astconv.rs 96.8 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20 21 22 23 24
//! `AstConv` instance; in this phase, the `get_item_type_scheme()`
//! function triggers a recursive call to `type_scheme_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type_scheme()` just looks up the item type in
//! `tcx.tcache` (using `ty::lookup_item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use rustc_const_eval::eval_length;
52
use hir::{self, SelfKind};
53
use hir::def::{Def, PathResolution};
54
use hir::def_id::DefId;
55
use hir::print as pprust;
56
use middle::resolve_lifetime as rl;
57
use rustc::lint;
58
use rustc::ty::subst::{Subst, Substs};
59 60 61
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, ToPredicate, TypeFoldable};
use rustc::ty::wf::object_region_bounds;
62
use rustc_back::slice;
63
use require_c_abi_if_variadic;
64
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
65 66
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope,
             ElisionFailureInfo, ElidedLifetime};
67
use rscope::{AnonTypeScope, MaybeWithAnonTypes};
68
use util::common::{ErrorReported, FN_OUTPUT_NAME};
69
use util::nodemap::{NodeMap, FnvHashSet};
70

71
use std::cell::RefCell;
N
Niko Matsakis 已提交
72
use syntax::{abi, ast};
73
use syntax::feature_gate::{GateIssue, emit_feature_err};
74
use syntax::parse::token::{self, keywords};
75 76
use syntax_pos::{Span, Pos};
use errors::DiagnosticBuilder;
77

78 79
pub trait AstConv<'gcx, 'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
80

81 82 83
    /// A cache used for the result of `ast_ty_to_ty_cache`
    fn ast_ty_to_ty_cache(&self) -> &RefCell<NodeMap<Ty<'tcx>>>;

84 85 86 87
    /// Returns the generic type and lifetime parameters for an item.
    fn get_generics(&self, span: Span, id: DefId)
                    -> Result<&'tcx ty::Generics<'tcx>, ErrorReported>;

88 89 90
    /// Identify the type scheme for an item with a type, like a type
    /// alias, fn, or struct. This allows you to figure out the set of
    /// type parameters defined on the item.
N
Niko Matsakis 已提交
91
    fn get_item_type_scheme(&self, span: Span, id: DefId)
92
                            -> Result<ty::TypeScheme<'tcx>, ErrorReported>;
93

94 95
    /// Returns the `TraitDef` for a given trait. This allows you to
    /// figure out the set of type parameters defined on the trait.
N
Niko Matsakis 已提交
96
    fn get_trait_def(&self, span: Span, id: DefId)
97
                     -> Result<&'tcx ty::TraitDef<'tcx>, ErrorReported>;
N
Nick Cameron 已提交
98

99 100 101
    /// Ensure that the super-predicates for the trait with the given
    /// id are available and also for the transitive set of
    /// super-predicates.
N
Niko Matsakis 已提交
102
    fn ensure_super_predicates(&self, span: Span, id: DefId)
103 104 105 106
                               -> Result<(), ErrorReported>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
107 108
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
109

110 111
    /// Returns true if the trait with id `trait_def_id` defines an
    /// associated type with the name `name`.
N
Niko Matsakis 已提交
112
    fn trait_defines_associated_type_named(&self, trait_def_id: DefId, name: ast::Name)
113 114
                                           -> bool;

N
Nick Cameron 已提交
115 116 117 118
    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
119
    fn get_free_substs(&self) -> Option<&Substs<'tcx>>;
120

121
    /// What type should we use when a type is omitted?
122 123 124 125 126 127 128 129 130
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;

    /// Same as ty_infer, but with a known type parameter definition.
    fn ty_infer_for_def(&self,
                        _def: &ty::TypeParameterDef<'tcx>,
                        _substs: &Substs<'tcx>,
                        span: Span) -> Ty<'tcx> {
        self.ty_infer(span)
    }
131

132 133 134 135 136 137 138 139 140 141 142
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
143
                                        -> Ty<'tcx>;
144 145 146 147 148

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
149
                    _trait_ref: ty::TraitRef<'tcx>,
150
                    _item_name: ast::Name)
N
Nick Cameron 已提交
151
                    -> Ty<'tcx>;
152 153 154 155 156 157

    /// Invoked when we encounter an error from some prior pass
    /// (e.g. resolve) that is translated into a ty-error. This is
    /// used to help suppress derived errors typeck might otherwise
    /// report.
    fn set_tainted_by_errors(&self);
158 159
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

type TraitAndProjections<'tcx> = (ty::PolyTraitRef<'tcx>, Vec<ty::PolyProjectionPredicate<'tcx>>);

176 177 178 179 180
/// Dummy type used for the `Self` of a `TraitRef` created for converting
/// a trait object, and which gets removed in `ExistentialTraitRef`.
/// This type must not appear anywhere in other converted types.
const TRAIT_OBJECT_DUMMY_SELF: ty::TypeVariants<'static> = ty::TyInfer(ty::FreshTy(0));

181 182 183
pub fn ast_region_to_region<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            lifetime: &hir::Lifetime)
                                            -> &'tcx ty::Region {
184
    let r = match tcx.named_region_map.defs.get(&lifetime.id) {
185 186
        None => {
            // should have been recorded by the `resolve_lifetime` pass
187
            span_bug!(lifetime.span, "unresolved lifetime");
188
        }
189

190
        Some(&rl::DefStaticRegion) => {
191
            ty::ReStatic
192 193
        }

194
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
195 196 197 198 199 200 201 202 203 204 205 206 207 208
            // If this region is declared on a function, it will have
            // an entry in `late_bound`, but if it comes from
            // `for<'a>` in some type or something, it won't
            // necessarily have one. In that case though, we won't be
            // changed from late to early bound, so we can just
            // substitute false.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
            ty::ReLateBound(debruijn, ty::BrNamed(tcx.map.local_def_id(id),
                                                  lifetime.name,
                                                  issue_32330))
209 210
        }

211
        Some(&rl::DefEarlyBoundRegion(index, _)) => {
212 213 214 215
            ty::ReEarlyBound(ty::EarlyBoundRegion {
                index: index,
                name: lifetime.name
            })
216 217
        }

218
        Some(&rl::DefFreeRegion(scope, id)) => {
219 220 221 222 223 224 225
            // As in DefLateBoundRegion above, could be missing for some late-bound
            // regions, but also for early-bound regions.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
226
            ty::ReFree(ty::FreeRegion {
227
                    scope: scope.to_code_extent(&tcx.region_maps),
228
                    bound_region: ty::BrNamed(tcx.map.local_def_id(id),
229 230 231 232 233
                                              lifetime.name,
                                              issue_32330)
            })

                // (*) -- not late-bound, won't change
234 235 236
        }
    };

237 238
    debug!("ast_region_to_region(lifetime={:?} id={}) yields {:?}",
           lifetime,
239
           lifetime.id,
240
           r);
241

242
    tcx.mk_region(r)
243 244
}

245
fn report_elision_failure(
N
Nick Cameron 已提交
246
    db: &mut DiagnosticBuilder,
247 248 249 250
    params: Vec<ElisionFailureInfo>)
{
    let mut m = String::new();
    let len = params.len();
251

252 253 254 255 256 257 258
    let elided_params: Vec<_> = params.into_iter()
                                       .filter(|info| info.lifetime_count > 0)
                                       .collect();

    let elided_len = elided_params.len();

    for (i, info) in elided_params.into_iter().enumerate() {
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        let ElisionFailureInfo {
            name, lifetime_count: n, have_bound_regions
        } = info;

        let help_name = if name.is_empty() {
            format!("argument {}", i + 1)
        } else {
            format!("`{}`", name)
        };

        m.push_str(&(if n == 1 {
            help_name
        } else {
            format!("one of {}'s {} elided {}lifetimes", help_name, n,
                    if have_bound_regions { "free " } else { "" } )
        })[..]);

276
        if elided_len == 2 && i == 0 {
277
            m.push_str(" or ");
278
        } else if i + 2 == elided_len {
279
            m.push_str(", or ");
280
        } else if i != elided_len - 1 {
281 282
            m.push_str(", ");
        }
283

284
    }
285

286
    if len == 0 {
287 288 289 290 291
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    there is no value for it to be borrowed from");
        help!(db,
                   "consider giving it a 'static lifetime");
292
    } else if elided_len == 0 {
293 294 295 296 297 298 299
        help!(db,
                   "this function's return type contains a borrowed value with \
                    an elided lifetime, but the lifetime cannot be derived from \
                    the arguments");
        help!(db,
                   "consider giving it an explicit bounded or 'static \
                    lifetime");
300
    } else if elided_len == 1 {
301 302 303 304
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say which {} it is borrowed from",
                   m);
305
    } else {
306 307 308 309
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say whether it is borrowed from {}",
                   m);
310 311 312
    }
}

313
impl<'o, 'gcx: 'tcx, 'tcx> AstConv<'gcx, 'tcx>+'o {
314 315 316
    pub fn opt_ast_region_to_region(&self,
        rscope: &RegionScope,
        default_span: Span,
317
        opt_lifetime: &Option<hir::Lifetime>) -> &'tcx ty::Region
318 319 320 321 322
    {
        let r = match *opt_lifetime {
            Some(ref lifetime) => {
                ast_region_to_region(self.tcx(), lifetime)
            }
323

324
            None => self.tcx().mk_region(match rscope.anon_regions(default_span, 1) {
325 326
                Ok(rs) => rs[0],
                Err(params) => {
327 328 329 330 331 332
                    let ampersand_span = Span { hi: default_span.lo, ..default_span};

                    let mut err = struct_span_err!(self.tcx().sess, ampersand_span, E0106,
                                                 "missing lifetime specifier");
                    err.span_label(ampersand_span, &format!("expected lifetime parameter"));

333 334 335 336 337
                    if let Some(params) = params {
                        report_elision_failure(&mut err, params);
                    }
                    err.emit();
                    ty::ReStatic
338
                }
339
            })
340
        };
341

342 343 344
        debug!("opt_ast_region_to_region(opt_lifetime={:?}) yields {:?}",
                opt_lifetime,
                r);
345

346 347
        r
    }
348

349 350 351 352 353 354
    /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
    /// returns an appropriate set of substitutions for this particular reference to `I`.
    pub fn ast_path_substs_for_ty(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
355
        def_id: DefId,
356
        item_segment: &hir::PathSegment)
357
        -> &'tcx Substs<'tcx>
358 359 360
    {
        let tcx = self.tcx();

