astconv.rs 92.0 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20
//! `AstConv` instance; in this phase, the `get_item_type()`
//! function triggers a recursive call to `type_of_item()`
21 22
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
23 24
//! `AstConv`, `get_item_type()` just looks up the item type in
//! `tcx.types` (using `TyCtxt::item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use rustc_const_eval::eval_length;
52
use hir::{self, SelfKind};
53
use hir::def::Def;
54
use hir::def_id::DefId;
55
use hir::print as pprust;
56
use middle::resolve_lifetime as rl;
57
use rustc::lint;
58
use rustc::ty::subst::{Kind, Subst, Substs};
59 60 61
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, ToPredicate, TypeFoldable};
use rustc::ty::wf::object_region_bounds;
62
use rustc_back::slice;
63
use require_c_abi_if_variadic;
64
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
65 66
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope,
             ElisionFailureInfo, ElidedLifetime};
67
use rscope::{AnonTypeScope, MaybeWithAnonTypes};
68
use util::common::{ErrorReported, FN_OUTPUT_NAME};
69
use util::nodemap::{NodeMap, FxHashSet};
70

71
use std::cell::RefCell;
N
Niko Matsakis 已提交
72
use syntax::{abi, ast};
73
use syntax::feature_gate::{GateIssue, emit_feature_err};
74
use syntax::symbol::{Symbol, keywords};
75 76
use syntax_pos::{Span, Pos};
use errors::DiagnosticBuilder;
77

78 79
pub trait AstConv<'gcx, 'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
80

81 82 83
    /// A cache used for the result of `ast_ty_to_ty_cache`
    fn ast_ty_to_ty_cache(&self) -> &RefCell<NodeMap<Ty<'tcx>>>;

84 85 86 87
    /// Returns the generic type and lifetime parameters for an item.
    fn get_generics(&self, span: Span, id: DefId)
                    -> Result<&'tcx ty::Generics<'tcx>, ErrorReported>;

88 89
    /// Identify the type for an item, like a type alias, fn, or struct.
    fn get_item_type(&self, span: Span, id: DefId) -> Result<Ty<'tcx>, ErrorReported>;
90

91 92
    /// Returns the `TraitDef` for a given trait. This allows you to
    /// figure out the set of type parameters defined on the trait.
N
Niko Matsakis 已提交
93
    fn get_trait_def(&self, span: Span, id: DefId)
94
                     -> Result<&'tcx ty::TraitDef<'tcx>, ErrorReported>;
N
Nick Cameron 已提交
95

96 97 98
    /// Ensure that the super-predicates for the trait with the given
    /// id are available and also for the transitive set of
    /// super-predicates.
N
Niko Matsakis 已提交
99
    fn ensure_super_predicates(&self, span: Span, id: DefId)
100 101 102 103
                               -> Result<(), ErrorReported>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
104 105
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
106

N
Nick Cameron 已提交
107 108 109 110
    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
111
    fn get_free_substs(&self) -> Option<&Substs<'tcx>>;
112

113
    /// What type should we use when a type is omitted?
114 115 116 117 118
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;

    /// Same as ty_infer, but with a known type parameter definition.
    fn ty_infer_for_def(&self,
                        _def: &ty::TypeParameterDef<'tcx>,
119
                        _substs: &[Kind<'tcx>],
120 121 122
                        span: Span) -> Ty<'tcx> {
        self.ty_infer(span)
    }
123

124 125 126 127 128 129 130 131 132 133 134
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
135
                                        -> Ty<'tcx>;
136 137 138 139 140

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
141
                    _trait_ref: ty::TraitRef<'tcx>,
142
                    _item_name: ast::Name)
N
Nick Cameron 已提交
143
                    -> Ty<'tcx>;
144 145 146 147 148 149

    /// Invoked when we encounter an error from some prior pass
    /// (e.g. resolve) that is translated into a ty-error. This is
    /// used to help suppress derived errors typeck might otherwise
    /// report.
    fn set_tainted_by_errors(&self);
150 151
}

152 153 154 155 156 157
struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

158 159 160 161 162
/// Dummy type used for the `Self` of a `TraitRef` created for converting
/// a trait object, and which gets removed in `ExistentialTraitRef`.
/// This type must not appear anywhere in other converted types.
const TRAIT_OBJECT_DUMMY_SELF: ty::TypeVariants<'static> = ty::TyInfer(ty::FreshTy(0));

163 164 165
pub fn ast_region_to_region<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            lifetime: &hir::Lifetime)
                                            -> &'tcx ty::Region {
166
    let r = match tcx.named_region_map.defs.get(&lifetime.id) {
167 168
        None => {
            // should have been recorded by the `resolve_lifetime` pass
169
            span_bug!(lifetime.span, "unresolved lifetime");
170
        }
171

172
        Some(&rl::DefStaticRegion) => {
173
            ty::ReStatic
174 175
        }

176
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
177 178 179 180 181 182 183 184 185 186 187 188 189 190
            // If this region is declared on a function, it will have
            // an entry in `late_bound`, but if it comes from
            // `for<'a>` in some type or something, it won't
            // necessarily have one. In that case though, we won't be
            // changed from late to early bound, so we can just
            // substitute false.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
            ty::ReLateBound(debruijn, ty::BrNamed(tcx.map.local_def_id(id),
                                                  lifetime.name,
                                                  issue_32330))
191 192
        }

193
        Some(&rl::DefEarlyBoundRegion(index, _)) => {
194 195 196 197
            ty::ReEarlyBound(ty::EarlyBoundRegion {
                index: index,
                name: lifetime.name
            })
198 199
        }

200
        Some(&rl::DefFreeRegion(scope, id)) => {
201 202 203 204 205 206 207
            // As in DefLateBoundRegion above, could be missing for some late-bound
            // regions, but also for early-bound regions.
            let issue_32330 = tcx.named_region_map
                                 .late_bound
                                 .get(&id)
                                 .cloned()
                                 .unwrap_or(ty::Issue32330::WontChange);
208
            ty::ReFree(ty::FreeRegion {
209
                    scope: scope.to_code_extent(&tcx.region_maps),
210
                    bound_region: ty::BrNamed(tcx.map.local_def_id(id),
211 212 213 214 215
                                              lifetime.name,
                                              issue_32330)
            })

                // (*) -- not late-bound, won't change
216 217 218
        }
    };

219 220
    debug!("ast_region_to_region(lifetime={:?} id={}) yields {:?}",
           lifetime,
221
           lifetime.id,
222
           r);
223

224
    tcx.mk_region(r)
225 226
}

227
fn report_elision_failure(
N
Nick Cameron 已提交
228
    db: &mut DiagnosticBuilder,
229 230 231 232
    params: Vec<ElisionFailureInfo>)
{
    let mut m = String::new();
    let len = params.len();
233

234 235 236 237 238 239 240
    let elided_params: Vec<_> = params.into_iter()
                                       .filter(|info| info.lifetime_count > 0)
                                       .collect();

    let elided_len = elided_params.len();

    for (i, info) in elided_params.into_iter().enumerate() {
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        let ElisionFailureInfo {
            name, lifetime_count: n, have_bound_regions
        } = info;

        let help_name = if name.is_empty() {
            format!("argument {}", i + 1)
        } else {
            format!("`{}`", name)
        };

        m.push_str(&(if n == 1 {
            help_name
        } else {
            format!("one of {}'s {} elided {}lifetimes", help_name, n,
                    if have_bound_regions { "free " } else { "" } )
        })[..]);

