //
        // We want to produce `<B as SuperTrait<int>>::T == foo`.

861 862 863 864 865 866 867 868 869 870 871 872 873
        // Find any late-bound regions declared in `ty` that are not
        // declared in the trait-ref. These are not wellformed.
        //
        // Example:
        //
        //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
        //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
        let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
        let late_bound_in_ty = tcx.collect_referenced_late_bound_regions(&ty::Binder(binding.ty));
        debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
        debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
        for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
            let br_name = match *br {
874
                ty::BrNamed(_, name, _) => name,
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                _ => {
                    span_bug!(
                        binding.span,
                        "anonymous bound region {:?} in binding but not trait ref",
                        br);
                }
            };
            tcx.sess.add_lint(
                lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                path_id,
                binding.span,
                format!("binding for associated type `{}` references lifetime `{}`, \
                         which does not appear in the trait input types",
                        binding.item_name, br_name));
        }

891 892
        // Simple case: X is defined in the current trait.
        if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
893 894 895 896 897 898 899 900
            return Ok(trait_ref.map_bound(|trait_ref| {
                ty::ProjectionPredicate {
                    projection_ty: ty::ProjectionTy {
                        trait_ref: trait_ref,
                        item_name: binding.item_name,
                    },
                    ty: binding.ty,
                }
901 902 903 904
            }));
        }

        // Otherwise, we have to walk through the supertraits to find
905
        // those that do.
906 907
        self.ensure_super_predicates(binding.span, trait_ref.def_id())?;

908
        let candidates: Vec<ty::PolyTraitRef> =
909 910 911 912 913 914 915 916 917
            traits::supertraits(tcx, trait_ref.clone())
            .filter(|r| self.trait_defines_associated_type_named(r.def_id(), binding.item_name))
            .collect();

        let candidate = self.one_bound_for_assoc_type(candidates,
                                                      &trait_ref.to_string(),
                                                      &binding.item_name.as_str(),
                                                      binding.span)?;

918 919 920 921 922 923 924 925
        Ok(candidate.map_bound(|trait_ref| {
            ty::ProjectionPredicate {
                projection_ty: ty::ProjectionTy {
                    trait_ref: trait_ref,
                    item_name: binding.item_name,
                },
                ty: binding.ty,
            }
926
        }))
927 928
    }

929 930 931 932 933 934 935 936 937
    fn ast_path_to_ty(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
        did: DefId,
        item_segment: &hir::PathSegment)
        -> Ty<'tcx>
    {
        let tcx = self.tcx();
938 939
        let decl_ty = match self.get_item_type_scheme(span, did) {
            Ok(type_scheme) => type_scheme.ty,
940 941 942 943
            Err(ErrorReported) => {
                return tcx.types.err;
            }
        };
944

945 946 947
        let substs = self.ast_path_substs_for_ty(rscope,
                                                 span,
                                                 param_mode,
948
                                                 did,
949
                                                 item_segment);
950

951 952
        // FIXME(#12938): This is a hack until we have full support for DST.
        if Some(did) == self.tcx().lang_items.owned_box() {
953 954
            assert_eq!(substs.types().count(), 1);
            return self.tcx().mk_box(substs.type_at(0));
955
        }
956

957
        decl_ty.subst(self.tcx(), substs)
958 959
    }

960 961 962 963 964 965
    fn ast_ty_to_object_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  ty: &hir::Ty,
                                  bounds: &[hir::TyParamBound])
                                  -> Ty<'tcx>
966 967 968 969 970 971 972 973 974 975 976 977
    {
        /*!
         * In a type like `Foo + Send`, we want to wait to collect the
         * full set of bounds before we make the object type, because we
         * need them to infer a region bound.  (For example, if we tried
         * made a type from just `Foo`, then it wouldn't be enough to
         * infer a 'static bound, and hence the user would get an error.)
         * So this function is used when we're dealing with a sum type to
         * convert the LHS. It only accepts a type that refers to a trait
         * name, and reports an error otherwise.
         */

978
        let tcx = self.tcx();
979 980
        match ty.node {
            hir::TyPath(None, ref path) => {
981
                let resolution = tcx.expect_resolution(ty.id);
982 983
                match resolution.base_def {
                    Def::Trait(trait_def_id) if resolution.depth == 0 => {
984 985 986 987 988 989 990 991
                        self.trait_path_to_object_type(rscope,
                                                       path.span,
                                                       PathParamMode::Explicit,
                                                       trait_def_id,
                                                       ty.id,
                                                       path.segments.last().unwrap(),
                                                       span,
                                                       partition_bounds(tcx, span, bounds))
992 993
                    }
                    _ => {
994
                        struct_span_err!(tcx.sess, ty.span, E0172,
R
Roy Brunton 已提交
995 996 997
                                  "expected a reference to a trait")
                            .span_label(ty.span, &format!("expected a trait"))
                            .emit();
998
                        tcx.types.err
999
                    }
1000 1001
                }
            }
1002
            _ => {
1003
                let mut err = struct_span_err!(tcx.sess, ty.span, E0178,
1004 1005 1006
                                               "expected a path on the left-hand side \
                                                of `+`, not `{}`",
                                               pprust::ty_to_string(ty));
A
Adam Medziński 已提交
1007
                err.span_label(ty.span, &format!("expected a path"));
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
                let hi = bounds.iter().map(|x| match *x {
                    hir::TraitTyParamBound(ref tr, _) => tr.span.hi,
                    hir::RegionTyParamBound(ref r) => r.span.hi,
                }).max_by_key(|x| x.to_usize());
                let full_span = hi.map(|hi| Span {
                    lo: ty.span.lo,
                    hi: hi,
                    expn_id: ty.span.expn_id,
                });
                match (&ty.node, full_span) {
                    (&hir::TyRptr(None, ref mut_ty), Some(full_span)) => {
                        let mutbl_str = if mut_ty.mutbl == hir::MutMutable { "mut " } else { "" };
                        err.span_suggestion(full_span, "try adding parentheses (per RFC 438):",
                                            format!("&{}({} +{})",
                                                    mutbl_str,
                                                    pprust::ty_to_string(&mut_ty.ty),
                                                    pprust::bounds_to_string(bounds)));
                    }
                    (&hir::TyRptr(Some(ref lt), ref mut_ty), Some(full_span)) => {
                        let mutbl_str = if mut_ty.mutbl == hir::MutMutable { "mut " } else { "" };
                        err.span_suggestion(full_span, "try adding parentheses (per RFC 438):",
                                            format!("&{} {}({} +{})",
                                                    pprust::lifetime_to_string(lt),
                                                    mutbl_str,
                                                    pprust::ty_to_string(&mut_ty.ty),
                                                    pprust::bounds_to_string(bounds)));
                    }
1035

1036 1037 1038 1039
                    _ => {
                        help!(&mut err,
                                   "perhaps you forgot parentheses? (per RFC 438)");
                    }
1040
                }
1041
                err.emit();
1042
                tcx.types.err
1043 1044
            }
        }
1045
    }
1046