361 362
        match item_segment.parameters {
            hir::AngleBracketedParameters(_) => {}
363
            hir::ParenthesizedParameters(..) => {
364 365 366 367 368
                struct_span_err!(tcx.sess, span, E0214,
                          "parenthesized parameters may only be used with a trait")
                    .span_label(span, &format!("only traits may use parentheses"))
                    .emit();

369
                return Substs::for_item(tcx, def_id, |_, _| {
370
                    tcx.mk_region(ty::ReStatic)
371 372
                }, |_, _| {
                    tcx.types.err
373
                });
374
            }
375 376 377 378 379 380
        }

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_path(rscope,
                                            span,
                                            param_mode,
381
                                            def_id,
382 383
                                            &item_segment.parameters,
                                            None);
384

385
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
386

387
        substs
388
    }
389

390 391 392 393 394 395
    /// Given the type/region arguments provided to some path (along with
    /// an implicit Self, if this is a trait reference) returns the complete
    /// set of substitutions. This may involve applying defaulted type parameters.
    ///
    /// Note that the type listing given here is *exactly* what the user provided.
    fn create_substs_for_ast_path(&self,
396 397
        rscope: &RegionScope,
        span: Span,
398
        param_mode: PathParamMode,
399
        def_id: DefId,
400 401 402
        parameters: &hir::PathParameters,
        self_ty: Option<Ty<'tcx>>)
        -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
403 404 405
    {
        let tcx = self.tcx();

406
        debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
407
               parameters={:?})",
408
               def_id, self_ty, parameters);
409 410 411 412 413 414 415 416 417 418 419 420

        let (lifetimes, num_types_provided) = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                if param_mode == PathParamMode::Optional && data.types.is_empty() {
                    (&data.lifetimes[..], None)
                } else {
                    (&data.lifetimes[..], Some(data.types.len()))
                }
            }
            hir::ParenthesizedParameters(_) => (&[][..], Some(1))
        };

421 422 423
        // If the type is parameterized by this region, then replace this
        // region with the current anon region binding (in other words,
        // whatever & would get replaced with).
424 425 426 427 428 429 430 431
        let decl_generics = match self.get_generics(span, def_id) {
            Ok(generics) => generics,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
432
        let expected_num_region_params = decl_generics.regions.len();
433
        let supplied_num_region_params = lifetimes.len();
434
        let regions = if expected_num_region_params == supplied_num_region_params {
435
            lifetimes.iter().map(|l| *ast_region_to_region(tcx, l)).collect()
436 437 438
        } else {
            let anon_regions =
                rscope.anon_regions(span, expected_num_region_params);
439

440 441 442 443 444
            if supplied_num_region_params != 0 || anon_regions.is_err() {
                report_lifetime_number_error(tcx, span,
                                             supplied_num_region_params,
                                             expected_num_region_params);
            }
445

446 447 448 449 450
            match anon_regions {
                Ok(anon_regions) => anon_regions,
                Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
            }
        };
451

452
        // If a self-type was declared, one should be provided.
453
        assert_eq!(decl_generics.has_self, self_ty.is_some());
454

455 456
        // Check the number of type parameters supplied by the user.
        if let Some(num_provided) = num_types_provided {
457
            let ty_param_defs = &decl_generics.types[self_ty.is_some() as usize..];
458
            check_type_argument_count(tcx, span, num_provided, ty_param_defs);
459
        }
460

461 462 463 464 465 466 467 468 469
        let is_object = self_ty.map_or(false, |ty| ty.sty == TRAIT_OBJECT_DUMMY_SELF);
        let default_needs_object_self = |p: &ty::TypeParameterDef<'tcx>| {
            if let Some(ref default) = p.default {
                if is_object && default.has_self_ty() {
                    // There is no suitable inference default for a type parameter
                    // that references self, in an object type.
                    return true;
                }
            }
470

471 472 473 474
            false
        };

        let mut output_assoc_binding = None;
475
        let substs = Substs::for_item(tcx, def_id, |def, _| {
476 477
            let i = def.index as usize - self_ty.is_some() as usize;
            tcx.mk_region(regions[i])
478 479
        }, |def, substs| {
            let i = def.index as usize;
480 481 482 483 484 485

            // Handle Self first, so we can adjust the index to match the AST.
            if let (0, Some(ty)) = (i, self_ty) {
                return ty;
            }

486
            let i = i - self_ty.is_some() as usize - decl_generics.regions.len();
487
            if num_types_provided.map_or(false, |n| i < n) {
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
                // A provided type parameter.
                match *parameters {
                    hir::AngleBracketedParameters(ref data) => {
                        self.ast_ty_arg_to_ty(rscope, Some(def), substs, &data.types[i])
                    }
                    hir::ParenthesizedParameters(ref data) => {
                        assert_eq!(i, 0);
                        let (ty, assoc) =
                            self.convert_parenthesized_parameters(rscope, substs, data);
                        output_assoc_binding = Some(assoc);
                        ty
                    }
                }
            } else if num_types_provided.is_none() {
                // No type parameters were provided, we can infer all.
                let ty_var = if !default_needs_object_self(def) {
                    self.ty_infer_for_def(def, substs, span)
                } else {
                    self.ty_infer(span)
                };
                ty_var
            } else if let Some(default) = def.default {
                // No type parameter provided, but a default exists.
511

512 513 514 515 516
                // If we are converting an object type, then the
                // `Self` parameter is unknown. However, some of the
                // other type parameters may reference `Self` in their
                // defaults. This will lead to an ICE if we are not
                // careful!
517
                if default_needs_object_self(def) {
Z
zjhmale 已提交
518 519 520 521 522 523 524
                    struct_span_err!(tcx.sess, span, E0393,
                                     "the type parameter `{}` must be explicitly specified",
                                     def.name)
                        .span_label(span, &format!("missing reference to `{}`", def.name))
                        .note(&format!("because of the default `Self` reference, \
                                        type parameters must be specified on object types"))
                        .emit();
525
                    tcx.types.err
526 527
                } else {
                    // This is a default type parameter.
528
                    default.subst_spanned(tcx, substs, Some(span))
529
                }
530
            } else {
531 532
                // We've already errored above about the mismatch.
                tcx.types.err
S
Sean Bowe 已提交
533
            }
534
        });
S
Sean Bowe 已提交
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549
        let assoc_bindings = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                data.bindings.iter().map(|b| {
                    ConvertedBinding {
                        item_name: b.name,
                        ty: self.ast_ty_to_ty(rscope, &b.ty),
                        span: b.span
                    }
                }).collect()
            }
            hir::ParenthesizedParameters(ref data) => {
                vec![output_assoc_binding.unwrap_or_else(|| {
                    // This is an error condition, but we should
                    // get the associated type binding anyway.
550
                    self.convert_parenthesized_parameters(rscope, substs, data).1
551 552
                })]
            }
553
        };
S
Sean Bowe 已提交
554

555 556
        debug!("create_substs_for_ast_path(decl_generics={:?}, self_ty={:?}) -> {:?}",
               decl_generics, self_ty, substs);
S
Sean Bowe 已提交
557

558
        (substs, assoc_bindings)
559
    }
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    /// Returns the appropriate lifetime to use for any output lifetimes
    /// (if one exists) and a vector of the (pattern, number of lifetimes)
    /// corresponding to each input type/pattern.
    fn find_implied_output_region(&self,
                                  input_tys: &[Ty<'tcx>],
                                  input_pats: Vec<String>) -> ElidedLifetime
    {
        let tcx = self.tcx();
        let mut lifetimes_for_params = Vec::new();
        let mut possible_implied_output_region = None;

        for (input_type, input_pat) in input_tys.iter().zip(input_pats) {
            let mut regions = FnvHashSet();
            let have_bound_regions = tcx.collect_regions(input_type, &mut regions);

            debug!("find_implied_output_regions: collected {:?} from {:?} \
                    have_bound_regions={:?}", &regions, input_type, have_bound_regions);

            if regions.len() == 1 {
                // there's a chance that the unique lifetime of this
                // iteration will be the appropriate lifetime for output
                // parameters, so lets store it.
                possible_implied_output_region = regions.iter().cloned().next();
            }
585

586 587 588 589 590
            lifetimes_for_params.push(ElisionFailureInfo {
                name: input_pat,
                lifetime_count: regions.len(),
                have_bound_regions: have_bound_regions
            });
591 592
        }

593
        if lifetimes_for_params.iter().map(|e| e.lifetime_count).sum::<usize>() == 1 {
594
            Ok(*possible_implied_output_region.unwrap())
595 596 597
        } else {
            Err(Some(lifetimes_for_params))
        }
598
    }
599

600 601
    fn convert_ty_with_lifetime_elision(&self,
                                        elided_lifetime: ElidedLifetime,
602 603
                                        ty: &hir::Ty,
                                        anon_scope: Option<AnonTypeScope>)
604 605 606 607 608
                                        -> Ty<'tcx>
    {
        match elided_lifetime {
            Ok(implied_output_region) => {
                let rb = ElidableRscope::new(implied_output_region);
609
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
610 611 612 613 614 615
            }
            Err(param_lifetimes) => {
                // All regions must be explicitly specified in the output
                // if the lifetime elision rules do not apply. This saves
                // the user from potentially-confusing errors.
                let rb = UnelidableRscope::new(param_lifetimes);
616
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
617
            }
618 619 620
        }
    }

621 622
    fn convert_parenthesized_parameters(&self,
                                        rscope: &RegionScope,
623
                                        region_substs: &Substs<'tcx>,
624
                                        data: &hir::ParenthesizedParameterData)
625
                                        -> (Ty<'tcx>, ConvertedBinding<'tcx>)
626
    {
627 628
        let anon_scope = rscope.anon_type_scope();
        let binding_rscope = MaybeWithAnonTypes::new(BindingRscope::new(), anon_scope);
629 630 631
        let inputs: Vec<_> = data.inputs.iter().map(|a_t| {
            self.ast_ty_arg_to_ty(&binding_rscope, None, region_substs, a_t)
        }).collect();
632 633
        let input_params = vec![String::new(); inputs.len()];
        let implied_output_region = self.find_implied_output_region(&inputs, input_params);
634