258
        if elided_len == 2 && i == 0 {
259
            m.push_str(" or ");
260
        } else if i + 2 == elided_len {
261
            m.push_str(", or ");
262
        } else if i != elided_len - 1 {
263 264
            m.push_str(", ");
        }
265

266
    }
267

268
    if len == 0 {
269 270 271 272 273
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    there is no value for it to be borrowed from");
        help!(db,
                   "consider giving it a 'static lifetime");
274
    } else if elided_len == 0 {
275 276 277 278 279 280 281
        help!(db,
                   "this function's return type contains a borrowed value with \
                    an elided lifetime, but the lifetime cannot be derived from \
                    the arguments");
        help!(db,
                   "consider giving it an explicit bounded or 'static \
                    lifetime");
282
    } else if elided_len == 1 {
283 284 285 286
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say which {} it is borrowed from",
                   m);
287
    } else {
288 289 290 291
        help!(db,
                   "this function's return type contains a borrowed value, but \
                    the signature does not say whether it is borrowed from {}",
                   m);
292 293 294
    }
}

295
impl<'o, 'gcx: 'tcx, 'tcx> AstConv<'gcx, 'tcx>+'o {
296 297 298
    pub fn opt_ast_region_to_region(&self,
        rscope: &RegionScope,
        default_span: Span,
299
        opt_lifetime: &Option<hir::Lifetime>) -> &'tcx ty::Region
300 301 302 303 304
    {
        let r = match *opt_lifetime {
            Some(ref lifetime) => {
                ast_region_to_region(self.tcx(), lifetime)
            }
305

306
            None => self.tcx().mk_region(match rscope.anon_regions(default_span, 1) {
307 308
                Ok(rs) => rs[0],
                Err(params) => {
309 310 311 312 313 314
                    let ampersand_span = Span { hi: default_span.lo, ..default_span};

                    let mut err = struct_span_err!(self.tcx().sess, ampersand_span, E0106,
                                                 "missing lifetime specifier");
                    err.span_label(ampersand_span, &format!("expected lifetime parameter"));

315 316 317 318 319
                    if let Some(params) = params {
                        report_elision_failure(&mut err, params);
                    }
                    err.emit();
                    ty::ReStatic
320
                }
321
            })
322
        };
323

324 325 326
        debug!("opt_ast_region_to_region(opt_lifetime={:?}) yields {:?}",
                opt_lifetime,
                r);
327

328 329
        r
    }
330

331 332 333 334 335
    /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
    /// returns an appropriate set of substitutions for this particular reference to `I`.
    pub fn ast_path_substs_for_ty(&self,
        rscope: &RegionScope,
        span: Span,
336
        def_id: DefId,
337
        item_segment: &hir::PathSegment)
338
        -> &'tcx Substs<'tcx>
339 340 341
    {
        let tcx = self.tcx();

342 343
        match item_segment.parameters {
            hir::AngleBracketedParameters(_) => {}
344
            hir::ParenthesizedParameters(..) => {
345 346 347 348 349
                struct_span_err!(tcx.sess, span, E0214,
                          "parenthesized parameters may only be used with a trait")
                    .span_label(span, &format!("only traits may use parentheses"))
                    .emit();

350
                return Substs::for_item(tcx, def_id, |_, _| {
351
                    tcx.mk_region(ty::ReStatic)
352 353
                }, |_, _| {
                    tcx.types.err
354
                });
355
            }
356 357 358 359 360
        }

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_path(rscope,
                                            span,
361
                                            def_id,
362 363
                                            &item_segment.parameters,
                                            None);
364

365
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
366

367
        substs
368
    }
369

370 371 372 373 374 375
    /// Given the type/region arguments provided to some path (along with
    /// an implicit Self, if this is a trait reference) returns the complete
    /// set of substitutions. This may involve applying defaulted type parameters.
    ///
    /// Note that the type listing given here is *exactly* what the user provided.
    fn create_substs_for_ast_path(&self,
376 377
        rscope: &RegionScope,
        span: Span,
378
        def_id: DefId,
379 380 381
        parameters: &hir::PathParameters,
        self_ty: Option<Ty<'tcx>>)
        -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
382 383 384
    {
        let tcx = self.tcx();

385
        debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
386
               parameters={:?})",
387
               def_id, self_ty, parameters);
388

389
        let (lifetimes, num_types_provided, infer_types) = match *parameters {
390
            hir::AngleBracketedParameters(ref data) => {
391
                (&data.lifetimes[..], data.types.len(), data.infer_types)
392
            }
393
            hir::ParenthesizedParameters(_) => (&[][..], 1, false)
394 395
        };

396 397 398
        // If the type is parameterized by this region, then replace this
        // region with the current anon region binding (in other words,
        // whatever & would get replaced with).
399 400 401 402 403 404 405 406
        let decl_generics = match self.get_generics(span, def_id) {
            Ok(generics) => generics,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
407
        let expected_num_region_params = decl_generics.regions.len();
408
        let supplied_num_region_params = lifetimes.len();
409
        let regions = if expected_num_region_params == supplied_num_region_params {
410
            lifetimes.iter().map(|l| *ast_region_to_region(tcx, l)).collect()
411 412 413
        } else {
            let anon_regions =
                rscope.anon_regions(span, expected_num_region_params);
414

415 416 417 418 419
            if supplied_num_region_params != 0 || anon_regions.is_err() {
                report_lifetime_number_error(tcx, span,
                                             supplied_num_region_params,
                                             expected_num_region_params);
            }
420

421 422 423 424 425
            match anon_regions {
                Ok(anon_regions) => anon_regions,
                Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
            }
        };
426

427
        // If a self-type was declared, one should be provided.
428
        assert_eq!(decl_generics.has_self, self_ty.is_some());
429

430
        // Check the number of type parameters supplied by the user.
431 432 433
        let ty_param_defs = &decl_generics.types[self_ty.is_some() as usize..];
        if !infer_types || num_types_provided > ty_param_defs.len() {
            check_type_argument_count(tcx, span, num_types_provided, ty_param_defs);
434
        }
435

436 437 438 439 440 441 442 443 444
        let is_object = self_ty.map_or(false, |ty| ty.sty == TRAIT_OBJECT_DUMMY_SELF);
        let default_needs_object_self = |p: &ty::TypeParameterDef<'tcx>| {
            if let Some(ref default) = p.default {
                if is_object && default.has_self_ty() {
                    // There is no suitable inference default for a type parameter
                    // that references self, in an object type.
                    return true;
                }
            }
445

446 447 448 449
            false
        };

        let mut output_assoc_binding = None;
450
        let substs = Substs::for_item(tcx, def_id, |def, _| {
451 452
            let i = def.index as usize - self_ty.is_some() as usize;
            tcx.mk_region(regions[i])
453 454
        }, |def, substs| {
            let i = def.index as usize;
455 456 457 458 459 460

            // Handle Self first, so we can adjust the index to match the AST.
            if let (0, Some(ty)) = (i, self_ty) {
                return ty;
            }

461
            let i = i - self_ty.is_some() as usize - decl_generics.regions.len();
462
            if i < num_types_provided {
463 464 465 466 467 468 469 470 471 472 473 474 475
                // A provided type parameter.
                match *parameters {
                    hir::AngleBracketedParameters(ref data) => {
                        self.ast_ty_arg_to_ty(rscope, Some(def), substs, &data.types[i])
                    }
                    hir::ParenthesizedParameters(ref data) => {
                        assert_eq!(i, 0);
                        let (ty, assoc) =
                            self.convert_parenthesized_parameters(rscope, substs, data);
                        output_assoc_binding = Some(assoc);
                        ty
                    }
                }
476
            } else if infer_types {
477 478 479 480 481 482 483 484 485
                // No type parameters were provided, we can infer all.
                let ty_var = if !default_needs_object_self(def) {
                    self.ty_infer_for_def(def, substs, span)
                } else {
                    self.ty_infer(span)
                };
                ty_var
            } else if let Some(default) = def.default {
                // No type parameter provided, but a default exists.
486