1047 1048 1049 1050 1051 1052
    /// Transform a PolyTraitRef into a PolyExistentialTraitRef by
    /// removing the dummy Self type (TRAIT_OBJECT_DUMMY_SELF).
    fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
                                -> ty::ExistentialTraitRef<'tcx> {
        assert_eq!(trait_ref.self_ty().sty, TRAIT_OBJECT_DUMMY_SELF);
        ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
1053
    }
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    fn trait_path_to_object_type(&self,
                                 rscope: &RegionScope,
                                 path_span: Span,
                                 param_mode: PathParamMode,
                                 trait_def_id: DefId,
                                 trait_path_ref_id: ast::NodeId,
                                 trait_segment: &hir::PathSegment,
                                 span: Span,
                                 partitioned_bounds: PartitionedBounds)
                                 -> Ty<'tcx> {
1065
        let tcx = self.tcx();
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

        let mut projection_bounds = vec![];
        let dummy_self = tcx.mk_ty(TRAIT_OBJECT_DUMMY_SELF);
        let principal = self.ast_path_to_poly_trait_ref(rscope,
                                                        path_span,
                                                        param_mode,
                                                        trait_def_id,
                                                        dummy_self,
                                                        trait_path_ref_id,
                                                        trait_segment,
                                                        &mut projection_bounds);

        let PartitionedBounds { builtin_bounds,
                                trait_bounds,
                                region_bounds } =
            partitioned_bounds;

        if !trait_bounds.is_empty() {
            let b = &trait_bounds[0];
            let span = b.trait_ref.path.span;
            struct_span_err!(self.tcx().sess, span, E0225,
                             "only the builtin traits can be used as closure or object bounds")
                .span_label(span, &format!("non-builtin trait used as bounds"))
                .emit();
        }

        // Erase the dummy_self (TRAIT_OBJECT_DUMMY_SELF) used above.
        let existential_principal = principal.map_bound(|trait_ref| {
            self.trait_ref_to_existential(trait_ref)
        });
        let existential_projections = projection_bounds.iter().map(|bound| {
            bound.map_bound(|b| {
                let p = b.projection_ty;
                ty::ExistentialProjection {
                    trait_ref: self.trait_ref_to_existential(p.trait_ref),
                    item_name: p.item_name,
                    ty: b.ty
                }
            })
        }).collect();

        let region_bound =
            self.compute_object_lifetime_bound(span,
                                               &region_bounds,
                                               existential_principal,
                                               builtin_bounds);

        let region_bound = match region_bound {
            Some(r) => r,
            None => {
1116
                tcx.mk_region(match rscope.object_lifetime_default(span) {
1117 1118 1119 1120 1121 1122 1123
                    Some(r) => r,
                    None => {
                        span_err!(self.tcx().sess, span, E0228,
                                  "the lifetime bound for this object type cannot be deduced \
                                   from context; please supply an explicit bound");
                        ty::ReStatic
                    }
1124
                })
1125
            }
1126
        };
1127 1128

        debug!("region_bound: {:?}", region_bound);
1129

1130 1131 1132 1133
        // ensure the super predicates and stop if we encountered an error
        if self.ensure_super_predicates(span, principal.def_id()).is_err() {
            return tcx.types.err;
        }
1134

1135 1136 1137 1138 1139 1140 1141
        // check that there are no gross object safety violations,
        // most importantly, that the supertraits don't contain Self,
        // to avoid ICE-s.
        let object_safety_violations =
            tcx.astconv_object_safety_violations(principal.def_id());
        if !object_safety_violations.is_empty() {
            tcx.report_object_safety_error(
1142 1143
                span, principal.def_id(), object_safety_violations)
                .emit();
1144 1145
            return tcx.types.err;
        }
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        let mut associated_types = FnvHashSet::default();
        for tr in traits::supertraits(tcx, principal) {
            if let Some(trait_id) = tcx.map.as_local_node_id(tr.def_id()) {
                use collect::trait_associated_type_names;

                associated_types.extend(trait_associated_type_names(tcx, trait_id)
                    .map(|name| (tr.def_id(), name)))
            } else {
                let trait_items = tcx.impl_or_trait_items(tr.def_id());
                associated_types.extend(trait_items.iter().filter_map(|&def_id| {
                    match tcx.impl_or_trait_item(def_id) {
                        ty::TypeTraitItem(ref item) => Some(item.name),
                        _ => None
                    }
                }).map(|name| (tr.def_id(), name)));
            }
        }
1164

1165
        for projection_bound in &projection_bounds {
1166 1167 1168 1169 1170 1171
            let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
                        projection_bound.0.projection_ty.item_name);
            associated_types.remove(&pair);
        }

        for (trait_def_id, name) in associated_types {
1172
            struct_span_err!(tcx.sess, span, E0191,
1173 1174
                "the value of the associated type `{}` (from the trait `{}`) must be specified",
                        name,
1175 1176 1177 1178
                        tcx.item_path_str(trait_def_id))
                        .span_label(span, &format!(
                            "missing associated type `{}` value", name))
                        .emit();
1179
        }
1180

1181 1182 1183 1184 1185 1186 1187 1188
        let ty = tcx.mk_trait(ty::TraitObject {
            principal: existential_principal,
            region_bound: region_bound,
            builtin_bounds: builtin_bounds,
            projection_bounds: existential_projections
        });
        debug!("trait_object_type: {:?}", ty);
        ty
1189 1190
    }

1191 1192 1193 1194 1195
    fn report_ambiguous_associated_type(&self,
                                        span: Span,
                                        type_str: &str,
                                        trait_str: &str,
                                        name: &str) {
K
Keith Yeung 已提交
1196 1197 1198 1199 1200 1201
        struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type")
            .span_label(span, &format!("ambiguous associated type"))
            .note(&format!("specify the type using the syntax `<{} as {}>::{}`",
                  type_str, trait_str, name))
            .emit();

1202
    }
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    // Search for a bound on a type parameter which includes the associated item
    // given by assoc_name. ty_param_node_id is the node id for the type parameter
    // (which might be `Self`, but only if it is the `Self` of a trait, not an
    // impl). This function will fail if there are no suitable bounds or there is
    // any ambiguity.
    fn find_bound_for_assoc_item(&self,
                                 ty_param_node_id: ast::NodeId,
                                 ty_param_name: ast::Name,
                                 assoc_name: ast::Name,
                                 span: Span)
                                 -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();
1217

1218 1219 1220 1221 1222 1223
        let bounds = match self.get_type_parameter_bounds(span, ty_param_node_id) {
            Ok(v) => v,
            Err(ErrorReported) => {
                return Err(ErrorReported);
            }
        };
N
Nick Cameron 已提交
1224

1225 1226
        // Ensure the super predicates and stop if we encountered an error.
        if bounds.iter().any(|b| self.ensure_super_predicates(span, b.def_id()).is_err()) {
1227
            return Err(ErrorReported);
N
Nick Cameron 已提交
1228
        }
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        // Check that there is exactly one way to find an associated type with the
        // correct name.
        let suitable_bounds: Vec<_> =
            traits::transitive_bounds(tcx, &bounds)
            .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name))
            .collect();

        self.one_bound_for_assoc_type(suitable_bounds,
                                      &ty_param_name.as_str(),
                                      &assoc_name.as_str(),
                                      span)
1241
    }
1242