635 636
        let (output, output_span) = match data.output {
            Some(ref output_ty) => {
637 638 639
                (self.convert_ty_with_lifetime_elision(implied_output_region,
                                                       &output_ty,
                                                       anon_scope),
640 641 642 643 644 645
                 output_ty.span)
            }
            None => {
                (self.tcx().mk_nil(), data.span)
            }
        };
646

647 648 649 650 651
        let output_binding = ConvertedBinding {
            item_name: token::intern(FN_OUTPUT_NAME),
            ty: output,
            span: output_span
        };
652

653
        (self.tcx().mk_tup(inputs), output_binding)
654
    }
655

656 657 658
    pub fn instantiate_poly_trait_ref(&self,
        rscope: &RegionScope,
        ast_trait_ref: &hir::PolyTraitRef,
659
        self_ty: Ty<'tcx>,
660 661 662 663 664 665 666 667 668 669
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
    {
        let trait_ref = &ast_trait_ref.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_poly_trait_ref(rscope,
                                        trait_ref.path.span,
                                        PathParamMode::Explicit,
                                        trait_def_id,
                                        self_ty,
670
                                        trait_ref.ref_id,
671 672 673
                                        trait_ref.path.segments.last().unwrap(),
                                        poly_projections)
    }
674

675 676 677 678 679 680 681 682 683
    /// Instantiates the path for the given trait reference, assuming that it's
    /// bound to a valid trait type. Returns the def_id for the defining trait.
    /// Fails if the type is a type other than a trait type.
    ///
    /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
    /// are disallowed. Otherwise, they are pushed onto the vector given.
    pub fn instantiate_mono_trait_ref(&self,
        rscope: &RegionScope,
        trait_ref: &hir::TraitRef,
684
        self_ty: Ty<'tcx>)
685 686 687 688 689 690 691 692 693 694
        -> ty::TraitRef<'tcx>
    {
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_mono_trait_ref(rscope,
                                        trait_ref.path.span,
                                        PathParamMode::Explicit,
                                        trait_def_id,
                                        self_ty,
                                        trait_ref.path.segments.last().unwrap())
    }
695

696 697
    fn trait_def_id(&self, trait_ref: &hir::TraitRef) -> DefId {
        let path = &trait_ref.path;
698
        match self.tcx().expect_def(trait_ref.ref_id) {
699 700 701 702 703 704 705 706
            Def::Trait(trait_def_id) => trait_def_id,
            Def::Err => {
                self.tcx().sess.fatal("cannot continue compilation due to previous error");
            }
            _ => {
                span_fatal!(self.tcx().sess, path.span, E0245, "`{}` is not a trait",
                            path);
            }
N
Niko Matsakis 已提交
707 708 709
        }
    }

710 711 712 713 714
    fn ast_path_to_poly_trait_ref(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
        trait_def_id: DefId,
715
        self_ty: Ty<'tcx>,
716
        path_id: ast::NodeId,
717 718 719
        trait_segment: &hir::PathSegment,
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
720
    {
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
        debug!("ast_path_to_poly_trait_ref(trait_segment={:?})", trait_segment);
        // The trait reference introduces a binding level here, so
        // we need to shift the `rscope`. It'd be nice if we could
        // do away with this rscope stuff and work this knowledge
        // into resolve_lifetimes, as we do with non-omitted
        // lifetimes. Oh well, not there yet.
        let shifted_rscope = &ShiftedRscope::new(rscope);

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(shifted_rscope,
                                                 span,
                                                 param_mode,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        let poly_trait_ref = ty::Binder(ty::TraitRef::new(trait_def_id, substs));

738 739 740 741 742 743 744 745
        poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
            // specify type to assert that error was already reported in Err case:
            let predicate: Result<_, ErrorReported> =
                self.ast_type_binding_to_poly_projection_predicate(path_id,
                                                                   poly_trait_ref,
                                                                   binding);
            predicate.ok() // ok to ignore Err() because ErrorReported (see above)
        }));
746 747 748 749

        debug!("ast_path_to_poly_trait_ref(trait_segment={:?}, projections={:?}) -> {:?}",
               trait_segment, poly_projections, poly_trait_ref);
        poly_trait_ref
750 751
    }

752 753 754 755 756
    fn ast_path_to_mono_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  param_mode: PathParamMode,
                                  trait_def_id: DefId,
757
                                  self_ty: Ty<'tcx>,
758 759 760 761 762 763 764 765 766 767 768 769 770
                                  trait_segment: &hir::PathSegment)
                                  -> ty::TraitRef<'tcx>
    {
        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(rscope,
                                                 span,
                                                 param_mode,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
        ty::TraitRef::new(trait_def_id, substs)
    }
771

772 773 774 775 776
    fn create_substs_for_ast_trait_ref(&self,
                                       rscope: &RegionScope,
                                       span: Span,
                                       param_mode: PathParamMode,
                                       trait_def_id: DefId,
777
                                       self_ty: Ty<'tcx>,
778 779 780 781 782 783 784 785 786 787 788 789 790 791
                                       trait_segment: &hir::PathSegment)
                                       -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
    {
        debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
               trait_segment);

        let trait_def = match self.get_trait_def(span, trait_def_id) {
            Ok(trait_def) => trait_def,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
792

793 794
        match trait_segment.parameters {
            hir::AngleBracketedParameters(_) => {
795 796 797 798 799 800 801 802 803 804
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
                    emit_feature_err(&self.tcx().sess.parse_sess.span_diagnostic,
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        the precise format of `Fn`-family traits' \
                        type parameters is subject to change. \
                        Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead");
                }
805
            }
806
            hir::ParenthesizedParameters(_) => {
807 808 809 810 811 812 813 814
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
                    emit_feature_err(&self.tcx().sess.parse_sess.span_diagnostic,
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        parenthetical notation is only stable when used with `Fn`-family traits");
                }
815
            }
816
        }
817

818 819 820
        self.create_substs_for_ast_path(rscope,
                                        span,
                                        param_mode,
821
                                        trait_def_id,
822 823
                                        &trait_segment.parameters,
                                        Some(self_ty))
824
    }
825

826 827 828
    fn ast_type_binding_to_poly_projection_predicate(
        &self,
        path_id: ast::NodeId,
829
        trait_ref: ty::PolyTraitRef<'tcx>,
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        binding: &ConvertedBinding<'tcx>)
        -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();

        // Given something like `U : SomeTrait<T=X>`, we want to produce a
        // predicate like `<U as SomeTrait>::T = X`. This is somewhat
        // subtle in the event that `T` is defined in a supertrait of
        // `SomeTrait`, because in that case we need to upcast.
        //
        // That is, consider this case:
        //
        // ```
        // trait SubTrait : SuperTrait<int> { }
        // trait SuperTrait<A> { type T; }
        //
        // ... B : SubTrait<T=foo> ...
        // ```
        //
        // We want to produce `<B as SuperTrait<int>>::T == foo`.

851 852 853 854 855 856 857 858 859 860 861 862 863
        // Find any late-bound regions declared in `ty` that are not
        // declared in the trait-ref. These are not wellformed.
        //
        // Example:
        //
        //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
        //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
        let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
        let late_bound_in_ty = tcx.collect_referenced_late_bound_regions(&ty::Binder(binding.ty));
        debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
        debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
        for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
            let br_name = match *br {
864
                ty::BrNamed(_, name, _) => name,
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
                _ => {
                    span_bug!(
                        binding.span,
                        "anonymous bound region {:?} in binding but not trait ref",
                        br);
                }
            };
            tcx.sess.add_lint(
                lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                path_id,
                binding.span,
                format!("binding for associated type `{}` references lifetime `{}`, \
                         which does not appear in the trait input types",
                        binding.item_name, br_name));
        }

881 882
        // Simple case: X is defined in the current trait.
        if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
883 884 885 886 887 888 889 890
            return Ok(trait_ref.map_bound(|trait_ref| {
                ty::ProjectionPredicate {
                    projection_ty: ty::ProjectionTy {
                        trait_ref: trait_ref,
                        item_name: binding.item_name,
                    },
                    ty: binding.ty,
                }
891 892 893 894
            }));
        }

        // Otherwise, we have to walk through the supertraits to find
895
        // those that do.
896 897
        self.ensure_super_predicates(binding.span, trait_ref.def_id())?;

898
        let candidates: Vec<ty::PolyTraitRef> =
899 900 901 902 903 904 905 906 907
            traits::supertraits(tcx, trait_ref.clone())
            .filter(|r| self.trait_defines_associated_type_named(r.def_id(), binding.item_name))
            .collect();

        let candidate = self.one_bound_for_assoc_type(candidates,
                                                      &trait_ref.to_string(),
                                                      &binding.item_name.as_str(),
                                                      binding.span)?;

908 909 910 911 912 913 914 915
        Ok(candidate.map_bound(|trait_ref| {
            ty::ProjectionPredicate {
                projection_ty: ty::ProjectionTy {
                    trait_ref: trait_ref,
                    item_name: binding.item_name,
                },
                ty: binding.ty,
            }
916
        }))
917 918
    }

919 920 921 922 923 924 925 926 927
    fn ast_path_to_ty(&self,
        rscope: &RegionScope,
        span: Span,
        param_mode: PathParamMode,
        did: DefId,
        item_segment: &hir::PathSegment)
        -> Ty<'tcx>
    {
        let tcx = self.tcx();
928 929
        let decl_ty = match self.get_item_type_scheme(span, did) {
            Ok(type_scheme) => type_scheme.ty,
930 931 932 933
            Err(ErrorReported) => {
                return tcx.types.err;
            }
        };
934

935 936 937
        let substs = self.ast_path_substs_for_ty(rscope,
                                                 span,
                                                 param_mode,
938
                                                 did,
939
                                                 item_segment);
940

941 942
        // FIXME(#12938): This is a hack until we have full support for DST.
        if Some(did) == self.tcx().lang_items.owned_box() {
943 944
            assert_eq!(substs.types().count(), 1);
            return self.tcx().mk_box(substs.type_at(0));
945
        }
946

947
        decl_ty.subst(self.tcx(), substs)
948 949
    }

950 951 952 953 954 955
    fn ast_ty_to_object_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  ty: &hir::Ty,
                                  bounds: &[hir::TyParamBound])
                                  -> Ty<'tcx>
956 957 958 959 960 961 962 963 964 965 966 967
    {
        /*!
         * In a type like `Foo + Send`, we want to wait to collect the
         * full set of bounds before we make the object type, because we
         * need them to infer a region bound.  (For example, if we tried
         * made a type from just `Foo`, then it wouldn't be enough to
         * infer a 'static bound, and hence the user would get an error.)
         * So this function is used when we're dealing with a sum type to
         * convert the LHS. It only accepts a type that refers to a trait
         * name, and reports an error otherwise.
         */