487 488 489 490 491
                // If we are converting an object type, then the
                // `Self` parameter is unknown. However, some of the
                // other type parameters may reference `Self` in their
                // defaults. This will lead to an ICE if we are not
                // careful!
492
                if default_needs_object_self(def) {
Z
zjhmale 已提交
493 494 495 496 497 498 499
                    struct_span_err!(tcx.sess, span, E0393,
                                     "the type parameter `{}` must be explicitly specified",
                                     def.name)
                        .span_label(span, &format!("missing reference to `{}`", def.name))
                        .note(&format!("because of the default `Self` reference, \
                                        type parameters must be specified on object types"))
                        .emit();
500
                    tcx.types.err
501 502
                } else {
                    // This is a default type parameter.
503
                    default.subst_spanned(tcx, substs, Some(span))
504
                }
505
            } else {
506 507
                // We've already errored above about the mismatch.
                tcx.types.err
S
Sean Bowe 已提交
508
            }
509
        });
S
Sean Bowe 已提交
510

511 512 513 514 515 516 517 518 519 520 521 522 523 524
        let assoc_bindings = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                data.bindings.iter().map(|b| {
                    ConvertedBinding {
                        item_name: b.name,
                        ty: self.ast_ty_to_ty(rscope, &b.ty),
                        span: b.span
                    }
                }).collect()
            }
            hir::ParenthesizedParameters(ref data) => {
                vec![output_assoc_binding.unwrap_or_else(|| {
                    // This is an error condition, but we should
                    // get the associated type binding anyway.
525
                    self.convert_parenthesized_parameters(rscope, substs, data).1
526 527
                })]
            }
528
        };
S
Sean Bowe 已提交
529

530 531
        debug!("create_substs_for_ast_path(decl_generics={:?}, self_ty={:?}) -> {:?}",
               decl_generics, self_ty, substs);
S
Sean Bowe 已提交
532

533
        (substs, assoc_bindings)
534
    }
535

536 537 538
    /// Returns the appropriate lifetime to use for any output lifetimes
    /// (if one exists) and a vector of the (pattern, number of lifetimes)
    /// corresponding to each input type/pattern.
539 540 541 542
    fn find_implied_output_region<F>(&self,
                                     input_tys: &[Ty<'tcx>],
                                     input_pats: F) -> ElidedLifetime
        where F: FnOnce() -> Vec<String>
543 544 545 546 547
    {
        let tcx = self.tcx();
        let mut lifetimes_for_params = Vec::new();
        let mut possible_implied_output_region = None;

548
        for input_type in input_tys.iter() {
549
            let mut regions = FxHashSet();
550 551 552 553 554 555 556 557 558 559 560
            let have_bound_regions = tcx.collect_regions(input_type, &mut regions);

            debug!("find_implied_output_regions: collected {:?} from {:?} \
                    have_bound_regions={:?}", &regions, input_type, have_bound_regions);

            if regions.len() == 1 {
                // there's a chance that the unique lifetime of this
                // iteration will be the appropriate lifetime for output
                // parameters, so lets store it.
                possible_implied_output_region = regions.iter().cloned().next();
            }
561

562 563 564
            // Use a placeholder for `name` because computing it can be
            // expensive and we don't want to do it until we know it's
            // necessary.
565
            lifetimes_for_params.push(ElisionFailureInfo {
566
                name: String::new(),
567 568 569
                lifetime_count: regions.len(),
                have_bound_regions: have_bound_regions
            });
570 571
        }

572
        if lifetimes_for_params.iter().map(|e| e.lifetime_count).sum::<usize>() == 1 {
573
            Ok(*possible_implied_output_region.unwrap())
574
        } else {
575 576 577 578 579
            // Fill in the expensive `name` fields now that we know they're
            // needed.
            for (info, input_pat) in lifetimes_for_params.iter_mut().zip(input_pats()) {
                info.name = input_pat;
            }
580 581
            Err(Some(lifetimes_for_params))
        }
582
    }
583

584 585
    fn convert_ty_with_lifetime_elision(&self,
                                        elided_lifetime: ElidedLifetime,
586 587
                                        ty: &hir::Ty,
                                        anon_scope: Option<AnonTypeScope>)
588 589 590 591 592
                                        -> Ty<'tcx>
    {
        match elided_lifetime {
            Ok(implied_output_region) => {
                let rb = ElidableRscope::new(implied_output_region);
593
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
594 595 596 597 598 599
            }
            Err(param_lifetimes) => {
                // All regions must be explicitly specified in the output
                // if the lifetime elision rules do not apply. This saves
                // the user from potentially-confusing errors.
                let rb = UnelidableRscope::new(param_lifetimes);
600
                self.ast_ty_to_ty(&MaybeWithAnonTypes::new(rb, anon_scope), ty)
601
            }
602 603 604
        }
    }

605 606
    fn convert_parenthesized_parameters(&self,
                                        rscope: &RegionScope,
607
                                        region_substs: &[Kind<'tcx>],
608
                                        data: &hir::ParenthesizedParameterData)
609
                                        -> (Ty<'tcx>, ConvertedBinding<'tcx>)
610
    {
611 612
        let anon_scope = rscope.anon_type_scope();
        let binding_rscope = MaybeWithAnonTypes::new(BindingRscope::new(), anon_scope);
613
        let inputs = self.tcx().mk_type_list(data.inputs.iter().map(|a_t| {
614
            self.ast_ty_arg_to_ty(&binding_rscope, None, region_substs, a_t)
615
        }));
616 617
        let inputs_len = inputs.len();
        let input_params = || vec![String::new(); inputs_len];
618
        let implied_output_region = self.find_implied_output_region(&inputs, input_params);
619

620 621
        let (output, output_span) = match data.output {
            Some(ref output_ty) => {
622 623 624
                (self.convert_ty_with_lifetime_elision(implied_output_region,
                                                       &output_ty,
                                                       anon_scope),
625 626 627 628 629 630
                 output_ty.span)
            }
            None => {
                (self.tcx().mk_nil(), data.span)
            }
        };
631

632
        let output_binding = ConvertedBinding {
633
            item_name: Symbol::intern(FN_OUTPUT_NAME),
634 635 636
            ty: output,
            span: output_span
        };
637

638
        (self.tcx().mk_ty(ty::TyTuple(inputs)), output_binding)
639
    }
640

641 642 643
    pub fn instantiate_poly_trait_ref(&self,
        rscope: &RegionScope,
        ast_trait_ref: &hir::PolyTraitRef,
644
        self_ty: Ty<'tcx>,
645 646 647 648 649 650 651 652 653
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
    {
        let trait_ref = &ast_trait_ref.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_poly_trait_ref(rscope,
                                        trait_ref.path.span,
                                        trait_def_id,
                                        self_ty,
654
                                        trait_ref.ref_id,
655 656 657
                                        trait_ref.path.segments.last().unwrap(),
                                        poly_projections)
    }
658