1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    // Checks that bounds contains exactly one element and reports appropriate
    // errors otherwise.
    fn one_bound_for_assoc_type(&self,
                                bounds: Vec<ty::PolyTraitRef<'tcx>>,
                                ty_param_name: &str,
                                assoc_name: &str,
                                span: Span)
        -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        if bounds.is_empty() {
J
Jesus Garlea 已提交
1254
            struct_span_err!(self.tcx().sess, span, E0220,
1255 1256
                      "associated type `{}` not found for `{}`",
                      assoc_name,
J
Jesus Garlea 已提交
1257 1258 1259
                      ty_param_name)
              .span_label(span, &format!("associated type `{}` not found", assoc_name))
              .emit();
1260 1261
            return Err(ErrorReported);
        }
1262

1263
        if bounds.len() > 1 {
M
Mikhail Modin 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
            let spans = bounds.iter().map(|b| {
                self.tcx().impl_or_trait_items(b.def_id()).iter()
                .find(|&&def_id| {
                    match self.tcx().impl_or_trait_item(def_id) {
                        ty::TypeTraitItem(ref item) => item.name.as_str() == assoc_name,
                        _ => false
                    }
                })
                .and_then(|&def_id| self.tcx().map.as_local_node_id(def_id))
                .and_then(|node_id| self.tcx().map.opt_span(node_id))
            });

1276 1277 1278 1279 1280 1281
            let mut err = struct_span_err!(
                self.tcx().sess, span, E0221,
                "ambiguous associated type `{}` in bounds of `{}`",
                assoc_name,
                ty_param_name);
            err.span_label(span, &format!("ambiguous associated type `{}`", assoc_name));
1282

M
Mikhail Modin 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
            for span_and_bound in spans.zip(&bounds) {
                if let Some(span) = span_and_bound.0 {
                    err.span_label(span, &format!("ambiguous `{}` from `{}`",
                                                  assoc_name,
                                                  span_and_bound.1));
                } else {
                    span_note!(&mut err, span,
                               "associated type `{}` could derive from `{}`",
                               ty_param_name,
                               span_and_bound.1);
                }
1294 1295
            }
            err.emit();
1296 1297
        }

1298 1299
        Ok(bounds[0].clone())
    }
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    // Create a type from a path to an associated type.
    // For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
    // and item_segment is the path segment for D. We return a type and a def for
    // the whole path.
    // Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
    // parameter or Self.
    fn associated_path_def_to_ty(&self,
                                 span: Span,
                                 ty: Ty<'tcx>,
                                 ty_path_def: Def,
                                 item_segment: &hir::PathSegment)
                                 -> (Ty<'tcx>, Def)
    {
        let tcx = self.tcx();
V
Vadim Petrochenkov 已提交
1315
        let assoc_name = item_segment.name;
1316 1317 1318 1319 1320 1321 1322 1323

        debug!("associated_path_def_to_ty: {:?}::{}", ty, assoc_name);

        tcx.prohibit_type_params(slice::ref_slice(item_segment));

        // Find the type of the associated item, and the trait where the associated
        // item is declared.
        let bound = match (&ty.sty, ty_path_def) {
1324
            (_, Def::SelfTy(Some(_), Some(impl_def_id))) => {
1325 1326
                // `Self` in an impl of a trait - we have a concrete self type and a
                // trait reference.
1327
                let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
1328 1329 1330 1331 1332 1333
                let trait_ref = if let Some(free_substs) = self.get_free_substs() {
                    trait_ref.subst(tcx, free_substs)
                } else {
                    trait_ref
                };

1334
                if self.ensure_super_predicates(span, trait_ref.def_id).is_err() {
1335
                    return (tcx.types.err, Def::Err);
1336
                }
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
                let candidates: Vec<ty::PolyTraitRef> =
                    traits::supertraits(tcx, ty::Binder(trait_ref))
                    .filter(|r| self.trait_defines_associated_type_named(r.def_id(),
                                                                         assoc_name))
                    .collect();

                match self.one_bound_for_assoc_type(candidates,
                                                    "Self",
                                                    &assoc_name.as_str(),
                                                    span) {
                    Ok(bound) => bound,
1349
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1350
                }
1351
            }
1352 1353 1354 1355 1356 1357 1358
            (&ty::TyParam(_), Def::SelfTy(Some(trait_did), None)) => {
                let trait_node_id = tcx.map.as_local_node_id(trait_did).unwrap();
                match self.find_bound_for_assoc_item(trait_node_id,
                                                     keywords::SelfType.name(),
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1359
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1360
                }
1361
            }
1362
            (&ty::TyParam(_), Def::TyParam(param_did)) => {
1363
                let param_node_id = tcx.map.as_local_node_id(param_did).unwrap();
1364
                let param_name = tcx.type_parameter_def(param_node_id).name;
1365 1366 1367 1368 1369
                match self.find_bound_for_assoc_item(param_node_id,
                                                     param_name,
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1370
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1371
                }
1372
            }
1373
            _ => {
1374 1375 1376 1377 1378 1379 1380
                // Don't print TyErr to the user.
                if !ty.references_error() {
                    self.report_ambiguous_associated_type(span,
                                                          &ty.to_string(),
                                                          "Trait",
                                                          &assoc_name.as_str());
                }
1381
                return (tcx.types.err, Def::Err);
1382
            }
1383
        };
1384

1385 1386 1387 1388 1389 1390 1391
        let trait_did = bound.0.def_id;
        let ty = self.projected_ty_from_poly_trait_ref(span, bound, assoc_name);

        let item_did = if let Some(trait_id) = tcx.map.as_local_node_id(trait_did) {
            // `ty::trait_items` used below requires information generated
            // by type collection, which may be in progress at this point.
            match tcx.map.expect_item(trait_id).node {
V
Vadim Petrochenkov 已提交
1392
                hir::ItemTrait(.., ref trait_items) => {
1393 1394 1395 1396 1397 1398
                    let item = trait_items.iter()
                                          .find(|i| i.name == assoc_name)
                                          .expect("missing associated type");
                    tcx.map.local_def_id(item.id)
                }
                _ => bug!()
1399
            }
1400 1401 1402 1403 1404
        } else {
            let trait_items = tcx.trait_items(trait_did);
            let item = trait_items.iter().find(|i| i.name() == assoc_name);
            item.expect("missing associated type").def_id()
        };
N
Nick Cameron 已提交
1405

1406
        (ty, Def::AssociatedTy(item_did))
1407
    }
1408

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    fn qpath_to_ty(&self,
                   rscope: &RegionScope,
                   span: Span,
                   param_mode: PathParamMode,
                   opt_self_ty: Option<Ty<'tcx>>,
                   trait_def_id: DefId,
                   trait_segment: &hir::PathSegment,
                   item_segment: &hir::PathSegment)
                   -> Ty<'tcx>
    {
        let tcx = self.tcx();
1420

1421
        tcx.prohibit_type_params(slice::ref_slice(item_segment));
1422

1423 1424 1425 1426 1427 1428 1429
        let self_ty = if let Some(ty) = opt_self_ty {
            ty
        } else {
            let path_str = tcx.item_path_str(trait_def_id);
            self.report_ambiguous_associated_type(span,
                                                  "Type",
                                                  &path_str,
V
Vadim Petrochenkov 已提交
1430
                                                  &item_segment.name.as_str());
1431 1432
            return tcx.types.err;
        };
1433