968
        let tcx = self.tcx();
969 970
        match ty.node {
            hir::TyPath(None, ref path) => {
971
                let resolution = tcx.expect_resolution(ty.id);
972 973
                match resolution.base_def {
                    Def::Trait(trait_def_id) if resolution.depth == 0 => {
974 975 976 977 978 979 980 981
                        self.trait_path_to_object_type(rscope,
                                                       path.span,
                                                       PathParamMode::Explicit,
                                                       trait_def_id,
                                                       ty.id,
                                                       path.segments.last().unwrap(),
                                                       span,
                                                       partition_bounds(tcx, span, bounds))
982 983
                    }
                    _ => {
984
                        struct_span_err!(tcx.sess, ty.span, E0172,
R
Roy Brunton 已提交
985 986 987
                                  "expected a reference to a trait")
                            .span_label(ty.span, &format!("expected a trait"))
                            .emit();
988
                        tcx.types.err
989
                    }
990 991
                }
            }
992
            _ => {
993
                let mut err = struct_span_err!(tcx.sess, ty.span, E0178,
994 995 996
                                               "expected a path on the left-hand side \
                                                of `+`, not `{}`",
                                               pprust::ty_to_string(ty));
A
Adam Medziński 已提交
997
                err.span_label(ty.span, &format!("expected a path"));
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
                let hi = bounds.iter().map(|x| match *x {
                    hir::TraitTyParamBound(ref tr, _) => tr.span.hi,
                    hir::RegionTyParamBound(ref r) => r.span.hi,
                }).max_by_key(|x| x.to_usize());
                let full_span = hi.map(|hi| Span {
                    lo: ty.span.lo,
                    hi: hi,
                    expn_id: ty.span.expn_id,
                });
                match (&ty.node, full_span) {
                    (&hir::TyRptr(None, ref mut_ty), Some(full_span)) => {
                        let mutbl_str = if mut_ty.mutbl == hir::MutMutable { "mut " } else { "" };
                        err.span_suggestion(full_span, "try adding parentheses (per RFC 438):",
                                            format!("&{}({} +{})",
                                                    mutbl_str,
                                                    pprust::ty_to_string(&mut_ty.ty),
                                                    pprust::bounds_to_string(bounds)));
                    }
                    (&hir::TyRptr(Some(ref lt), ref mut_ty), Some(full_span)) => {
                        let mutbl_str = if mut_ty.mutbl == hir::MutMutable { "mut " } else { "" };
                        err.span_suggestion(full_span, "try adding parentheses (per RFC 438):",
                                            format!("&{} {}({} +{})",
                                                    pprust::lifetime_to_string(lt),
                                                    mutbl_str,
                                                    pprust::ty_to_string(&mut_ty.ty),
                                                    pprust::bounds_to_string(bounds)));
                    }
1025

1026 1027 1028 1029
                    _ => {
                        help!(&mut err,
                                   "perhaps you forgot parentheses? (per RFC 438)");
                    }
1030
                }
1031
                err.emit();
1032
                tcx.types.err
1033 1034
            }
        }
1035
    }
1036

1037 1038 1039 1040 1041 1042
    /// Transform a PolyTraitRef into a PolyExistentialTraitRef by
    /// removing the dummy Self type (TRAIT_OBJECT_DUMMY_SELF).
    fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
                                -> ty::ExistentialTraitRef<'tcx> {
        assert_eq!(trait_ref.self_ty().sty, TRAIT_OBJECT_DUMMY_SELF);
        ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
1043
    }
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    fn trait_path_to_object_type(&self,
                                 rscope: &RegionScope,
                                 path_span: Span,
                                 param_mode: PathParamMode,
                                 trait_def_id: DefId,
                                 trait_path_ref_id: ast::NodeId,
                                 trait_segment: &hir::PathSegment,
                                 span: Span,
                                 partitioned_bounds: PartitionedBounds)
                                 -> Ty<'tcx> {
1055
        let tcx = self.tcx();
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

        let mut projection_bounds = vec![];
        let dummy_self = tcx.mk_ty(TRAIT_OBJECT_DUMMY_SELF);
        let principal = self.ast_path_to_poly_trait_ref(rscope,
                                                        path_span,
                                                        param_mode,
                                                        trait_def_id,
                                                        dummy_self,
                                                        trait_path_ref_id,
                                                        trait_segment,
                                                        &mut projection_bounds);

        let PartitionedBounds { builtin_bounds,
                                trait_bounds,
                                region_bounds } =
            partitioned_bounds;

        if !trait_bounds.is_empty() {
            let b = &trait_bounds[0];
            let span = b.trait_ref.path.span;
            struct_span_err!(self.tcx().sess, span, E0225,
                             "only the builtin traits can be used as closure or object bounds")
                .span_label(span, &format!("non-builtin trait used as bounds"))
                .emit();
        }

        // Erase the dummy_self (TRAIT_OBJECT_DUMMY_SELF) used above.
        let existential_principal = principal.map_bound(|trait_ref| {
            self.trait_ref_to_existential(trait_ref)
        });
        let existential_projections = projection_bounds.iter().map(|bound| {
            bound.map_bound(|b| {
                let p = b.projection_ty;
                ty::ExistentialProjection {
                    trait_ref: self.trait_ref_to_existential(p.trait_ref),
                    item_name: p.item_name,
                    ty: b.ty
                }
            })
        }).collect();

        let region_bound =
            self.compute_object_lifetime_bound(span,
                                               &region_bounds,
                                               existential_principal,
                                               builtin_bounds);

        let region_bound = match region_bound {
            Some(r) => r,
            None => {
1106
                tcx.mk_region(match rscope.object_lifetime_default(span) {
1107 1108 1109 1110 1111 1112 1113
                    Some(r) => r,
                    None => {
                        span_err!(self.tcx().sess, span, E0228,
                                  "the lifetime bound for this object type cannot be deduced \
                                   from context; please supply an explicit bound");
                        ty::ReStatic
                    }
1114
                })
1115
            }
1116
        };
1117 1118

        debug!("region_bound: {:?}", region_bound);
1119

1120 1121 1122 1123
        // ensure the super predicates and stop if we encountered an error
        if self.ensure_super_predicates(span, principal.def_id()).is_err() {
            return tcx.types.err;
        }
1124

1125 1126 1127 1128 1129 1130 1131
        // check that there are no gross object safety violations,
        // most importantly, that the supertraits don't contain Self,
        // to avoid ICE-s.
        let object_safety_violations =
            tcx.astconv_object_safety_violations(principal.def_id());
        if !object_safety_violations.is_empty() {
            tcx.report_object_safety_error(
1132 1133
                span, principal.def_id(), object_safety_violations)
                .emit();
1134 1135
            return tcx.types.err;
        }
1136

1137
        let mut associated_types: FnvHashSet<(DefId, ast::Name)> =
1138
            traits::supertraits(tcx, principal)
1139 1140 1141 1142 1143 1144 1145 1146 1147
            .flat_map(|tr| {
                let trait_def = tcx.lookup_trait_def(tr.def_id());
                trait_def.associated_type_names
                    .clone()
                    .into_iter()
                    .map(move |associated_type_name| (tr.def_id(), associated_type_name))
            })
            .collect();

1148
        for projection_bound in &projection_bounds {
1149 1150 1151 1152 1153 1154
            let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
                        projection_bound.0.projection_ty.item_name);
            associated_types.remove(&pair);
        }

        for (trait_def_id, name) in associated_types {
1155
            struct_span_err!(tcx.sess, span, E0191,
1156 1157
                "the value of the associated type `{}` (from the trait `{}`) must be specified",
                        name,
1158 1159 1160 1161
                        tcx.item_path_str(trait_def_id))
                        .span_label(span, &format!(
                            "missing associated type `{}` value", name))
                        .emit();
1162
        }
1163

1164 1165 1166 1167 1168 1169 1170 1171
        let ty = tcx.mk_trait(ty::TraitObject {
            principal: existential_principal,
            region_bound: region_bound,
            builtin_bounds: builtin_bounds,
            projection_bounds: existential_projections
        });
        debug!("trait_object_type: {:?}", ty);
        ty
1172 1173
    }

1174 1175 1176 1177 1178
    fn report_ambiguous_associated_type(&self,
                                        span: Span,
                                        type_str: &str,
                                        trait_str: &str,
                                        name: &str) {
K
Keith Yeung 已提交
1179 1180 1181 1182 1183 1184
        struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type")
            .span_label(span, &format!("ambiguous associated type"))
            .note(&format!("specify the type using the syntax `<{} as {}>::{}`",
                  type_str, trait_str, name))
            .emit();

1185
    }
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    // Search for a bound on a type parameter which includes the associated item
    // given by assoc_name. ty_param_node_id is the node id for the type parameter
    // (which might be `Self`, but only if it is the `Self` of a trait, not an
    // impl). This function will fail if there are no suitable bounds or there is
    // any ambiguity.
    fn find_bound_for_assoc_item(&self,
                                 ty_param_node_id: ast::NodeId,
                                 ty_param_name: ast::Name,
                                 assoc_name: ast::Name,
                                 span: Span)
                                 -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();
1200

1201 1202 1203 1204 1205 1206
        let bounds = match self.get_type_parameter_bounds(span, ty_param_node_id) {
            Ok(v) => v,
            Err(ErrorReported) => {
                return Err(ErrorReported);
            }
        };
N
Nick Cameron 已提交
1207

1208 1209
        // Ensure the super predicates and stop if we encountered an error.
        if bounds.iter().any(|b| self.ensure_super_predicates(span, b.def_id()).is_err()) {
1210
            return Err(ErrorReported);
N
Nick Cameron 已提交
1211
        }
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        // Check that there is exactly one way to find an associated type with the
        // correct name.
        let suitable_bounds: Vec<_> =
            traits::transitive_bounds(tcx, &bounds)
            .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name))
            .collect();

        self.one_bound_for_assoc_type(suitable_bounds,
                                      &ty_param_name.as_str(),
                                      &assoc_name.as_str(),
                                      span)
1224
    }
1225