659 660 661 662 663 664 665 666 667
    /// Instantiates the path for the given trait reference, assuming that it's
    /// bound to a valid trait type. Returns the def_id for the defining trait.
    /// Fails if the type is a type other than a trait type.
    ///
    /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
    /// are disallowed. Otherwise, they are pushed onto the vector given.
    pub fn instantiate_mono_trait_ref(&self,
        rscope: &RegionScope,
        trait_ref: &hir::TraitRef,
668
        self_ty: Ty<'tcx>)
669 670 671 672 673 674 675 676 677
        -> ty::TraitRef<'tcx>
    {
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_mono_trait_ref(rscope,
                                        trait_ref.path.span,
                                        trait_def_id,
                                        self_ty,
                                        trait_ref.path.segments.last().unwrap())
    }
678

679 680
    fn trait_def_id(&self, trait_ref: &hir::TraitRef) -> DefId {
        let path = &trait_ref.path;
681
        match path.def {
682 683 684 685 686 687 688 689
            Def::Trait(trait_def_id) => trait_def_id,
            Def::Err => {
                self.tcx().sess.fatal("cannot continue compilation due to previous error");
            }
            _ => {
                span_fatal!(self.tcx().sess, path.span, E0245, "`{}` is not a trait",
                            path);
            }
N
Niko Matsakis 已提交
690 691 692
        }
    }

693 694 695 696
    fn ast_path_to_poly_trait_ref(&self,
        rscope: &RegionScope,
        span: Span,
        trait_def_id: DefId,
697
        self_ty: Ty<'tcx>,
698
        path_id: ast::NodeId,
699 700 701
        trait_segment: &hir::PathSegment,
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
702
    {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        debug!("ast_path_to_poly_trait_ref(trait_segment={:?})", trait_segment);
        // The trait reference introduces a binding level here, so
        // we need to shift the `rscope`. It'd be nice if we could
        // do away with this rscope stuff and work this knowledge
        // into resolve_lifetimes, as we do with non-omitted
        // lifetimes. Oh well, not there yet.
        let shifted_rscope = &ShiftedRscope::new(rscope);

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(shifted_rscope,
                                                 span,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        let poly_trait_ref = ty::Binder(ty::TraitRef::new(trait_def_id, substs));

719 720 721 722 723 724 725 726
        poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
            // specify type to assert that error was already reported in Err case:
            let predicate: Result<_, ErrorReported> =
                self.ast_type_binding_to_poly_projection_predicate(path_id,
                                                                   poly_trait_ref,
                                                                   binding);
            predicate.ok() // ok to ignore Err() because ErrorReported (see above)
        }));
727 728 729 730

        debug!("ast_path_to_poly_trait_ref(trait_segment={:?}, projections={:?}) -> {:?}",
               trait_segment, poly_projections, poly_trait_ref);
        poly_trait_ref
731 732
    }

733 734 735 736
    fn ast_path_to_mono_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  trait_def_id: DefId,
737
                                  self_ty: Ty<'tcx>,
738 739 740 741 742 743 744 745 746 747 748 749
                                  trait_segment: &hir::PathSegment)
                                  -> ty::TraitRef<'tcx>
    {
        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(rscope,
                                                 span,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        assoc_bindings.first().map(|b| self.tcx().prohibit_projection(b.span));
        ty::TraitRef::new(trait_def_id, substs)
    }
750

751 752 753 754
    fn create_substs_for_ast_trait_ref(&self,
                                       rscope: &RegionScope,
                                       span: Span,
                                       trait_def_id: DefId,
755
                                       self_ty: Ty<'tcx>,
756 757 758 759 760 761 762 763 764 765 766 767 768 769
                                       trait_segment: &hir::PathSegment)
                                       -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
    {
        debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
               trait_segment);

        let trait_def = match self.get_trait_def(span, trait_def_id) {
            Ok(trait_def) => trait_def,
            Err(ErrorReported) => {
                // No convenient way to recover from a cycle here. Just bail. Sorry!
                self.tcx().sess.abort_if_errors();
                bug!("ErrorReported returned, but no errors reports?")
            }
        };
770

771 772
        match trait_segment.parameters {
            hir::AngleBracketedParameters(_) => {
773 774 775
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
776
                    emit_feature_err(&self.tcx().sess.parse_sess,
777 778 779 780 781 782
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        the precise format of `Fn`-family traits' \
                        type parameters is subject to change. \
                        Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead");
                }
783
            }
784
            hir::ParenthesizedParameters(_) => {
785 786 787
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
788
                    emit_feature_err(&self.tcx().sess.parse_sess,
789 790 791 792
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        parenthetical notation is only stable when used with `Fn`-family traits");
                }
793
            }
794
        }
795

796 797
        self.create_substs_for_ast_path(rscope,
                                        span,
798
                                        trait_def_id,
799 800
                                        &trait_segment.parameters,
                                        Some(self_ty))
801
    }
802

803 804 805 806 807 808 809 810 811 812
    fn trait_defines_associated_type_named(&self,
                                           trait_def_id: DefId,
                                           assoc_name: ast::Name)
                                           -> bool
    {
        self.tcx().associated_items(trait_def_id).any(|item| {
            item.kind == ty::AssociatedKind::Type && item.name == assoc_name
        })
    }

813 814 815
    fn ast_type_binding_to_poly_projection_predicate(
        &self,
        path_id: ast::NodeId,
816
        trait_ref: ty::PolyTraitRef<'tcx>,
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        binding: &ConvertedBinding<'tcx>)
        -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();

        // Given something like `U : SomeTrait<T=X>`, we want to produce a
        // predicate like `<U as SomeTrait>::T = X`. This is somewhat
        // subtle in the event that `T` is defined in a supertrait of
        // `SomeTrait`, because in that case we need to upcast.
        //
        // That is, consider this case:
        //
        // ```
        // trait SubTrait : SuperTrait<int> { }
        // trait SuperTrait<A> { type T; }
        //
        // ... B : SubTrait<T=foo> ...
        // ```
        //
        // We want to produce `<B as SuperTrait<int>>::T == foo`.

838 839 840 841 842 843 844 845 846 847 848 849 850
        // Find any late-bound regions declared in `ty` that are not
        // declared in the trait-ref. These are not wellformed.
        //
        // Example:
        //
        //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
        //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
        let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
        let late_bound_in_ty = tcx.collect_referenced_late_bound_regions(&ty::Binder(binding.ty));
        debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
        debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
        for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
            let br_name = match *br {
851
                ty::BrNamed(_, name, _) => name,
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
                _ => {
                    span_bug!(
                        binding.span,
                        "anonymous bound region {:?} in binding but not trait ref",
                        br);
                }
            };
            tcx.sess.add_lint(
                lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                path_id,
                binding.span,
                format!("binding for associated type `{}` references lifetime `{}`, \
                         which does not appear in the trait input types",
                        binding.item_name, br_name));
        }

868 869
        // Simple case: X is defined in the current trait.
        if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
870 871 872 873 874 875 876 877
            return Ok(trait_ref.map_bound(|trait_ref| {
                ty::ProjectionPredicate {
                    projection_ty: ty::ProjectionTy {
                        trait_ref: trait_ref,
                        item_name: binding.item_name,
                    },
                    ty: binding.ty,
                }
878 879 880 881
            }));
        }

        // Otherwise, we have to walk through the supertraits to find
882
        // those that do.
883 884
        self.ensure_super_predicates(binding.span, trait_ref.def_id())?;

885
        let candidates: Vec<ty::PolyTraitRef> =
886 887 888 889 890 891 892 893 894
            traits::supertraits(tcx, trait_ref.clone())
            .filter(|r| self.trait_defines_associated_type_named(r.def_id(), binding.item_name))
            .collect();

        let candidate = self.one_bound_for_assoc_type(candidates,
                                                      &trait_ref.to_string(),
                                                      &binding.item_name.as_str(),
                                                      binding.span)?;