1434
        debug!("qpath_to_ty: self_type={:?}", self_ty);
1435

1436 1437 1438 1439
        let trait_ref = self.ast_path_to_mono_trait_ref(rscope,
                                                        span,
                                                        param_mode,
                                                        trait_def_id,
1440
                                                        self_ty,
1441
                                                        trait_segment);
1442

1443
        debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1444

V
Vadim Petrochenkov 已提交
1445
        self.projected_ty(span, trait_ref, item_segment.name)
1446
    }
1447

1448 1449 1450 1451 1452 1453 1454
    /// Convert a type supplied as value for a type argument from AST into our
    /// our internal representation. This is the same as `ast_ty_to_ty` but that
    /// it applies the object lifetime default.
    ///
    /// # Parameters
    ///
    /// * `this`, `rscope`: the surrounding context
1455
    /// * `def`: the type parameter being instantiated (if available)
1456 1457 1458
    /// * `region_substs`: a partial substitution consisting of
    ///   only the region type parameters being supplied to this type.
    /// * `ast_ty`: the ast representation of the type being supplied
1459 1460 1461
    fn ast_ty_arg_to_ty(&self,
                        rscope: &RegionScope,
                        def: Option<&ty::TypeParameterDef<'tcx>>,
1462
                        region_substs: &[Kind<'tcx>],
1463 1464
                        ast_ty: &hir::Ty)
                        -> Ty<'tcx>
1465 1466
    {
        let tcx = self.tcx();
1467

1468
        if let Some(def) = def {
1469 1470 1471 1472 1473 1474
            let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
            let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
            self.ast_ty_to_ty(rscope1, ast_ty)
        } else {
            self.ast_ty_to_ty(rscope, ast_ty)
        }
1475 1476
    }

1477 1478 1479 1480 1481 1482 1483
    // Check the base def in a PathResolution and convert it to a Ty. If there are
    // associated types in the PathResolution, these will need to be separately
    // resolved.
    fn base_def_to_ty(&self,
                      rscope: &RegionScope,
                      span: Span,
                      param_mode: PathParamMode,
1484
                      def: Def,
1485
                      opt_self_ty: Option<Ty<'tcx>>,
1486
                      base_path_ref_id: ast::NodeId,
V
Vadim Petrochenkov 已提交
1487 1488
                      base_segments: &[hir::PathSegment],
                      permit_variants: bool)
1489 1490 1491
                      -> Ty<'tcx> {
        let tcx = self.tcx();

1492 1493 1494 1495
        debug!("base_def_to_ty(def={:?}, opt_self_ty={:?}, base_segments={:?})",
               def, opt_self_ty, base_segments);

        match def {
1496 1497 1498 1499 1500
            Def::Trait(trait_def_id) => {
                // N.B. this case overlaps somewhat with
                // TyObjectSum, see that fn for details

                tcx.prohibit_type_params(base_segments.split_last().unwrap().1);
1501 1502 1503 1504 1505 1506 1507 1508 1509

                self.trait_path_to_object_type(rscope,
                                               span,
                                               param_mode,
                                               trait_def_id,
                                               base_path_ref_id,
                                               base_segments.last().unwrap(),
                                               span,
                                               partition_bounds(tcx, span, &[]))
1510
            }
1511
            Def::Enum(did) | Def::TyAlias(did) | Def::Struct(did) | Def::Union(did) => {
1512 1513 1514 1515 1516 1517 1518
                tcx.prohibit_type_params(base_segments.split_last().unwrap().1);
                self.ast_path_to_ty(rscope,
                                    span,
                                    param_mode,
                                    did,
                                    base_segments.last().unwrap())
            }
V
Vadim Petrochenkov 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
            Def::Variant(did) if permit_variants => {
                // Convert "variant type" as if it were a real type.
                // The resulting `Ty` is type of the variant's enum for now.
                tcx.prohibit_type_params(base_segments.split_last().unwrap().1);
                let mut ty = self.ast_path_to_ty(rscope,
                                                 span,
                                                 param_mode,
                                                 tcx.parent_def_id(did).unwrap(),
                                                 base_segments.last().unwrap());
                if ty.is_fn() {
                    // Tuple variants have fn type even in type namespace,
                    // extract true variant type from it.
                    ty = tcx.no_late_bound_regions(&ty.fn_ret()).unwrap();
                }
                ty
            }
1535
            Def::TyParam(did) => {
1536
                tcx.prohibit_type_params(base_segments);
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

                let node_id = tcx.map.as_local_node_id(did).unwrap();
                let param = tcx.ty_param_defs.borrow().get(&node_id)
                               .map(ty::ParamTy::for_def);
                if let Some(p) = param {
                    p.to_ty(tcx)
                } else {
                    // Only while computing defaults of earlier type
                    // parameters can a type parameter be missing its def.
                    struct_span_err!(tcx.sess, span, E0128,
                                     "type parameters with a default cannot use \
                                      forward declared identifiers")
                        .span_label(span, &format!("defaulted type parameters \
                                                    cannot be forward declared"))
                        .emit();
                    tcx.types.err
                }
1554
            }
1555
            Def::SelfTy(_, Some(def_id)) => {
1556
                // Self in impl (we know the concrete type).
1557

1558
                tcx.prohibit_type_params(base_segments);
1559
                let impl_id = tcx.map.as_local_node_id(def_id).unwrap();
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
                let ty = tcx.node_id_to_type(impl_id);
                if let Some(free_substs) = self.get_free_substs() {
                    ty.subst(tcx, free_substs)
                } else {
                    ty
                }
            }
            Def::SelfTy(Some(_), None) => {
                // Self in trait.
                tcx.prohibit_type_params(base_segments);
                tcx.mk_self_type()
            }
1572
            Def::AssociatedTy(def_id) => {
1573
                tcx.prohibit_type_params(&base_segments[..base_segments.len()-2]);
1574
                let trait_did = tcx.parent_def_id(def_id).unwrap();
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
                self.qpath_to_ty(rscope,
                                 span,
                                 param_mode,
                                 opt_self_ty,
                                 trait_did,
                                 &base_segments[base_segments.len()-2],
                                 base_segments.last().unwrap())
            }
            Def::Mod(..) => {
                // Used as sentinel by callers to indicate the `<T>::A::B::C` form.
                // FIXME(#22519) This part of the resolution logic should be
                // avoided entirely for that form, once we stop needed a Def
                // for `associated_path_def_to_ty`.
                // Fixing this will also let use resolve <Self>::Foo the same way we
                // resolve Self::Foo, at the moment we can't resolve the former because
                // we don't have the trait information around, which is just sad.

                assert!(base_segments.is_empty());

                opt_self_ty.expect("missing T in <T>::a::b::c")
            }
            Def::PrimTy(prim_ty) => {
                tcx.prim_ty_to_ty(base_segments, prim_ty)
            }
            Def::Err => {
                self.set_tainted_by_errors();
                return self.tcx().types.err;
            }
            _ => {
S
ShyamSundarB 已提交
1604 1605 1606 1607 1608
                struct_span_err!(tcx.sess, span, E0248,
                           "found value `{}` used as a type",
                            tcx.item_path_str(def.def_id()))
                           .span_label(span, &format!("value used as a type"))
                           .emit();
1609
                return self.tcx().types.err;
1610
            }
1611
        }
1612
    }
1613