1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    // Checks that bounds contains exactly one element and reports appropriate
    // errors otherwise.
    fn one_bound_for_assoc_type(&self,
                                bounds: Vec<ty::PolyTraitRef<'tcx>>,
                                ty_param_name: &str,
                                assoc_name: &str,
                                span: Span)
        -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        if bounds.is_empty() {
            span_err!(self.tcx().sess, span, E0220,
                      "associated type `{}` not found for `{}`",
                      assoc_name,
                      ty_param_name);
            return Err(ErrorReported);
        }
1243

1244
        if bounds.len() > 1 {
1245 1246 1247 1248 1249 1250
            let mut err = struct_span_err!(
                self.tcx().sess, span, E0221,
                "ambiguous associated type `{}` in bounds of `{}`",
                assoc_name,
                ty_param_name);
            err.span_label(span, &format!("ambiguous associated type `{}`", assoc_name));
1251

1252 1253 1254 1255 1256 1257 1258
            for bound in &bounds {
                span_note!(&mut err, span,
                           "associated type `{}` could derive from `{}`",
                           ty_param_name,
                           bound);
            }
            err.emit();
1259 1260
        }

1261 1262
        Ok(bounds[0].clone())
    }
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    // Create a type from a path to an associated type.
    // For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
    // and item_segment is the path segment for D. We return a type and a def for
    // the whole path.
    // Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
    // parameter or Self.
    fn associated_path_def_to_ty(&self,
                                 span: Span,
                                 ty: Ty<'tcx>,
                                 ty_path_def: Def,
                                 item_segment: &hir::PathSegment)
                                 -> (Ty<'tcx>, Def)
    {
        let tcx = self.tcx();
V
Vadim Petrochenkov 已提交
1278
        let assoc_name = item_segment.name;
1279 1280 1281 1282 1283 1284 1285 1286 1287

        debug!("associated_path_def_to_ty: {:?}::{}", ty, assoc_name);

        tcx.prohibit_type_params(slice::ref_slice(item_segment));

        // Find the type of the associated item, and the trait where the associated
        // item is declared.
        let bound = match (&ty.sty, ty_path_def) {
            (_, Def::SelfTy(Some(trait_did), Some(impl_id))) => {
1288 1289 1290 1291 1292 1293
                // For Def::SelfTy() values inlined from another crate, the
                // impl_id will be DUMMY_NODE_ID, which would cause problems
                // here. But we should never run into an impl from another crate
                // in this pass.
                assert!(impl_id != ast::DUMMY_NODE_ID);

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
                // `Self` in an impl of a trait - we have a concrete self type and a
                // trait reference.
                let trait_ref = tcx.impl_trait_ref(tcx.map.local_def_id(impl_id)).unwrap();
                let trait_ref = if let Some(free_substs) = self.get_free_substs() {
                    trait_ref.subst(tcx, free_substs)
                } else {
                    trait_ref
                };

                if self.ensure_super_predicates(span, trait_did).is_err() {
1304
                    return (tcx.types.err, Def::Err);
1305
                }
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
                let candidates: Vec<ty::PolyTraitRef> =
                    traits::supertraits(tcx, ty::Binder(trait_ref))
                    .filter(|r| self.trait_defines_associated_type_named(r.def_id(),
                                                                         assoc_name))
                    .collect();

                match self.one_bound_for_assoc_type(candidates,
                                                    "Self",
                                                    &assoc_name.as_str(),
                                                    span) {
                    Ok(bound) => bound,
1318
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1319
                }
1320
            }
1321 1322 1323 1324 1325 1326 1327
            (&ty::TyParam(_), Def::SelfTy(Some(trait_did), None)) => {
                let trait_node_id = tcx.map.as_local_node_id(trait_did).unwrap();
                match self.find_bound_for_assoc_item(trait_node_id,
                                                     keywords::SelfType.name(),
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1328
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1329
                }
1330
            }
1331
            (&ty::TyParam(_), Def::TyParam(param_did)) => {
1332
                let param_node_id = tcx.map.as_local_node_id(param_did).unwrap();
1333
                let param_name = tcx.type_parameter_def(param_node_id).name;
1334 1335 1336 1337 1338
                match self.find_bound_for_assoc_item(param_node_id,
                                                     param_name,
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1339
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1340
                }
1341
            }
1342
            _ => {
1343 1344 1345 1346 1347 1348 1349
                // Don't print TyErr to the user.
                if !ty.references_error() {
                    self.report_ambiguous_associated_type(span,
                                                          &ty.to_string(),
                                                          "Trait",
                                                          &assoc_name.as_str());
                }
1350
                return (tcx.types.err, Def::Err);
1351
            }
1352
        };
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        let trait_did = bound.0.def_id;
        let ty = self.projected_ty_from_poly_trait_ref(span, bound, assoc_name);

        let item_did = if let Some(trait_id) = tcx.map.as_local_node_id(trait_did) {
            // `ty::trait_items` used below requires information generated
            // by type collection, which may be in progress at this point.
            match tcx.map.expect_item(trait_id).node {
                hir::ItemTrait(_, _, _, ref trait_items) => {
                    let item = trait_items.iter()
                                          .find(|i| i.name == assoc_name)
                                          .expect("missing associated type");
                    tcx.map.local_def_id(item.id)
                }
                _ => bug!()
1368
            }
1369 1370 1371 1372 1373
        } else {
            let trait_items = tcx.trait_items(trait_did);
            let item = trait_items.iter().find(|i| i.name() == assoc_name);
            item.expect("missing associated type").def_id()
        };
N
Nick Cameron 已提交
1374

1375 1376
        (ty, Def::AssociatedTy(trait_did, item_did))
    }
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    fn qpath_to_ty(&self,
                   rscope: &RegionScope,
                   span: Span,
                   param_mode: PathParamMode,
                   opt_self_ty: Option<Ty<'tcx>>,
                   trait_def_id: DefId,
                   trait_segment: &hir::PathSegment,
                   item_segment: &hir::PathSegment)
                   -> Ty<'tcx>
    {
        let tcx = self.tcx();
1389

1390
        tcx.prohibit_type_params(slice::ref_slice(item_segment));
1391

1392 1393 1394 1395 1396 1397 1398
        let self_ty = if let Some(ty) = opt_self_ty {
            ty
        } else {
            let path_str = tcx.item_path_str(trait_def_id);
            self.report_ambiguous_associated_type(span,
                                                  "Type",
                                                  &path_str,
V
Vadim Petrochenkov 已提交
1399
                                                  &item_segment.name.as_str());
1400 1401
            return tcx.types.err;
        };
1402

1403
        debug!("qpath_to_ty: self_type={:?}", self_ty);
1404

1405 1406 1407 1408
        let trait_ref = self.ast_path_to_mono_trait_ref(rscope,
                                                        span,
                                                        param_mode,
                                                        trait_def_id,
1409
                                                        self_ty,
1410
                                                        trait_segment);
1411

1412
        debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1413

V
Vadim Petrochenkov 已提交
1414
        self.projected_ty(span, trait_ref, item_segment.name)
1415
    }
1416

1417 1418 1419 1420 1421 1422 1423
    /// Convert a type supplied as value for a type argument from AST into our
    /// our internal representation. This is the same as `ast_ty_to_ty` but that
    /// it applies the object lifetime default.
    ///
    /// # Parameters
    ///
    /// * `this`, `rscope`: the surrounding context
1424
    /// * `def`: the type parameter being instantiated (if available)
1425 1426 1427
    /// * `region_substs`: a partial substitution consisting of
    ///   only the region type parameters being supplied to this type.
    /// * `ast_ty`: the ast representation of the type being supplied
1428 1429 1430 1431 1432 1433
    fn ast_ty_arg_to_ty(&self,
                        rscope: &RegionScope,
                        def: Option<&ty::TypeParameterDef<'tcx>>,
                        region_substs: &Substs<'tcx>,
                        ast_ty: &hir::Ty)
                        -> Ty<'tcx>
1434 1435
    {
        let tcx = self.tcx();
1436

1437
        if let Some(def) = def {
1438 1439 1440 1441 1442 1443
            let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
            let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
            self.ast_ty_to_ty(rscope1, ast_ty)
        } else {
            self.ast_ty_to_ty(rscope, ast_ty)
        }
1444 1445
    }

1446 1447 1448 1449 1450 1451 1452
    // Check the base def in a PathResolution and convert it to a Ty. If there are
    // associated types in the PathResolution, these will need to be separately
    // resolved.
    fn base_def_to_ty(&self,
                      rscope: &RegionScope,
                      span: Span,
                      param_mode: PathParamMode,
1453
                      def: Def,
1454
                      opt_self_ty: Option<Ty<'tcx>>,
1455
                      base_path_ref_id: ast::NodeId,
1456 1457 1458 1459
                      base_segments: &[hir::PathSegment])
                      -> Ty<'tcx> {
        let tcx = self.tcx();

1460 1461 1462 1463
        debug!("base_def_to_ty(def={:?}, opt_self_ty={:?}, base_segments={:?})",
               def, opt_self_ty, base_segments);

        match def {
1464 1465 1466 1467 1468
            Def::Trait(trait_def_id) => {
                // N.B. this case overlaps somewhat with
                // TyObjectSum, see that fn for details

                tcx.prohibit_type_params(base_segments.split_last().unwrap().1);
1469 1470 1471 1472 1473 1474 1475 1476 1477

                self.trait_path_to_object_type(rscope,
                                               span,
                                               param_mode,
                                               trait_def_id,
                                               base_path_ref_id,
                                               base_segments.last().unwrap(),
                                               span,
                                               partition_bounds(tcx, span, &[]))
1478 1479 1480 1481 1482 1483 1484 1485 1486
            }
            Def::Enum(did) | Def::TyAlias(did) | Def::Struct(did) => {
                tcx.prohibit_type_params(base_segments.split_last().unwrap().1);
                self.ast_path_to_ty(rscope,
                                    span,
                                    param_mode,
                                    did,
                                    base_segments.last().unwrap())
            }
1487
            Def::TyParam(did) => {
1488
                tcx.prohibit_type_params(base_segments);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

                let node_id = tcx.map.as_local_node_id(did).unwrap();
                let param = tcx.ty_param_defs.borrow().get(&node_id)
                               .map(ty::ParamTy::for_def);
                if let Some(p) = param {
                    p.to_ty(tcx)
                } else {
                    // Only while computing defaults of earlier type
                    // parameters can a type parameter be missing its def.
                    struct_span_err!(tcx.sess, span, E0128,
                                     "type parameters with a default cannot use \
                                      forward declared identifiers")
                        .span_label(span, &format!("defaulted type parameters \
                                                    cannot be forward declared"))
                        .emit();
                    tcx.types.err
                }
1506 1507 1508
            }
            Def::SelfTy(_, Some(impl_id)) => {
                // Self in impl (we know the concrete type).
1509 1510 1511 1512 1513 1514 1515