895 896 897 898 899 900 901 902
        Ok(candidate.map_bound(|trait_ref| {
            ty::ProjectionPredicate {
                projection_ty: ty::ProjectionTy {
                    trait_ref: trait_ref,
                    item_name: binding.item_name,
                },
                ty: binding.ty,
            }
903
        }))
904 905
    }

906 907 908 909 910 911 912 913
    fn ast_path_to_ty(&self,
        rscope: &RegionScope,
        span: Span,
        did: DefId,
        item_segment: &hir::PathSegment)
        -> Ty<'tcx>
    {
        let tcx = self.tcx();
914 915
        let decl_ty = match self.get_item_type(span, did) {
            Ok(ty) => ty,
916 917 918 919
            Err(ErrorReported) => {
                return tcx.types.err;
            }
        };
920

921 922
        let substs = self.ast_path_substs_for_ty(rscope,
                                                 span,
923
                                                 did,
924
                                                 item_segment);
925

926 927
        // FIXME(#12938): This is a hack until we have full support for DST.
        if Some(did) == self.tcx().lang_items.owned_box() {
928 929
            assert_eq!(substs.types().count(), 1);
            return self.tcx().mk_box(substs.type_at(0));
930
        }
931

932
        decl_ty.subst(self.tcx(), substs)
933 934
    }

935 936 937 938 939 940
    fn ast_ty_to_object_trait_ref(&self,
                                  rscope: &RegionScope,
                                  span: Span,
                                  ty: &hir::Ty,
                                  bounds: &[hir::TyParamBound])
                                  -> Ty<'tcx>
941 942 943 944 945 946 947 948 949 950 951 952
    {
        /*!
         * In a type like `Foo + Send`, we want to wait to collect the
         * full set of bounds before we make the object type, because we
         * need them to infer a region bound.  (For example, if we tried
         * made a type from just `Foo`, then it wouldn't be enough to
         * infer a 'static bound, and hence the user would get an error.)
         * So this function is used when we're dealing with a sum type to
         * convert the LHS. It only accepts a type that refers to a trait
         * name, and reports an error otherwise.
         */

953
        let tcx = self.tcx();
954
        match ty.node {
955
            hir::TyPath(hir::QPath::Resolved(None, ref path)) => {
956 957 958 959 960 961 962 963 964 965 966 967 968 969
                if let Def::Trait(trait_def_id) = path.def {
                    self.trait_path_to_object_type(rscope,
                                                   path.span,
                                                   trait_def_id,
                                                   ty.id,
                                                   path.segments.last().unwrap(),
                                                   span,
                                                   partition_bounds(tcx, span, bounds))
                } else {
                    struct_span_err!(tcx.sess, ty.span, E0172,
                                     "expected a reference to a trait")
                        .span_label(ty.span, &format!("expected a trait"))
                        .emit();
                    tcx.types.err
970 971
                }
            }
972
            _ => {
973
                let mut err = struct_span_err!(tcx.sess, ty.span, E0178,
974 975 976
                                               "expected a path on the left-hand side \
                                                of `+`, not `{}`",
                                               pprust::ty_to_string(ty));
A
Adam Medziński 已提交
977
                err.span_label(ty.span, &format!("expected a path"));
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
                let hi = bounds.iter().map(|x| match *x {
                    hir::TraitTyParamBound(ref tr, _) => tr.span.hi,
                    hir::RegionTyParamBound(ref r) => r.span.hi,
                }).max_by_key(|x| x.to_usize());
                let full_span = hi.map(|hi| Span {
                    lo: ty.span.lo,
                    hi: hi,
                    expn_id: ty.span.expn_id,
                });
                match (&ty.node, full_span) {
                    (&hir::TyRptr(None, ref mut_ty), Some(full_span)) => {
                        let mutbl_str = if mut_ty.mutbl == hir::MutMutable { "mut " } else { "" };
                        err.span_suggestion(full_span, "try adding parentheses (per RFC 438):",
                                            format!("&{}({} +{})",
                                                    mutbl_str,
                                                    pprust::ty_to_string(&mut_ty.ty),
                                                    pprust::bounds_to_string(bounds)));
                    }
                    (&hir::TyRptr(Some(ref lt), ref mut_ty), Some(full_span)) => {
                        let mutbl_str = if mut_ty.mutbl == hir::MutMutable { "mut " } else { "" };
                        err.span_suggestion(full_span, "try adding parentheses (per RFC 438):",
                                            format!("&{} {}({} +{})",
                                                    pprust::lifetime_to_string(lt),
                                                    mutbl_str,
                                                    pprust::ty_to_string(&mut_ty.ty),
                                                    pprust::bounds_to_string(bounds)));
                    }
1005

1006 1007 1008 1009
                    _ => {
                        help!(&mut err,
                                   "perhaps you forgot parentheses? (per RFC 438)");
                    }
1010
                }
1011
                err.emit();
1012
                tcx.types.err
1013 1014
            }
        }
1015
    }
1016

1017 1018 1019 1020 1021 1022
    /// Transform a PolyTraitRef into a PolyExistentialTraitRef by
    /// removing the dummy Self type (TRAIT_OBJECT_DUMMY_SELF).
    fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
                                -> ty::ExistentialTraitRef<'tcx> {
        assert_eq!(trait_ref.self_ty().sty, TRAIT_OBJECT_DUMMY_SELF);
        ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
1023
    }
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033
    fn trait_path_to_object_type(&self,
                                 rscope: &RegionScope,
                                 path_span: Span,
                                 trait_def_id: DefId,
                                 trait_path_ref_id: ast::NodeId,
                                 trait_segment: &hir::PathSegment,
                                 span: Span,
                                 partitioned_bounds: PartitionedBounds)
                                 -> Ty<'tcx> {
1034
        let tcx = self.tcx();
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

        let mut projection_bounds = vec![];
        let dummy_self = tcx.mk_ty(TRAIT_OBJECT_DUMMY_SELF);
        let principal = self.ast_path_to_poly_trait_ref(rscope,
                                                        path_span,
                                                        trait_def_id,
                                                        dummy_self,
                                                        trait_path_ref_id,
                                                        trait_segment,
                                                        &mut projection_bounds);

        let PartitionedBounds { builtin_bounds,
                                trait_bounds,
                                region_bounds } =
            partitioned_bounds;

        if !trait_bounds.is_empty() {
            let b = &trait_bounds[0];
            let span = b.trait_ref.path.span;
            struct_span_err!(self.tcx().sess, span, E0225,
                             "only the builtin traits can be used as closure or object bounds")
                .span_label(span, &format!("non-builtin trait used as bounds"))
                .emit();
        }