1614 1615
    // Resolve possibly associated type path into a type and final definition.
    // Note that both base_segments and assoc_segments may be empty, although not at same time.
1616 1617 1618 1619
    pub fn finish_resolving_def_to_ty(&self,
                                      rscope: &RegionScope,
                                      span: Span,
                                      param_mode: PathParamMode,
1620
                                      base_def: Def,
1621
                                      opt_self_ty: Option<Ty<'tcx>>,
1622
                                      base_path_ref_id: ast::NodeId,
1623
                                      base_segments: &[hir::PathSegment],
V
Vadim Petrochenkov 已提交
1624 1625
                                      assoc_segments: &[hir::PathSegment],
                                      permit_variants: bool)
1626
                                      -> (Ty<'tcx>, Def) {
1627 1628
        // Convert the base type.
        debug!("finish_resolving_def_to_ty(base_def={:?}, \
1629 1630
                base_segments={:?}, \
                assoc_segments={:?})",
1631
               base_def,
1632 1633
               base_segments,
               assoc_segments);
1634 1635 1636 1637 1638 1639
        let base_ty = self.base_def_to_ty(rscope,
                                          span,
                                          param_mode,
                                          base_def,
                                          opt_self_ty,
                                          base_path_ref_id,
V
Vadim Petrochenkov 已提交
1640 1641
                                          base_segments,
                                          permit_variants);
1642 1643
        debug!("finish_resolving_def_to_ty: base_def_to_ty returned {:?}", base_ty);

1644
        // If any associated type segments remain, attempt to resolve them.
1645
        let (mut ty, mut def) = (base_ty, base_def);
1646
        for segment in assoc_segments {
1647
            debug!("finish_resolving_def_to_ty: segment={:?}", segment);
1648 1649 1650 1651 1652 1653
            // This is pretty bad (it will fail except for T::A and Self::A).
            let (new_ty, new_def) = self.associated_path_def_to_ty(span, ty, def, segment);
            ty = new_ty;
            def = new_def;

            if def == Def::Err {
1654 1655
                break;
            }
1656
        }
1657
        (ty, def)
1658 1659
    }

1660 1661 1662 1663 1664
    /// Parses the programmer's textual representation of a type into our
    /// internal notion of a type.
    pub fn ast_ty_to_ty(&self, rscope: &RegionScope, ast_ty: &hir::Ty) -> Ty<'tcx> {
        debug!("ast_ty_to_ty(id={:?}, ast_ty={:?})",
               ast_ty.id, ast_ty);
1665

1666
        let tcx = self.tcx();
1667

1668
        let cache = self.ast_ty_to_ty_cache();
1669 1670
        if let Some(ty) = cache.borrow().get(&ast_ty.id) {
            return ty;
1671 1672 1673
        }

        let result_ty = match ast_ty.node {
1674
            hir::TySlice(ref ty) => {
1675
                tcx.mk_slice(self.ast_ty_to_ty(rscope, &ty))
1676
            }
1677
            hir::TyObjectSum(ref ty, ref bounds) => {
1678
                self.ast_ty_to_object_trait_ref(rscope, ast_ty.span, ty, bounds)
1679
            }
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
            hir::TyPtr(ref mt) => {
                tcx.mk_ptr(ty::TypeAndMut {
                    ty: self.ast_ty_to_ty(rscope, &mt.ty),
                    mutbl: mt.mutbl
                })
            }
            hir::TyRptr(ref region, ref mt) => {
                let r = self.opt_ast_region_to_region(rscope, ast_ty.span, region);
                debug!("TyRef r={:?}", r);
                let rscope1 =
                    &ObjectLifetimeDefaultRscope::new(
                        rscope,
                        ty::ObjectLifetimeDefault::Specific(r));
                let t = self.ast_ty_to_ty(rscope1, &mt.ty);
1694
                tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
1695
            }
A
Andrew Cann 已提交
1696 1697
            hir::TyNever => {
                tcx.types.never
1698
            },
1699
            hir::TyTup(ref fields) => {
1700
                tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(rscope, &t)))
1701 1702 1703
            }
            hir::TyBareFn(ref bf) => {
                require_c_abi_if_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
1704 1705 1706 1707 1708 1709 1710 1711
                let anon_scope = rscope.anon_type_scope();
                let (bare_fn_ty, _) =
                    self.ty_of_method_or_bare_fn(bf.unsafety,
                                                 bf.abi,
                                                 None,
                                                 &bf.decl,
                                                 anon_scope,
                                                 anon_scope);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

                // Find any late-bound regions declared in return type that do
                // not appear in the arguments. These are not wellformed.
                //
                // Example:
                //
                //     for<'a> fn() -> &'a str <-- 'a is bad
                //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
                //
                // Note that we do this check **here** and not in
                // `ty_of_bare_fn` because the latter is also used to make
                // the types for fn items, and we do not want to issue a
                // warning then. (Once we fix #32330, the regions we are
                // checking for here would be considered early bound
                // anyway.)
                let inputs = bare_fn_ty.sig.inputs();
                let late_bound_in_args = tcx.collect_constrained_late_bound_regions(&inputs);
                let output = bare_fn_ty.sig.output();
                let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
                for br in late_bound_in_ret.difference(&late_bound_in_args) {
                    let br_name = match *br {
1733
                        ty::BrNamed(_, name, _) => name,
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
                        _ => {
                            span_bug!(
                                bf.decl.output.span(),
                                "anonymous bound region {:?} in return but not args",
                                br);
                        }
                    };
                    tcx.sess.add_lint(
                        lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                        ast_ty.id,
                        ast_ty.span,
                        format!("return type references lifetime `{}`, \
                                 which does not appear in the trait input types",
                                br_name));
                }
                tcx.mk_fn_ptr(bare_fn_ty)
1750 1751
            }
            hir::TyPolyTraitRef(ref bounds) => {
1752
                self.conv_object_ty_poly_trait_ref(rscope, ast_ty.span, bounds)
1753
            }
1754 1755 1756 1757 1758
            hir::TyImplTrait(ref bounds) => {
                use collect::{compute_bounds, SizedByDefault};

                // Create the anonymized type.
                let def_id = tcx.map.local_def_id(ast_ty.id);
1759
                if let Some(anon_scope) = rscope.anon_type_scope() {
1760
                    let substs = anon_scope.fresh_substs(self, ast_ty.span);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
                    let ty = tcx.mk_anon(tcx.map.local_def_id(ast_ty.id), substs);

                    // Collect the bounds, i.e. the `A+B+'c` in `impl A+B+'c`.
                    let bounds = compute_bounds(self, ty, bounds,
                                                SizedByDefault::Yes,
                                                Some(anon_scope),
                                                ast_ty.span);
                    let predicates = bounds.predicates(tcx, ty);
                    let predicates = tcx.lift_to_global(&predicates).unwrap();
                    tcx.predicates.borrow_mut().insert(def_id, ty::GenericPredicates {
1771
                        parent: None,
1772
                        predicates: predicates
1773 1774 1775
                    });

                    ty
1776 1777 1778 1779
                } else {
                    span_err!(tcx.sess, ast_ty.span, E0562,
                              "`impl Trait` not allowed outside of function \
                               and inherent method return types");
1780 1781
                    tcx.types.err
                }
1782
            }
1783
            hir::TyPath(ref maybe_qself, ref path) => {
1784
                debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
1785
                let path_res = tcx.expect_resolution(ast_ty.id);
1786 1787 1788 1789
                let base_ty_end = path.segments.len() - path_res.depth;
                let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                    self.ast_ty_to_ty(rscope, &qself.ty)
                });
1790 1791 1792 1793 1794 1795 1796
                let (ty, def) = self.finish_resolving_def_to_ty(rscope,
                                                                ast_ty.span,
                                                                PathParamMode::Explicit,
                                                                path_res.base_def,
                                                                opt_self_ty,
                                                                ast_ty.id,
                                                                &path.segments[..base_ty_end],
V
Vadim Petrochenkov 已提交
1797 1798
                                                                &path.segments[base_ty_end..],
                                                                false);
1799 1800 1801 1802