                // For Def::SelfTy() values inlined from another crate, the
                // impl_id will be DUMMY_NODE_ID, which would cause problems
                // here. But we should never run into an impl from another crate
                // in this pass.
                assert!(impl_id != ast::DUMMY_NODE_ID);

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
                tcx.prohibit_type_params(base_segments);
                let ty = tcx.node_id_to_type(impl_id);
                if let Some(free_substs) = self.get_free_substs() {
                    ty.subst(tcx, free_substs)
                } else {
                    ty
                }
            }
            Def::SelfTy(Some(_), None) => {
                // Self in trait.
                tcx.prohibit_type_params(base_segments);
                tcx.mk_self_type()
            }
            Def::AssociatedTy(trait_did, _) => {
                tcx.prohibit_type_params(&base_segments[..base_segments.len()-2]);
                self.qpath_to_ty(rscope,
                                 span,
                                 param_mode,
                                 opt_self_ty,
                                 trait_did,
                                 &base_segments[base_segments.len()-2],
                                 base_segments.last().unwrap())
            }
            Def::Mod(..) => {
                // Used as sentinel by callers to indicate the `<T>::A::B::C` form.
                // FIXME(#22519) This part of the resolution logic should be
                // avoided entirely for that form, once we stop needed a Def
                // for `associated_path_def_to_ty`.
                // Fixing this will also let use resolve <Self>::Foo the same way we
                // resolve Self::Foo, at the moment we can't resolve the former because
                // we don't have the trait information around, which is just sad.

                assert!(base_segments.is_empty());

                opt_self_ty.expect("missing T in <T>::a::b::c")
            }
            Def::PrimTy(prim_ty) => {
                tcx.prim_ty_to_ty(base_segments, prim_ty)
            }
            Def::Err => {
                self.set_tainted_by_errors();
                return self.tcx().types.err;
            }
            _ => {
S
ShyamSundarB 已提交
1560 1561 1562 1563 1564
                struct_span_err!(tcx.sess, span, E0248,
                           "found value `{}` used as a type",
                            tcx.item_path_str(def.def_id()))
                           .span_label(span, &format!("value used as a type"))
                           .emit();
1565
                return self.tcx().types.err;
1566
            }
1567
        }
1568
    }
1569

1570 1571
    // Resolve possibly associated type path into a type and final definition.
    // Note that both base_segments and assoc_segments may be empty, although not at same time.
1572 1573 1574 1575
    pub fn finish_resolving_def_to_ty(&self,
                                      rscope: &RegionScope,
                                      span: Span,
                                      param_mode: PathParamMode,
1576
                                      base_def: Def,
1577
                                      opt_self_ty: Option<Ty<'tcx>>,
1578
                                      base_path_ref_id: ast::NodeId,
1579 1580
                                      base_segments: &[hir::PathSegment],
                                      assoc_segments: &[hir::PathSegment])
1581
                                      -> (Ty<'tcx>, Def) {
1582 1583
        // Convert the base type.
        debug!("finish_resolving_def_to_ty(base_def={:?}, \
1584 1585
                base_segments={:?}, \
                assoc_segments={:?})",
1586
               base_def,
1587 1588
               base_segments,
               assoc_segments);
1589 1590 1591 1592 1593 1594 1595 1596 1597
        let base_ty = self.base_def_to_ty(rscope,
                                          span,
                                          param_mode,
                                          base_def,
                                          opt_self_ty,
                                          base_path_ref_id,
                                          base_segments);
        debug!("finish_resolving_def_to_ty: base_def_to_ty returned {:?}", base_ty);

1598
        // If any associated type segments remain, attempt to resolve them.
1599
        let (mut ty, mut def) = (base_ty, base_def);
1600
        for segment in assoc_segments {
1601
            debug!("finish_resolving_def_to_ty: segment={:?}", segment);
1602 1603 1604 1605 1606 1607
            // This is pretty bad (it will fail except for T::A and Self::A).
            let (new_ty, new_def) = self.associated_path_def_to_ty(span, ty, def, segment);
            ty = new_ty;
            def = new_def;

            if def == Def::Err {
1608 1609
                break;
            }
1610
        }
1611
        (ty, def)
1612 1613
    }

1614 1615 1616 1617 1618
    /// Parses the programmer's textual representation of a type into our
    /// internal notion of a type.
    pub fn ast_ty_to_ty(&self, rscope: &RegionScope, ast_ty: &hir::Ty) -> Ty<'tcx> {
        debug!("ast_ty_to_ty(id={:?}, ast_ty={:?})",
               ast_ty.id, ast_ty);
1619

1620
        let tcx = self.tcx();
1621

1622 1623 1624 1625 1626 1627 1628
        let cache = self.ast_ty_to_ty_cache();
        match cache.borrow().get(&ast_ty.id) {
            Some(ty) => { return ty; }
            None => { }
        }

        let result_ty = match ast_ty.node {
1629 1630
            hir::TyVec(ref ty) => {
                tcx.mk_slice(self.ast_ty_to_ty(rscope, &ty))
1631
            }
1632
            hir::TyObjectSum(ref ty, ref bounds) => {
1633
                self.ast_ty_to_object_trait_ref(rscope, ast_ty.span, ty, bounds)
1634
            }
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
            hir::TyPtr(ref mt) => {
                tcx.mk_ptr(ty::TypeAndMut {
                    ty: self.ast_ty_to_ty(rscope, &mt.ty),
                    mutbl: mt.mutbl
                })
            }
            hir::TyRptr(ref region, ref mt) => {
                let r = self.opt_ast_region_to_region(rscope, ast_ty.span, region);
                debug!("TyRef r={:?}", r);
                let rscope1 =
                    &ObjectLifetimeDefaultRscope::new(
                        rscope,
                        ty::ObjectLifetimeDefault::Specific(r));
                let t = self.ast_ty_to_ty(rscope1, &mt.ty);
1649
                tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
1650
            }
A
Andrew Cann 已提交
1651 1652
            hir::TyNever => {
                tcx.types.never
1653
            },
1654 1655 1656 1657 1658 1659 1660 1661
            hir::TyTup(ref fields) => {
                let flds = fields.iter()
                                 .map(|t| self.ast_ty_to_ty(rscope, &t))
                                 .collect();
                tcx.mk_tup(flds)
            }
            hir::TyBareFn(ref bf) => {
                require_c_abi_if_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
1662 1663 1664 1665 1666 1667 1668 1669
                let anon_scope = rscope.anon_type_scope();
                let (bare_fn_ty, _) =
                    self.ty_of_method_or_bare_fn(bf.unsafety,
                                                 bf.abi,
                                                 None,
                                                 &bf.decl,
                                                 anon_scope,
                                                 anon_scope);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

                // Find any late-bound regions declared in return type that do
                // not appear in the arguments. These are not wellformed.
                //
                // Example:
                //
                //     for<'a> fn() -> &'a str <-- 'a is bad
                //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
                //
                // Note that we do this check **here** and not in
                // `ty_of_bare_fn` because the latter is also used to make
                // the types for fn items, and we do not want to issue a
                // warning then. (Once we fix #32330, the regions we are
                // checking for here would be considered early bound
                // anyway.)
                let inputs = bare_fn_ty.sig.inputs();
                let late_bound_in_args = tcx.collect_constrained_late_bound_regions(&inputs);
                let output = bare_fn_ty.sig.output();
                let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
                for br in late_bound_in_ret.difference(&late_bound_in_args) {
                    let br_name = match *br {
1691
                        ty::BrNamed(_, name, _) => name,
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
                        _ => {
                            span_bug!(
                                bf.decl.output.span(),
                                "anonymous bound region {:?} in return but not args",
                                br);
                        }
                    };
                    tcx.sess.add_lint(
                        lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                        ast_ty.id,
                        ast_ty.span,
                        format!("return type references lifetime `{}`, \
                                 which does not appear in the trait input types",
                                br_name));
                }
                tcx.mk_fn_ptr(bare_fn_ty)
1708 1709
            }
            hir::TyPolyTraitRef(ref bounds) => {
1710
                self.conv_object_ty_poly_trait_ref(rscope, ast_ty.span, bounds)
1711
            }
1712 1713 1714 1715 1716
            hir::TyImplTrait(ref bounds) => {
                use collect::{compute_bounds, SizedByDefault};

                // Create the anonymized type.
                let def_id = tcx.map.local_def_id(ast_ty.id);
1717
                if let Some(anon_scope) = rscope.anon_type_scope() {
1718
                    let substs = anon_scope.fresh_substs(self, ast_ty.span);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
                    let ty = tcx.mk_anon(tcx.map.local_def_id(ast_ty.id), substs);

                    // Collect the bounds, i.e. the `A+B+'c` in `impl A+B+'c`.
                    let bounds = compute_bounds(self, ty, bounds,
                                                SizedByDefault::Yes,
                                                Some(anon_scope),
                                                ast_ty.span);
                    let predicates = bounds.predicates(tcx, ty);
                    let predicates = tcx.lift_to_global(&predicates).unwrap();
                    tcx.predicates.borrow_mut().insert(def_id, ty::GenericPredicates {
1729
                        parent: None,
1730
                        predicates: predicates
1731 1732 1733
                    });

                    ty
1734 1735 1736 1737
                } else {
                    span_err!(tcx.sess, ast_ty.span, E0562,
                              "`impl Trait` not allowed outside of function \
                               and inherent method return types");
1738 1739
                    tcx.types.err
                }
1740
            }
1741
            hir::TyPath(ref maybe_qself, ref path) => {
1742
                debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
1743
                let path_res = tcx.expect_resolution(ast_ty.id);
1744 1745 1746 1747
                let base_ty_end = path.segments.len() - path_res.depth;
                let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                    self.ast_ty_to_ty(rscope, &qself.ty)
                });
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
                let (ty, def) = self.finish_resolving_def_to_ty(rscope,
                                                                ast_ty.span,
                                                                PathParamMode::Explicit,
                                                                path_res.base_def,
                                                                opt_self_ty,
                                                                ast_ty.id,
                                                                &path.segments[..base_ty_end],
                                                                &path.segments[base_ty_end..]);