        // Erase the dummy_self (TRAIT_OBJECT_DUMMY_SELF) used above.
        let existential_principal = principal.map_bound(|trait_ref| {
            self.trait_ref_to_existential(trait_ref)
        });
        let existential_projections = projection_bounds.iter().map(|bound| {
            bound.map_bound(|b| {
                let p = b.projection_ty;
                ty::ExistentialProjection {
                    trait_ref: self.trait_ref_to_existential(p.trait_ref),
                    item_name: p.item_name,
                    ty: b.ty
                }
            })
        }).collect();

        let region_bound =
            self.compute_object_lifetime_bound(span,
                                               &region_bounds,
                                               existential_principal,
                                               builtin_bounds);

        let region_bound = match region_bound {
            Some(r) => r,
            None => {
1084
                tcx.mk_region(match rscope.object_lifetime_default(span) {
1085 1086 1087 1088 1089 1090 1091
                    Some(r) => r,
                    None => {
                        span_err!(self.tcx().sess, span, E0228,
                                  "the lifetime bound for this object type cannot be deduced \
                                   from context; please supply an explicit bound");
                        ty::ReStatic
                    }
1092
                })
1093
            }
1094
        };
1095 1096

        debug!("region_bound: {:?}", region_bound);
1097

1098 1099 1100 1101
        // ensure the super predicates and stop if we encountered an error
        if self.ensure_super_predicates(span, principal.def_id()).is_err() {
            return tcx.types.err;
        }
1102

1103 1104 1105 1106 1107 1108 1109
        // check that there are no gross object safety violations,
        // most importantly, that the supertraits don't contain Self,
        // to avoid ICE-s.
        let object_safety_violations =
            tcx.astconv_object_safety_violations(principal.def_id());
        if !object_safety_violations.is_empty() {
            tcx.report_object_safety_error(
1110 1111
                span, principal.def_id(), object_safety_violations)
                .emit();
1112 1113
            return tcx.types.err;
        }
1114

1115
        let mut associated_types = FxHashSet::default();
1116
        for tr in traits::supertraits(tcx, principal) {
1117 1118 1119
            associated_types.extend(tcx.associated_items(tr.def_id())
                .filter(|item| item.kind == ty::AssociatedKind::Type)
                .map(|item| (tr.def_id(), item.name)));
1120
        }
1121

1122
        for projection_bound in &projection_bounds {
1123 1124 1125 1126 1127 1128
            let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
                        projection_bound.0.projection_ty.item_name);
            associated_types.remove(&pair);
        }

        for (trait_def_id, name) in associated_types {
1129
            struct_span_err!(tcx.sess, span, E0191,
1130 1131
                "the value of the associated type `{}` (from the trait `{}`) must be specified",
                        name,
1132 1133 1134 1135
                        tcx.item_path_str(trait_def_id))
                        .span_label(span, &format!(
                            "missing associated type `{}` value", name))
                        .emit();
1136
        }
1137

1138 1139 1140 1141 1142 1143 1144 1145
        let ty = tcx.mk_trait(ty::TraitObject {
            principal: existential_principal,
            region_bound: region_bound,
            builtin_bounds: builtin_bounds,
            projection_bounds: existential_projections
        });
        debug!("trait_object_type: {:?}", ty);
        ty
1146 1147
    }

1148 1149 1150 1151 1152
    fn report_ambiguous_associated_type(&self,
                                        span: Span,
                                        type_str: &str,
                                        trait_str: &str,
                                        name: &str) {
K
Keith Yeung 已提交
1153 1154 1155 1156 1157 1158
        struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type")
            .span_label(span, &format!("ambiguous associated type"))
            .note(&format!("specify the type using the syntax `<{} as {}>::{}`",
                  type_str, trait_str, name))
            .emit();

1159
    }
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    // Search for a bound on a type parameter which includes the associated item
    // given by assoc_name. ty_param_node_id is the node id for the type parameter
    // (which might be `Self`, but only if it is the `Self` of a trait, not an
    // impl). This function will fail if there are no suitable bounds or there is
    // any ambiguity.
    fn find_bound_for_assoc_item(&self,
                                 ty_param_node_id: ast::NodeId,
                                 ty_param_name: ast::Name,
                                 assoc_name: ast::Name,
                                 span: Span)
                                 -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();
1174

1175 1176 1177 1178 1179 1180
        let bounds = match self.get_type_parameter_bounds(span, ty_param_node_id) {
            Ok(v) => v,
            Err(ErrorReported) => {
                return Err(ErrorReported);
            }
        };
N
Nick Cameron 已提交
1181

1182 1183
        // Ensure the super predicates and stop if we encountered an error.
        if bounds.iter().any(|b| self.ensure_super_predicates(span, b.def_id()).is_err()) {
1184
            return Err(ErrorReported);
N
Nick Cameron 已提交
1185
        }
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        // Check that there is exactly one way to find an associated type with the
        // correct name.
        let suitable_bounds: Vec<_> =
            traits::transitive_bounds(tcx, &bounds)
            .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name))
            .collect();

        self.one_bound_for_assoc_type(suitable_bounds,
                                      &ty_param_name.as_str(),
                                      &assoc_name.as_str(),
                                      span)
1198
    }
1199

1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    // Checks that bounds contains exactly one element and reports appropriate
    // errors otherwise.
    fn one_bound_for_assoc_type(&self,
                                bounds: Vec<ty::PolyTraitRef<'tcx>>,
                                ty_param_name: &str,
                                assoc_name: &str,
                                span: Span)
        -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        if bounds.is_empty() {
J
Jesus Garlea 已提交
1211
            struct_span_err!(self.tcx().sess, span, E0220,
1212 1213
                      "associated type `{}` not found for `{}`",
                      assoc_name,
J
Jesus Garlea 已提交
1214 1215 1216
                      ty_param_name)
              .span_label(span, &format!("associated type `{}` not found", assoc_name))
              .emit();
1217 1218
            return Err(ErrorReported);
        }
1219

1220
        if bounds.len() > 1 {
M
Mikhail Modin 已提交
1221
            let spans = bounds.iter().map(|b| {
1222
                self.tcx().associated_items(b.def_id()).find(|item| {
J
Jeffrey Seyfried 已提交
1223
                    item.kind == ty::AssociatedKind::Type && item.name == assoc_name
M
Mikhail Modin 已提交
1224
                })
1225
                .and_then(|item| self.tcx().map.as_local_node_id(item.def_id))
M
Mikhail Modin 已提交
1226 1227 1228
                .and_then(|node_id| self.tcx().map.opt_span(node_id))
            });

1229 1230 1231 1232 1233 1234
            let mut err = struct_span_err!(
                self.tcx().sess, span, E0221,
                "ambiguous associated type `{}` in bounds of `{}`",
                assoc_name,
                ty_param_name);
            err.span_label(span, &format!("ambiguous associated type `{}`", assoc_name));
1235

M
Mikhail Modin 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
            for span_and_bound in spans.zip(&bounds) {
                if let Some(span) = span_and_bound.0 {
                    err.span_label(span, &format!("ambiguous `{}` from `{}`",
                                                  assoc_name,
                                                  span_and_bound.1));
                } else {
                    span_note!(&mut err, span,
                               "associated type `{}` could derive from `{}`",
                               ty_param_name,
                               span_and_bound.1);
                }
1247 1248
            }
            err.emit();
1249 1250
        }

1251 1252
        Ok(bounds[0].clone())
    }
1253

1254 1255 1256 1257 1258 1259
    // Create a type from a path to an associated type.
    // For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
    // and item_segment is the path segment for D. We return a type and a def for
    // the whole path.
    // Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
    // parameter or Self.
1260
    pub fn associated_path_def_to_ty(&self,
1261
                                     ref_id: ast::NodeId,
1262 1263 1264 1265 1266
                                     span: Span,
                                     ty: Ty<'tcx>,
                                     ty_path_def: Def,
                                     item_segment: &hir::PathSegment)
                                     -> (Ty<'tcx>, Def)
1267 1268
    {
        let tcx = self.tcx();
V
Vadim Petrochenkov 已提交
1269
        let assoc_name = item_segment.name;
1270 1271 1272 1273 1274 1275 1276 1277

        debug!("associated_path_def_to_ty: {:?}::{}", ty, assoc_name);

        tcx.prohibit_type_params(slice::ref_slice(item_segment));