                // Write back the new resolution.
                if path_res.depth != 0 {
                    tcx.def_map.borrow_mut().insert(ast_ty.id, PathResolution::new(def));
1803
                }
1804

1805 1806
                ty
            }
1807
            hir::TyArray(ref ty, ref e) => {
1808 1809 1810 1811
                if let Ok(length) = eval_length(tcx.global_tcx(), &e, "array length") {
                    tcx.mk_array(self.ast_ty_to_ty(rscope, &ty), length)
                } else {
                    self.tcx().types.err
1812 1813
                }
            }
1814
            hir::TyTypeof(ref _e) => {
G
Gavin Baker 已提交
1815 1816 1817 1818 1819
                struct_span_err!(tcx.sess, ast_ty.span, E0516,
                                 "`typeof` is a reserved keyword but unimplemented")
                    .span_label(ast_ty.span, &format!("reserved keyword"))
                    .emit();

1820 1821 1822 1823 1824 1825 1826
                tcx.types.err
            }
            hir::TyInfer => {
                // TyInfer also appears as the type of arguments or return
                // values in a ExprClosure, or as
                // the type of local variables. Both of these cases are
                // handled specially and will not descend into this routine.
1827
                self.ty_infer(ast_ty.span)
1828
            }
1829 1830 1831 1832 1833
        };

        cache.borrow_mut().insert(ast_ty.id, result_ty);

        result_ty
1834
    }
1835

1836 1837 1838 1839 1840 1841 1842 1843
    pub fn ty_of_arg(&self,
                     rscope: &RegionScope,
                     a: &hir::Arg,
                     expected_ty: Option<Ty<'tcx>>)
                     -> Ty<'tcx>
    {
        match a.ty.node {
            hir::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
1844
            hir::TyInfer => self.ty_infer(a.ty.span),
1845 1846
            _ => self.ast_ty_to_ty(rscope, &a.ty),
        }
1847
    }
1848

1849 1850
    pub fn ty_of_method(&self,
                        sig: &hir::MethodSig,
1851 1852
                        untransformed_self_ty: Ty<'tcx>,
                        anon_scope: Option<AnonTypeScope>)
1853
                        -> (&'tcx ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory<'tcx>) {
1854 1855 1856 1857 1858 1859
        self.ty_of_method_or_bare_fn(sig.unsafety,
                                     sig.abi,
                                     Some(untransformed_self_ty),
                                     &sig.decl,
                                     None,
                                     anon_scope)
1860
    }
1861

1862
    pub fn ty_of_bare_fn(&self,
1863 1864
                         unsafety: hir::Unsafety,
                         abi: abi::Abi,
1865 1866
                         decl: &hir::FnDecl,
                         anon_scope: Option<AnonTypeScope>)
1867
                         -> &'tcx ty::BareFnTy<'tcx> {
1868
        self.ty_of_method_or_bare_fn(unsafety, abi, None, decl, None, anon_scope).0
1869
    }
1870

1871 1872 1873 1874 1875 1876 1877
    fn ty_of_method_or_bare_fn(&self,
                               unsafety: hir::Unsafety,
                               abi: abi::Abi,
                               opt_untransformed_self_ty: Option<Ty<'tcx>>,
                               decl: &hir::FnDecl,
                               arg_anon_scope: Option<AnonTypeScope>,
                               ret_anon_scope: Option<AnonTypeScope>)
1878
                               -> (&'tcx ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory<'tcx>)
1879 1880 1881 1882 1883
    {
        debug!("ty_of_method_or_bare_fn");

        // New region names that appear inside of the arguments of the function
        // declaration are bound to that function type.
1884
        let rb = MaybeWithAnonTypes::new(BindingRscope::new(), arg_anon_scope);
1885 1886 1887 1888 1889 1890

        // `implied_output_region` is the region that will be assumed for any
        // region parameters in the return type. In accordance with the rules for
        // lifetime elision, we can determine it in two ways. First (determined
        // here), if self is by-reference, then the implied output region is the
        // region of the self parameter.
1891
        let (self_ty, explicit_self_category) = match (opt_untransformed_self_ty, decl.get_self()) {
1892 1893 1894 1895 1896 1897
            (Some(untransformed_self_ty), Some(explicit_self)) => {
                let self_type = self.determine_self_type(&rb, untransformed_self_ty,
                                                         &explicit_self);
                (Some(self_type.0), self_type.1)
            }
            _ => (None, ty::ExplicitSelfCategory::Static),
1898
        };
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
        // HACK(eddyb) replace the fake self type in the AST with the actual type.
        let arg_params = if self_ty.is_some() {
            &decl.inputs[1..]
        } else {
            &decl.inputs[..]
        };
        let arg_tys: Vec<Ty> =
            arg_params.iter().map(|a| self.ty_of_arg(&rb, a, None)).collect();

        // Second, if there was exactly one lifetime (either a substitution or a
        // reference) in the arguments, then any anonymous regions in the output
        // have that lifetime.
        let implied_output_region = match explicit_self_category {
1913
            ty::ExplicitSelfCategory::ByReference(region, _) => Ok(*region),
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
            _ => {
                // `pat_to_string` is expensive and
                // `find_implied_output_region` only needs its result when
                // there's an error. So we wrap it in a closure to avoid
                // calling it until necessary.
                let arg_pats = || {
                    arg_params.iter().map(|a| pprust::pat_to_string(&a.pat)).collect()
                };
                self.find_implied_output_region(&arg_tys, arg_pats)
            }
1924
        };
1925

1926 1927
        let output_ty = match decl.output {
            hir::Return(ref output) =>
1928 1929 1930 1931
                self.convert_ty_with_lifetime_elision(implied_output_region,
                                                      &output,
                                                      ret_anon_scope),
            hir::DefaultReturn(..) => self.tcx().mk_nil(),
1932
        };
1933

1934 1935 1936 1937 1938
        let input_tys = self_ty.into_iter().chain(arg_tys).collect();

        debug!("ty_of_method_or_bare_fn: input_tys={:?}", input_tys);
        debug!("ty_of_method_or_bare_fn: output_ty={:?}", output_ty);

1939 1940 1941 1942
        (self.tcx().mk_bare_fn(ty::BareFnTy {
            unsafety: unsafety,
            abi: abi,
            sig: ty::Binder(ty::FnSig {
1943
                inputs: input_tys,
1944 1945 1946 1947 1948
                output: output_ty,
                variadic: decl.variadic
            }),
        }), explicit_self_category)
    }
1949