                // Write back the new resolution.
                if path_res.depth != 0 {
                    tcx.def_map.borrow_mut().insert(ast_ty.id, PathResolution::new(def));
1760
                }
1761

1762 1763 1764
                ty
            }
            hir::TyFixedLengthVec(ref ty, ref e) => {
1765 1766 1767 1768
                if let Ok(length) = eval_length(tcx.global_tcx(), &e, "array length") {
                    tcx.mk_array(self.ast_ty_to_ty(rscope, &ty), length)
                } else {
                    self.tcx().types.err
1769 1770
                }
            }
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
            hir::TyTypeof(ref _e) => {
                span_err!(tcx.sess, ast_ty.span, E0516,
                      "`typeof` is a reserved keyword but unimplemented");
                tcx.types.err
            }
            hir::TyInfer => {
                // TyInfer also appears as the type of arguments or return
                // values in a ExprClosure, or as
                // the type of local variables. Both of these cases are
                // handled specially and will not descend into this routine.
1781
                self.ty_infer(ast_ty.span)
1782
            }
1783 1784 1785 1786 1787
        };

        cache.borrow_mut().insert(ast_ty.id, result_ty);

        result_ty
1788
    }
1789

1790 1791 1792 1793 1794 1795 1796 1797
    pub fn ty_of_arg(&self,
                     rscope: &RegionScope,
                     a: &hir::Arg,
                     expected_ty: Option<Ty<'tcx>>)
                     -> Ty<'tcx>
    {
        match a.ty.node {
            hir::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
1798
            hir::TyInfer => self.ty_infer(a.ty.span),
1799 1800
            _ => self.ast_ty_to_ty(rscope, &a.ty),
        }
1801
    }
1802

1803 1804
    pub fn ty_of_method(&self,
                        sig: &hir::MethodSig,
1805 1806
                        untransformed_self_ty: Ty<'tcx>,
                        anon_scope: Option<AnonTypeScope>)
1807
                        -> (&'tcx ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory<'tcx>) {
1808 1809 1810 1811 1812 1813
        self.ty_of_method_or_bare_fn(sig.unsafety,
                                     sig.abi,
                                     Some(untransformed_self_ty),
                                     &sig.decl,
                                     None,
                                     anon_scope)
1814
    }
1815

1816
    pub fn ty_of_bare_fn(&self,
1817 1818
                         unsafety: hir::Unsafety,
                         abi: abi::Abi,
1819 1820
                         decl: &hir::FnDecl,
                         anon_scope: Option<AnonTypeScope>)
1821
                         -> &'tcx ty::BareFnTy<'tcx> {
1822
        self.ty_of_method_or_bare_fn(unsafety, abi, None, decl, None, anon_scope).0
1823
    }
1824

1825 1826 1827 1828 1829 1830 1831
    fn ty_of_method_or_bare_fn(&self,
                               unsafety: hir::Unsafety,
                               abi: abi::Abi,
                               opt_untransformed_self_ty: Option<Ty<'tcx>>,
                               decl: &hir::FnDecl,
                               arg_anon_scope: Option<AnonTypeScope>,
                               ret_anon_scope: Option<AnonTypeScope>)
1832
                               -> (&'tcx ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory<'tcx>)
1833 1834 1835 1836 1837
    {
        debug!("ty_of_method_or_bare_fn");

        // New region names that appear inside of the arguments of the function
        // declaration are bound to that function type.
1838
        let rb = MaybeWithAnonTypes::new(BindingRscope::new(), arg_anon_scope);
1839 1840 1841 1842 1843 1844

        // `implied_output_region` is the region that will be assumed for any
        // region parameters in the return type. In accordance with the rules for
        // lifetime elision, we can determine it in two ways. First (determined
        // here), if self is by-reference, then the implied output region is the
        // region of the self parameter.
1845
        let (self_ty, explicit_self_category) = match (opt_untransformed_self_ty, decl.get_self()) {
1846 1847 1848 1849 1850 1851
            (Some(untransformed_self_ty), Some(explicit_self)) => {
                let self_type = self.determine_self_type(&rb, untransformed_self_ty,
                                                         &explicit_self);
                (Some(self_type.0), self_type.1)
            }
            _ => (None, ty::ExplicitSelfCategory::Static),
1852
        };
1853

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
        // HACK(eddyb) replace the fake self type in the AST with the actual type.
        let arg_params = if self_ty.is_some() {
            &decl.inputs[1..]
        } else {
            &decl.inputs[..]
        };
        let arg_tys: Vec<Ty> =
            arg_params.iter().map(|a| self.ty_of_arg(&rb, a, None)).collect();
        let arg_pats: Vec<String> =
            arg_params.iter().map(|a| pprust::pat_to_string(&a.pat)).collect();

        // Second, if there was exactly one lifetime (either a substitution or a
        // reference) in the arguments, then any anonymous regions in the output
        // have that lifetime.
        let implied_output_region = match explicit_self_category {
1869
            ty::ExplicitSelfCategory::ByReference(region, _) => Ok(*region),
1870 1871
            _ => self.find_implied_output_region(&arg_tys, arg_pats)
        };
1872

1873 1874
        let output_ty = match decl.output {
            hir::Return(ref output) =>
1875 1876 1877 1878
                self.convert_ty_with_lifetime_elision(implied_output_region,
                                                      &output,
                                                      ret_anon_scope),
            hir::DefaultReturn(..) => self.tcx().mk_nil(),
1879
        };
1880

1881 1882 1883 1884 1885
        let input_tys = self_ty.into_iter().chain(arg_tys).collect();

        debug!("ty_of_method_or_bare_fn: input_tys={:?}", input_tys);
        debug!("ty_of_method_or_bare_fn: output_ty={:?}", output_ty);

1886 1887 1888 1889
        (self.tcx().mk_bare_fn(ty::BareFnTy {
            unsafety: unsafety,
            abi: abi,
            sig: ty::Binder(ty::FnSig {
1890
                inputs: input_tys,
1891 1892 1893 1894 1895
                output: output_ty,
                variadic: decl.variadic
            }),
        }), explicit_self_category)
    }
1896

1897 1898
    fn determine_self_type<'a>(&self,
                               rscope: &RegionScope,
1899 1900
                               untransformed_self_ty: Ty<'tcx>,
                               explicit_self: &hir::ExplicitSelf)
1901
                               -> (Ty<'tcx>, ty::ExplicitSelfCategory<'tcx>)
1902
    {
1903 1904 1905
        return match explicit_self.node {
            SelfKind::Value(..) => {
                (untransformed_self_ty, ty::ExplicitSelfCategory::ByValue)
1906
            }
1907
            SelfKind::Region(ref lifetime, mutability) => {
1908
                let region =
1909 1910 1911 1912
                    self.opt_ast_region_to_region(
                                             rscope,
                                             explicit_self.span,
                                             lifetime);
1913
                (self.tcx().mk_ref(region,
1914
                    ty::TypeAndMut {
1915
                        ty: untransformed_self_ty,
1916
                        mutbl: mutability
1917 1918
                    }),
                 ty::ExplicitSelfCategory::ByReference(region, mutability))
1919
            }
1920
            SelfKind::Explicit(ref ast_type, _) => {
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
                let explicit_type = self.ast_ty_to_ty(rscope, &ast_type);

                // We wish to (for now) categorize an explicit self
                // declaration like `self: SomeType` into either `self`,
                // `&self`, `&mut self`, or `Box<self>`. We do this here
                // by some simple pattern matching. A more precise check
                // is done later in `check_method_self_type()`.
                //
                // Examples:
                //
                // ```
                // impl Foo for &T {
                //     // Legal declarations:
                //     fn method1(self: &&T); // ExplicitSelfCategory::ByReference
                //     fn method2(self: &T); // ExplicitSelfCategory::ByValue
                //     fn method3(self: Box<&T>); // ExplicitSelfCategory::ByBox
                //
                //     // Invalid cases will be caught later by `check_method_self_type`:
                //     fn method_err1(self: &mut T); // ExplicitSelfCategory::ByReference
                // }
                // ```
                //
                // To do the check we just count the number of "modifiers"
                // on each type and compare them. If they are the same or
                // the impl has more, we call it "by value". Otherwise, we
                // look at the outermost modifier on the method decl and
                // call it by-ref, by-box as appropriate. For method1, for
                // example, the impl type has one modifier, but the method
                // type has two, so we end up with
                // ExplicitSelfCategory::ByReference.

1952
                let impl_modifiers = count_modifiers(untransformed_self_ty);
1953 1954 1955 1956 1957
                let method_modifiers = count_modifiers(explicit_type);

                debug!("determine_explicit_self_category(self_info.untransformed_self_ty={:?} \
                       explicit_type={:?} \
                       modifiers=({},{})",
1958
                       untransformed_self_ty,
1959 1960 1961 1962 1963 1964 1965 1966
                       explicit_type,
                       impl_modifiers,
                       method_modifiers);

                let category = if impl_modifiers >= method_modifiers {
                    ty::ExplicitSelfCategory::ByValue
                } else {
                    match explicit_type.sty {
1967
                        ty::TyRef(r, mt) => ty::ExplicitSelfCategory::ByReference(r, mt.mutbl),
1968 1969 1970 1971
                        ty::TyBox(_) => ty::ExplicitSelfCategory::ByBox,
                        _ => ty::ExplicitSelfCategory::ByValue,
                    }
                };
1972

1973
                (explicit_type, category)
1974 1975
            }
        };
1976

1977 1978 1979 1980 1981 1982
        fn count_modifiers(ty: Ty) -> usize {
            match ty.sty {
                ty::TyRef(_, mt) => count_modifiers(mt.ty) + 1,
                ty::TyBox(t) => count_modifiers(t) + 1,
                _ => 0,
            }
1983 1984
        }
    }
1985

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    pub fn ty_of_closure(&self,
        unsafety: hir::Unsafety,
        decl: &hir::FnDecl,
        abi: abi::Abi,
        expected_sig: Option<ty::FnSig<'tcx>>)
        -> ty::ClosureTy<'tcx>
    {
        debug!("ty_of_closure(expected_sig={:?})",
               expected_sig);