        // Find the type of the associated item, and the trait where the associated
        // item is declared.
        let bound = match (&ty.sty, ty_path_def) {
1278
            (_, Def::SelfTy(Some(_), Some(impl_def_id))) => {
1279 1280
                // `Self` in an impl of a trait - we have a concrete self type and a
                // trait reference.
1281
                let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
1282 1283 1284 1285 1286 1287
                let trait_ref = if let Some(free_substs) = self.get_free_substs() {
                    trait_ref.subst(tcx, free_substs)
                } else {
                    trait_ref
                };

1288
                if self.ensure_super_predicates(span, trait_ref.def_id).is_err() {
1289
                    return (tcx.types.err, Def::Err);
1290
                }
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
                let candidates: Vec<ty::PolyTraitRef> =
                    traits::supertraits(tcx, ty::Binder(trait_ref))
                    .filter(|r| self.trait_defines_associated_type_named(r.def_id(),
                                                                         assoc_name))
                    .collect();

                match self.one_bound_for_assoc_type(candidates,
                                                    "Self",
                                                    &assoc_name.as_str(),
                                                    span) {
                    Ok(bound) => bound,
1303
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1304
                }
1305
            }
1306 1307 1308 1309 1310 1311 1312
            (&ty::TyParam(_), Def::SelfTy(Some(trait_did), None)) => {
                let trait_node_id = tcx.map.as_local_node_id(trait_did).unwrap();
                match self.find_bound_for_assoc_item(trait_node_id,
                                                     keywords::SelfType.name(),
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1313
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1314
                }
1315
            }
1316
            (&ty::TyParam(_), Def::TyParam(param_did)) => {
1317
                let param_node_id = tcx.map.as_local_node_id(param_did).unwrap();
1318
                let param_name = tcx.type_parameter_def(param_node_id).name;
1319 1320 1321 1322 1323
                match self.find_bound_for_assoc_item(param_node_id,
                                                     param_name,
                                                     assoc_name,
                                                     span) {
                    Ok(bound) => bound,
1324
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
1325
                }
1326
            }
1327
            _ => {
1328 1329 1330 1331 1332 1333 1334
                // Don't print TyErr to the user.
                if !ty.references_error() {
                    self.report_ambiguous_associated_type(span,
                                                          &ty.to_string(),
                                                          "Trait",
                                                          &assoc_name.as_str());
                }
1335
                return (tcx.types.err, Def::Err);
1336
            }
1337
        };
1338

1339 1340 1341
        let trait_did = bound.0.def_id;
        let ty = self.projected_ty_from_poly_trait_ref(span, bound, assoc_name);

1342
        let item = tcx.associated_items(trait_did).find(|i| i.name == assoc_name);
1343 1344 1345
        let def_id = item.expect("missing associated type").def_id;
        tcx.check_stability(def_id, ref_id, span);
        (ty, Def::AssociatedTy(def_id))
1346
    }
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
    fn qpath_to_ty(&self,
                   rscope: &RegionScope,
                   span: Span,
                   opt_self_ty: Option<Ty<'tcx>>,
                   trait_def_id: DefId,
                   trait_segment: &hir::PathSegment,
                   item_segment: &hir::PathSegment)
                   -> Ty<'tcx>
    {
        let tcx = self.tcx();
1358

1359
        tcx.prohibit_type_params(slice::ref_slice(item_segment));
1360

1361 1362 1363 1364 1365 1366 1367
        let self_ty = if let Some(ty) = opt_self_ty {
            ty
        } else {
            let path_str = tcx.item_path_str(trait_def_id);
            self.report_ambiguous_associated_type(span,
                                                  "Type",
                                                  &path_str,
V
Vadim Petrochenkov 已提交
1368
                                                  &item_segment.name.as_str());
1369 1370
            return tcx.types.err;
        };
1371

1372
        debug!("qpath_to_ty: self_type={:?}", self_ty);
1373

1374 1375 1376
        let trait_ref = self.ast_path_to_mono_trait_ref(rscope,
                                                        span,
                                                        trait_def_id,
1377
                                                        self_ty,
1378
                                                        trait_segment);
1379

1380
        debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1381

V
Vadim Petrochenkov 已提交
1382
        self.projected_ty(span, trait_ref, item_segment.name)
1383
    }
1384

1385 1386 1387 1388 1389 1390 1391
    /// Convert a type supplied as value for a type argument from AST into our
    /// our internal representation. This is the same as `ast_ty_to_ty` but that
    /// it applies the object lifetime default.
    ///
    /// # Parameters
    ///
    /// * `this`, `rscope`: the surrounding context
1392
    /// * `def`: the type parameter being instantiated (if available)
1393 1394 1395
    /// * `region_substs`: a partial substitution consisting of
    ///   only the region type parameters being supplied to this type.
    /// * `ast_ty`: the ast representation of the type being supplied
1396 1397 1398
    fn ast_ty_arg_to_ty(&self,
                        rscope: &RegionScope,
                        def: Option<&ty::TypeParameterDef<'tcx>>,
1399
                        region_substs: &[Kind<'tcx>],
1400 1401
                        ast_ty: &hir::Ty)
                        -> Ty<'tcx>
1402 1403
    {
        let tcx = self.tcx();
1404

1405
        if let Some(def) = def {
1406 1407 1408 1409 1410 1411
            let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
            let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
            self.ast_ty_to_ty(rscope1, ast_ty)
        } else {
            self.ast_ty_to_ty(rscope, ast_ty)
        }
1412 1413
    }

1414
    // Check a type Path and convert it to a Ty.
1415 1416 1417
    pub fn def_to_ty(&self,
                     rscope: &RegionScope,
                     opt_self_ty: Option<Ty<'tcx>>,
1418
                     path: &hir::Path,
1419 1420 1421
                     path_id: ast::NodeId,
                     permit_variants: bool)
                     -> Ty<'tcx> {
1422 1423
        let tcx = self.tcx();

1424
        debug!("base_def_to_ty(def={:?}, opt_self_ty={:?}, path_segments={:?})",
1425
               path.def, opt_self_ty, path.segments);
1426

1427 1428
        let span = path.span;
        match path.def {
1429 1430 1431 1432
            Def::Trait(trait_def_id) => {
                // N.B. this case overlaps somewhat with
                // TyObjectSum, see that fn for details