1950 1951
    fn determine_self_type<'a>(&self,
                               rscope: &RegionScope,
1952 1953
                               untransformed_self_ty: Ty<'tcx>,
                               explicit_self: &hir::ExplicitSelf)
1954
                               -> (Ty<'tcx>, ty::ExplicitSelfCategory<'tcx>)
1955
    {
1956 1957 1958
        return match explicit_self.node {
            SelfKind::Value(..) => {
                (untransformed_self_ty, ty::ExplicitSelfCategory::ByValue)
1959
            }
1960
            SelfKind::Region(ref lifetime, mutability) => {
1961
                let region =
1962 1963 1964 1965
                    self.opt_ast_region_to_region(
                                             rscope,
                                             explicit_self.span,
                                             lifetime);
1966
                (self.tcx().mk_ref(region,
1967
                    ty::TypeAndMut {
1968
                        ty: untransformed_self_ty,
1969
                        mutbl: mutability
1970 1971
                    }),
                 ty::ExplicitSelfCategory::ByReference(region, mutability))
1972
            }
1973
            SelfKind::Explicit(ref ast_type, _) => {
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
                let explicit_type = self.ast_ty_to_ty(rscope, &ast_type);

                // We wish to (for now) categorize an explicit self
                // declaration like `self: SomeType` into either `self`,
                // `&self`, `&mut self`, or `Box<self>`. We do this here
                // by some simple pattern matching. A more precise check
                // is done later in `check_method_self_type()`.
                //
                // Examples:
                //
                // ```
                // impl Foo for &T {
                //     // Legal declarations:
                //     fn method1(self: &&T); // ExplicitSelfCategory::ByReference
                //     fn method2(self: &T); // ExplicitSelfCategory::ByValue
                //     fn method3(self: Box<&T>); // ExplicitSelfCategory::ByBox
                //
                //     // Invalid cases will be caught later by `check_method_self_type`:
                //     fn method_err1(self: &mut T); // ExplicitSelfCategory::ByReference
                // }
                // ```
                //
                // To do the check we just count the number of "modifiers"
                // on each type and compare them. If they are the same or
                // the impl has more, we call it "by value". Otherwise, we
                // look at the outermost modifier on the method decl and
                // call it by-ref, by-box as appropriate. For method1, for
                // example, the impl type has one modifier, but the method
                // type has two, so we end up with
                // ExplicitSelfCategory::ByReference.

2005
                let impl_modifiers = count_modifiers(untransformed_self_ty);
2006 2007 2008 2009 2010
                let method_modifiers = count_modifiers(explicit_type);

                debug!("determine_explicit_self_category(self_info.untransformed_self_ty={:?} \
                       explicit_type={:?} \
                       modifiers=({},{})",
2011
                       untransformed_self_ty,
2012 2013 2014 2015 2016 2017 2018 2019
                       explicit_type,
                       impl_modifiers,
                       method_modifiers);

                let category = if impl_modifiers >= method_modifiers {
                    ty::ExplicitSelfCategory::ByValue
                } else {
                    match explicit_type.sty {
2020
                        ty::TyRef(r, mt) => ty::ExplicitSelfCategory::ByReference(r, mt.mutbl),
2021 2022 2023 2024
                        ty::TyBox(_) => ty::ExplicitSelfCategory::ByBox,
                        _ => ty::ExplicitSelfCategory::ByValue,
                    }
                };
2025

2026
                (explicit_type, category)
2027 2028
            }
        };
2029

2030 2031 2032 2033 2034 2035
        fn count_modifiers(ty: Ty) -> usize {
            match ty.sty {
                ty::TyRef(_, mt) => count_modifiers(mt.ty) + 1,
                ty::TyBox(t) => count_modifiers(t) + 1,
                _ => 0,
            }
2036 2037
        }
    }
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    pub fn ty_of_closure(&self,
        unsafety: hir::Unsafety,
        decl: &hir::FnDecl,
        abi: abi::Abi,
        expected_sig: Option<ty::FnSig<'tcx>>)
        -> ty::ClosureTy<'tcx>
    {
        debug!("ty_of_closure(expected_sig={:?})",
               expected_sig);

        // new region names that appear inside of the fn decl are bound to
        // that function type
        let rb = rscope::BindingRscope::new();

        let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
            let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
                // no guarantee that the correct number of expected args
                // were supplied
                if i < e.inputs.len() {
                    Some(e.inputs[i])
                } else {
                    None
                }
            });
            self.ty_of_arg(&rb, a, expected_arg_ty)
        }).collect();
2065

2066
        let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
2067

2068 2069 2070 2071 2072
        let is_infer = match decl.output {
            hir::Return(ref output) if output.node == hir::TyInfer => true,
            hir::DefaultReturn(..) => true,
            _ => false
        };
2073

2074 2075 2076
        let output_ty = match decl.output {
            _ if is_infer && expected_ret_ty.is_some() =>
                expected_ret_ty.unwrap(),
2077
            _ if is_infer => self.ty_infer(decl.output.span()),
2078
            hir::Return(ref output) =>
2079
                self.ast_ty_to_ty(&rb, &output),
2080 2081
            hir::DefaultReturn(..) => bug!(),
        };
2082

2083 2084
        debug!("ty_of_closure: input_tys={:?}", input_tys);
        debug!("ty_of_closure: output_ty={:?}", output_ty);
2085

2086 2087 2088 2089 2090 2091 2092
        ty::ClosureTy {
            unsafety: unsafety,
            abi: abi,
            sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                       output: output_ty,
                                       variadic: decl.variadic}),
        }
2093
    }
2094

2095
    fn conv_object_ty_poly_trait_ref(&self,
2096 2097 2098 2099 2100 2101 2102
        rscope: &RegionScope,
        span: Span,
        ast_bounds: &[hir::TyParamBound])
        -> Ty<'tcx>
    {
        let mut partitioned_bounds = partition_bounds(self.tcx(), span, &ast_bounds[..]);

2103 2104
        let trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
            partitioned_bounds.trait_bounds.remove(0)
2105 2106 2107 2108 2109
        } else {
            span_err!(self.tcx().sess, span, E0224,
                      "at least one non-builtin trait is required for an object type");
            return self.tcx().types.err;
        };
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
        let trait_ref = &trait_bound.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.trait_path_to_object_type(rscope,
                                       trait_ref.path.span,
                                       PathParamMode::Explicit,
                                       trait_def_id,
                                       trait_ref.ref_id,
                                       trait_ref.path.segments.last().unwrap(),
                                       span,
                                       partitioned_bounds)
2121
    }
2122

2123 2124 2125 2126 2127 2128 2129 2130
    /// Given the bounds on an object, determines what single region bound (if any) we can
    /// use to summarize this type. The basic idea is that we will use the bound the user
    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
    /// for region bounds. It may be that we can derive no bound at all, in which case
    /// we return `None`.
    fn compute_object_lifetime_bound(&self,
        span: Span,
        explicit_region_bounds: &[&hir::Lifetime],
2131
        principal_trait_ref: ty::PolyExistentialTraitRef<'tcx>,
2132
        builtin_bounds: ty::BuiltinBounds)
2133
        -> Option<&'tcx ty::Region> // if None, use the default
2134 2135
    {
        let tcx = self.tcx();
2136

2137 2138 2139 2140 2141
        debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
               principal_trait_ref={:?}, builtin_bounds={:?})",
               explicit_region_bounds,
               principal_trait_ref,
               builtin_bounds);
2142