        // new region names that appear inside of the fn decl are bound to
        // that function type
        let rb = rscope::BindingRscope::new();

        let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
            let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
                // no guarantee that the correct number of expected args
                // were supplied
                if i < e.inputs.len() {
                    Some(e.inputs[i])
                } else {
                    None
                }
            });
            self.ty_of_arg(&rb, a, expected_arg_ty)
        }).collect();
2012

2013
        let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
2014

2015 2016 2017 2018 2019
        let is_infer = match decl.output {
            hir::Return(ref output) if output.node == hir::TyInfer => true,
            hir::DefaultReturn(..) => true,
            _ => false
        };
2020

2021 2022 2023
        let output_ty = match decl.output {
            _ if is_infer && expected_ret_ty.is_some() =>
                expected_ret_ty.unwrap(),
2024
            _ if is_infer => self.ty_infer(decl.output.span()),
2025
            hir::Return(ref output) =>
2026
                self.ast_ty_to_ty(&rb, &output),
2027 2028
            hir::DefaultReturn(..) => bug!(),
        };
2029

2030 2031
        debug!("ty_of_closure: input_tys={:?}", input_tys);
        debug!("ty_of_closure: output_ty={:?}", output_ty);
2032

2033 2034 2035 2036 2037 2038 2039
        ty::ClosureTy {
            unsafety: unsafety,
            abi: abi,
            sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                       output: output_ty,
                                       variadic: decl.variadic}),
        }
2040
    }
2041

2042
    fn conv_object_ty_poly_trait_ref(&self,
2043 2044 2045 2046 2047 2048 2049
        rscope: &RegionScope,
        span: Span,
        ast_bounds: &[hir::TyParamBound])
        -> Ty<'tcx>
    {
        let mut partitioned_bounds = partition_bounds(self.tcx(), span, &ast_bounds[..]);

2050 2051
        let trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
            partitioned_bounds.trait_bounds.remove(0)
2052 2053 2054 2055 2056
        } else {
            span_err!(self.tcx().sess, span, E0224,
                      "at least one non-builtin trait is required for an object type");
            return self.tcx().types.err;
        };
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
        let trait_ref = &trait_bound.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.trait_path_to_object_type(rscope,
                                       trait_ref.path.span,
                                       PathParamMode::Explicit,
                                       trait_def_id,
                                       trait_ref.ref_id,
                                       trait_ref.path.segments.last().unwrap(),
                                       span,
                                       partitioned_bounds)
2068
    }
2069

2070 2071 2072 2073 2074 2075 2076 2077
    /// Given the bounds on an object, determines what single region bound (if any) we can
    /// use to summarize this type. The basic idea is that we will use the bound the user
    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
    /// for region bounds. It may be that we can derive no bound at all, in which case
    /// we return `None`.
    fn compute_object_lifetime_bound(&self,
        span: Span,
        explicit_region_bounds: &[&hir::Lifetime],
2078
        principal_trait_ref: ty::PolyExistentialTraitRef<'tcx>,
2079
        builtin_bounds: ty::BuiltinBounds)
2080
        -> Option<&'tcx ty::Region> // if None, use the default
2081 2082
    {
        let tcx = self.tcx();
2083

2084 2085 2086 2087 2088
        debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
               principal_trait_ref={:?}, builtin_bounds={:?})",
               explicit_region_bounds,
               principal_trait_ref,
               builtin_bounds);
2089

2090 2091 2092 2093
        if explicit_region_bounds.len() > 1 {
            span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
                "only a single explicit lifetime bound is permitted");
        }
2094

2095 2096 2097 2098 2099
        if !explicit_region_bounds.is_empty() {
            // Explicitly specified region bound. Use that.
            let r = explicit_region_bounds[0];
            return Some(ast_region_to_region(tcx, r));
        }
2100

2101 2102
        if let Err(ErrorReported) =
                self.ensure_super_predicates(span, principal_trait_ref.def_id()) {
2103
            return Some(tcx.mk_region(ty::ReStatic));
2104
        }
2105

2106 2107 2108
        // No explicit region bound specified. Therefore, examine trait
        // bounds and see if we can derive region bounds from those.
        let derived_region_bounds =
2109
            object_region_bounds(tcx, principal_trait_ref, builtin_bounds);
2110

2111 2112 2113 2114 2115
        // If there are no derived region bounds, then report back that we
        // can find no region bound. The caller will use the default.
        if derived_region_bounds.is_empty() {
            return None;
        }
2116

2117 2118
        // If any of the derived region bounds are 'static, that is always
        // the best choice.
2119 2120
        if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
            return Some(tcx.mk_region(ty::ReStatic));
2121
        }
2122

2123 2124 2125 2126 2127 2128 2129 2130 2131
        // Determine whether there is exactly one unique region in the set
        // of derived region bounds. If so, use that. Otherwise, report an
        // error.
        let r = derived_region_bounds[0];
        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
            span_err!(tcx.sess, span, E0227,
                      "ambiguous lifetime bound, explicit lifetime bound required");
        }
        return Some(r);
2132
    }
2133
}
2134 2135 2136

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
2137 2138
    pub trait_bounds: Vec<&'a hir::PolyTraitRef>,
    pub region_bounds: Vec<&'a hir::Lifetime>,
2139 2140
}

S
Steve Klabnik 已提交
2141 2142
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
2143 2144 2145 2146
pub fn partition_bounds<'a, 'b, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            _span: Span,
                                            ast_bounds: &'b [hir::TyParamBound])
                                            -> PartitionedBounds<'b>
2147
{
2148
    let mut builtin_bounds = ty::BuiltinBounds::empty();
2149 2150
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
2151
    for ast_bound in ast_bounds {
2152
        match *ast_bound {
2153
            hir::TraitTyParamBound(ref b, hir::TraitBoundModifier::None) => {
2154
                match tcx.expect_def(b.trait_ref.ref_id) {
2155
                    Def::Trait(trait_did) => {
2156
                        if tcx.try_add_builtin_trait(trait_did,
2157
                                                     &mut builtin_bounds) {
2158 2159
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
2160
                            if !parameters.types().is_empty() {
2161
                                check_type_argument_count(tcx, b.trait_ref.path.span,
2162
                                                          parameters.types().len(), &[]);
2163
                            }
2164
                            if !parameters.lifetimes().is_empty() {
2165 2166
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
2167
                            }
2168
                            continue; // success
2169 2170
                        }
                    }
2171 2172 2173 2174
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
2175
                }
2176 2177
                trait_bounds.push(b);
            }
2178 2179
            hir::TraitTyParamBound(_, hir::TraitBoundModifier::Maybe) => {}
            hir::RegionTyParamBound(ref l) => {
2180 2181
                region_bounds.push(l);
            }
2182
        }
2183 2184 2185 2186 2187 2188
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
2189 2190
    }
}
2191

2192
fn check_type_argument_count(tcx: TyCtxt, span: Span, supplied: usize,
2193 2194 2195
                             ty_param_defs: &[ty::TypeParameterDef]) {
    let accepted = ty_param_defs.len();
    let required = ty_param_defs.iter().take_while(|x| x.default.is_none()) .count();
2196 2197 2198 2199 2200 2201
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
2202 2203 2204 2205 2206 2207
        struct_span_err!(tcx.sess, span, E0243, "wrong number of type arguments")
            .span_label(
                span,
                &format!("{} {} type arguments, found {}", expected, required, supplied)
            )
            .emit();
2208
    } else if supplied > accepted {
2209 2210 2211 2212
        let expected = if required == 0 {
            "expected no".to_string()
        } else if required < accepted {
            format!("expected at most {}", accepted)
2213
        } else {
2214
            format!("expected {}", accepted)
2215
        };
2216 2217 2218 2219 2220 2221 2222

        struct_span_err!(tcx.sess, span, E0244, "wrong number of type arguments")
            .span_label(
                span,
                &format!("{} type arguments, found {}", expected, supplied)
            )
            .emit();
2223 2224 2225
    }
}

2226
fn report_lifetime_number_error(tcx: TyCtxt, span: Span, number: usize, expected: usize) {
O
Omer Sheikh 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
    let label = if number < expected {
        if expected == 1 {
            format!("expected {} lifetime parameter", expected)
        } else {
            format!("expected {} lifetime parameters", expected)
        }
    } else {
        let additional = number - expected;
        if additional == 1 {
            "unexpected lifetime parameter".to_string()
        } else {
            format!("{} unexpected lifetime parameters", additional)
        }
    };
    struct_span_err!(tcx.sess, span, E0107,
                     "wrong number of lifetime parameters: expected {}, found {}",
                     expected, number)
        .span_label(span, &label)
        .emit();
2246
}
2247 2248 2249 2250 2251

// A helper struct for conveniently grouping a set of bounds which we pass to
// and return from functions in multiple places.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct Bounds<'tcx> {
2252
    pub region_bounds: Vec<&'tcx ty::Region>,
2253 2254 2255 2256 2257
    pub builtin_bounds: ty::BuiltinBounds,
    pub trait_bounds: Vec<ty::PolyTraitRef<'tcx>>,
    pub projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
}

2258 2259
impl<'a, 'gcx, 'tcx> Bounds<'tcx> {
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, param_ty: Ty<'tcx>)
2260
                      -> Vec<ty::Predicate<'tcx>>
2261 2262 2263 2264
    {
        let mut vec = Vec::new();

        for builtin_bound in &self.builtin_bounds {
2265
            match tcx.trait_ref_for_builtin_bound(builtin_bound, param_ty) {
2266
                Ok(trait_ref) => { vec.push(trait_ref.to_predicate()); }
2267 2268 2269 2270 2271 2272 2273
                Err(ErrorReported) => { }
            }
        }

        for &region_bound in &self.region_bounds {
            // account for the binder being introduced below; no need to shift `param_ty`
            // because, at present at least, it can only refer to early-bound regions
2274
            let region_bound = tcx.mk_region(ty::fold::shift_region(*region_bound, 1));
2275
            vec.push(ty::Binder(ty::OutlivesPredicate(param_ty, region_bound)).to_predicate());
2276 2277 2278
        }

        for bound_trait_ref in &self.trait_bounds {
2279
            vec.push(bound_trait_ref.to_predicate());
2280 2281 2282
        }

        for projection in &self.projection_bounds {
2283
            vec.push(projection.to_predicate());
2284 2285 2286 2287 2288
        }

        vec
    }
}