2143 2144 2145 2146
        if explicit_region_bounds.len() > 1 {
            span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
                "only a single explicit lifetime bound is permitted");
        }
2147

2148 2149 2150 2151 2152
        if !explicit_region_bounds.is_empty() {
            // Explicitly specified region bound. Use that.
            let r = explicit_region_bounds[0];
            return Some(ast_region_to_region(tcx, r));
        }
2153

2154 2155
        if let Err(ErrorReported) =
                self.ensure_super_predicates(span, principal_trait_ref.def_id()) {
2156
            return Some(tcx.mk_region(ty::ReStatic));
2157
        }
2158

2159 2160 2161
        // No explicit region bound specified. Therefore, examine trait
        // bounds and see if we can derive region bounds from those.
        let derived_region_bounds =
2162
            object_region_bounds(tcx, principal_trait_ref, builtin_bounds);
2163

2164 2165 2166 2167 2168
        // If there are no derived region bounds, then report back that we
        // can find no region bound. The caller will use the default.
        if derived_region_bounds.is_empty() {
            return None;
        }
2169

2170 2171
        // If any of the derived region bounds are 'static, that is always
        // the best choice.
2172 2173
        if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
            return Some(tcx.mk_region(ty::ReStatic));
2174
        }
2175

2176 2177 2178 2179 2180 2181 2182 2183 2184
        // Determine whether there is exactly one unique region in the set
        // of derived region bounds. If so, use that. Otherwise, report an
        // error.
        let r = derived_region_bounds[0];
        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
            span_err!(tcx.sess, span, E0227,
                      "ambiguous lifetime bound, explicit lifetime bound required");
        }
        return Some(r);
2185
    }
2186
}
2187 2188 2189

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
2190 2191
    pub trait_bounds: Vec<&'a hir::PolyTraitRef>,
    pub region_bounds: Vec<&'a hir::Lifetime>,
2192 2193
}

S
Steve Klabnik 已提交
2194 2195
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
2196 2197 2198 2199
pub fn partition_bounds<'a, 'b, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            _span: Span,
                                            ast_bounds: &'b [hir::TyParamBound])
                                            -> PartitionedBounds<'b>
2200
{
2201
    let mut builtin_bounds = ty::BuiltinBounds::empty();
2202 2203
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
2204
    for ast_bound in ast_bounds {
2205
        match *ast_bound {
2206
            hir::TraitTyParamBound(ref b, hir::TraitBoundModifier::None) => {
2207
                match tcx.expect_def(b.trait_ref.ref_id) {
2208
                    Def::Trait(trait_did) => {
2209
                        if tcx.try_add_builtin_trait(trait_did,
2210
                                                     &mut builtin_bounds) {
2211 2212
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
2213
                            if !parameters.types().is_empty() {
2214
                                check_type_argument_count(tcx, b.trait_ref.path.span,
2215
                                                          parameters.types().len(), &[]);
2216
                            }
2217
                            if !parameters.lifetimes().is_empty() {
2218 2219
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
2220
                            }
2221
                            continue; // success
2222 2223
                        }
                    }
2224 2225 2226 2227
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
2228
                }
2229 2230
                trait_bounds.push(b);
            }
2231 2232
            hir::TraitTyParamBound(_, hir::TraitBoundModifier::Maybe) => {}
            hir::RegionTyParamBound(ref l) => {
2233 2234
                region_bounds.push(l);
            }
2235
        }
2236 2237 2238 2239 2240 2241
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
2242 2243
    }
}
2244

2245
fn check_type_argument_count(tcx: TyCtxt, span: Span, supplied: usize,
2246 2247 2248
                             ty_param_defs: &[ty::TypeParameterDef]) {
    let accepted = ty_param_defs.len();
    let required = ty_param_defs.iter().take_while(|x| x.default.is_none()) .count();
2249 2250 2251 2252 2253 2254
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
2255
        let arguments_plural = if required == 1 { "" } else { "s" };
2256 2257 2258
        struct_span_err!(tcx.sess, span, E0243, "wrong number of type arguments")
            .span_label(
                span,
2259 2260
                &format!("{} {} type argument{}, found {}",
                         expected, required, arguments_plural, supplied)
2261 2262
            )
            .emit();
2263
    } else if supplied > accepted {
2264 2265 2266 2267
        let expected = if required == 0 {
            "expected no".to_string()
        } else if required < accepted {
            format!("expected at most {}", accepted)
2268
        } else {
2269
            format!("expected {}", accepted)
2270
        };
2271
        let arguments_plural = if accepted == 1 { "" } else { "s" };
2272 2273 2274 2275

        struct_span_err!(tcx.sess, span, E0244, "wrong number of type arguments")
            .span_label(
                span,
2276
                &format!("{} type argument{}, found {}", expected, arguments_plural, supplied)
2277 2278
            )
            .emit();
2279 2280 2281
    }
}

2282
fn report_lifetime_number_error(tcx: TyCtxt, span: Span, number: usize, expected: usize) {
O
Omer Sheikh 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    let label = if number < expected {
        if expected == 1 {
            format!("expected {} lifetime parameter", expected)
        } else {
            format!("expected {} lifetime parameters", expected)
        }
    } else {
        let additional = number - expected;
        if additional == 1 {
            "unexpected lifetime parameter".to_string()
        } else {
            format!("{} unexpected lifetime parameters", additional)
        }
    };
    struct_span_err!(tcx.sess, span, E0107,
                     "wrong number of lifetime parameters: expected {}, found {}",
                     expected, number)
        .span_label(span, &label)
        .emit();
2302
}
2303 2304 2305 2306 2307

// A helper struct for conveniently grouping a set of bounds which we pass to
// and return from functions in multiple places.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct Bounds<'tcx> {
2308
    pub region_bounds: Vec<&'tcx ty::Region>,
2309 2310 2311 2312 2313
    pub builtin_bounds: ty::BuiltinBounds,
    pub trait_bounds: Vec<ty::PolyTraitRef<'tcx>>,
    pub projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
}

2314 2315
impl<'a, 'gcx, 'tcx> Bounds<'tcx> {
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, param_ty: Ty<'tcx>)
2316
                      -> Vec<ty::Predicate<'tcx>>
2317 2318 2319 2320
    {
        let mut vec = Vec::new();

        for builtin_bound in &self.builtin_bounds {
2321
            match tcx.trait_ref_for_builtin_bound(builtin_bound, param_ty) {
2322
                Ok(trait_ref) => { vec.push(trait_ref.to_predicate()); }
2323 2324 2325 2326 2327 2328 2329
                Err(ErrorReported) => { }
            }
        }

        for &region_bound in &self.region_bounds {
            // account for the binder being introduced below; no need to shift `param_ty`
            // because, at present at least, it can only refer to early-bound regions
2330
            let region_bound = tcx.mk_region(ty::fold::shift_region(*region_bound, 1));
2331
            vec.push(ty::Binder(ty::OutlivesPredicate(param_ty, region_bound)).to_predicate());
2332 2333 2334
        }

        for bound_trait_ref in &self.trait_bounds {
2335
            vec.push(bound_trait_ref.to_predicate());
2336 2337 2338
        }

        for projection in &self.projection_bounds {
2339
            vec.push(projection.to_predicate());
2340 2341 2342 2343 2344
        }

        vec
    }
}