1433
                assert_eq!(opt_self_ty, None);
1434
                tcx.prohibit_type_params(path.segments.split_last().unwrap().1);
1435 1436 1437 1438

                self.trait_path_to_object_type(rscope,
                                               span,
                                               trait_def_id,
1439
                                               path_id,
1440
                                               path.segments.last().unwrap(),
1441 1442
                                               span,
                                               partition_bounds(tcx, span, &[]))
1443
            }
1444
            Def::Enum(did) | Def::TyAlias(did) | Def::Struct(did) | Def::Union(did) => {
1445
                assert_eq!(opt_self_ty, None);
1446 1447
                tcx.prohibit_type_params(path.segments.split_last().unwrap().1);
                self.ast_path_to_ty(rscope, span, did, path.segments.last().unwrap())
1448
            }
V
Vadim Petrochenkov 已提交
1449 1450 1451
            Def::Variant(did) if permit_variants => {
                // Convert "variant type" as if it were a real type.
                // The resulting `Ty` is type of the variant's enum for now.
1452
                assert_eq!(opt_self_ty, None);
1453
                tcx.prohibit_type_params(path.segments.split_last().unwrap().1);
V
Vadim Petrochenkov 已提交
1454 1455 1456
                self.ast_path_to_ty(rscope,
                                    span,
                                    tcx.parent_def_id(did).unwrap(),
1457
                                    path.segments.last().unwrap())
V
Vadim Petrochenkov 已提交
1458
            }
1459
            Def::TyParam(did) => {
1460
                assert_eq!(opt_self_ty, None);
1461
                tcx.prohibit_type_params(&path.segments);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

                let node_id = tcx.map.as_local_node_id(did).unwrap();
                let param = tcx.ty_param_defs.borrow().get(&node_id)
                               .map(ty::ParamTy::for_def);
                if let Some(p) = param {
                    p.to_ty(tcx)
                } else {
                    // Only while computing defaults of earlier type
                    // parameters can a type parameter be missing its def.
                    struct_span_err!(tcx.sess, span, E0128,
                                     "type parameters with a default cannot use \
                                      forward declared identifiers")
                        .span_label(span, &format!("defaulted type parameters \
                                                    cannot be forward declared"))
                        .emit();
                    tcx.types.err
                }
1479
            }
1480
            Def::SelfTy(_, Some(def_id)) => {
1481
                // Self in impl (we know the concrete type).
1482

1483
                assert_eq!(opt_self_ty, None);
1484
                tcx.prohibit_type_params(&path.segments);
1485
                let ty = tcx.item_type(def_id);
1486 1487 1488 1489 1490 1491 1492 1493
                if let Some(free_substs) = self.get_free_substs() {
                    ty.subst(tcx, free_substs)
                } else {
                    ty
                }
            }
            Def::SelfTy(Some(_), None) => {
                // Self in trait.
1494
                assert_eq!(opt_self_ty, None);
1495
                tcx.prohibit_type_params(&path.segments);
1496 1497
                tcx.mk_self_type()
            }
1498
            Def::AssociatedTy(def_id) => {
1499
                tcx.prohibit_type_params(&path.segments[..path.segments.len()-2]);
1500
                let trait_did = tcx.parent_def_id(def_id).unwrap();
1501 1502 1503 1504
                self.qpath_to_ty(rscope,
                                 span,
                                 opt_self_ty,
                                 trait_did,
1505 1506
                                 &path.segments[path.segments.len()-2],
                                 path.segments.last().unwrap())
1507 1508
            }
            Def::PrimTy(prim_ty) => {
1509
                assert_eq!(opt_self_ty, None);
1510
                tcx.prim_ty_to_ty(&path.segments, prim_ty)
1511 1512 1513 1514 1515 1516
            }
            Def::Err => {
                self.set_tainted_by_errors();
                return self.tcx().types.err;
            }
            _ => {
S
ShyamSundarB 已提交
1517 1518
                struct_span_err!(tcx.sess, span, E0248,
                           "found value `{}` used as a type",
1519
                            tcx.item_path_str(path.def.def_id()))
S
ShyamSundarB 已提交
1520 1521
                           .span_label(span, &format!("value used as a type"))
                           .emit();
1522
                return self.tcx().types.err;
1523
            }
1524
        }
1525
    }
1526

1527 1528 1529 1530 1531
    /// Parses the programmer's textual representation of a type into our
    /// internal notion of a type.
    pub fn ast_ty_to_ty(&self, rscope: &RegionScope, ast_ty: &hir::Ty) -> Ty<'tcx> {
        debug!("ast_ty_to_ty(id={:?}, ast_ty={:?})",
               ast_ty.id, ast_ty);
1532

1533
        let tcx = self.tcx();
1534

1535
        let cache = self.ast_ty_to_ty_cache();
1536 1537
        if let Some(ty) = cache.borrow().get(&ast_ty.id) {
            return ty;
1538 1539 1540
        }

        let result_ty = match ast_ty.node {
1541
            hir::TySlice(ref ty) => {
1542
                tcx.mk_slice(self.ast_ty_to_ty(rscope, &ty))
1543
            }
1544
            hir::TyObjectSum(ref ty, ref bounds) => {
1545
                self.ast_ty_to_object_trait_ref(rscope, ast_ty.span, ty, bounds)
1546
            }
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
            hir::TyPtr(ref mt) => {
                tcx.mk_ptr(ty::TypeAndMut {
                    ty: self.ast_ty_to_ty(rscope, &mt.ty),
                    mutbl: mt.mutbl
                })
            }
            hir::TyRptr(ref region, ref mt) => {
                let r = self.opt_ast_region_to_region(rscope, ast_ty.span, region);
                debug!("TyRef r={:?}", r);
                let rscope1 =
                    &ObjectLifetimeDefaultRscope::new(
                        rscope,
                        ty::ObjectLifetimeDefault::Specific(r));
                let t = self.ast_ty_to_ty(rscope1, &mt.ty);
1561
                tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
1562
            }
A
Andrew Cann 已提交
1563 1564
            hir::TyNever => {
                tcx.types.never
1565
            },
1566
            hir::TyTup(ref fields) => {
1567
                tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(rscope, &t)))
1568 1569 1570
            }
            hir::TyBareFn(ref bf) => {
                require_c_abi_if_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
1571
                let anon_scope = rscope.anon_type_scope();
1572 1573 1574 1575 1576 1577
                let bare_fn_ty = self.ty_of_method_or_bare_fn(bf.unsafety,
                                                              bf.abi,
                                                              None,
                                                              &bf.decl,
                                                              anon_scope,
                                                              anon_scope);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

                // Find any late-bound regions declared in return type that do
                // not appear in the arguments. These are not wellformed.
                //
                // Example:
                //
                //     for<'a> fn() -> &'a str <-- 'a is bad
                //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
                //
                // Note that we do this check **here** and not in
                // `ty_of_bare_fn` because the latter is also used to make
                // the types for fn items, and we do not want to issue a
                // warning then. (Once we fix #32330, the regions we are
                // checking for here would be considered early bound
                // anyway.)
                let inputs = bare_fn_ty.sig.inputs();
                let late_bound_in_args = tcx.collect_constrained_late_bound_regions(&inputs);
                let output = bare_fn_ty.sig.output();
                let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
                for br in late_bound_in_ret.difference(&late_bound_in_args) {
                    let br_name = match *br {
1599
                        ty::BrNamed(_, name, _) => name,
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
                        _ => {
                            span_bug!(
                                bf.decl.output.span(),
                                "anonymous bound region {:?} in return but not args",
                                br);
                        }
                    };
                    tcx.sess.add_lint(
                        lint::builtin::HR_LIFETIME_IN_ASSOC_TYPE,
                        ast_ty.id,
                        ast_ty.span,
                        format!("return type references lifetime `{}`, \
                                 which does not appear in the trait input types",
                                br_name));
                }
                tcx.mk_fn_ptr(bare_fn_ty)
1616 1617
            }
            hir::TyPolyTraitRef(ref bounds) => {
1618
                self.conv_object_ty_poly_trait_ref(rscope, ast_ty.span, bounds)
1619
            }
1620 1621 1622 1623 1624
            hir::TyImplTrait(ref bounds) => {
                use collect::{compute_bounds, SizedByDefault};

                // Create the anonymized type.
                let def_id = tcx.map.local_def_id(ast_ty.id);
1625
                if let Some(anon_scope) = rscope.anon_type_scope() {
1626
                    let substs = anon_scope.fresh_substs(self, ast_ty.span);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
                    let ty = tcx.mk_anon(tcx.map.local_def_id(ast_ty.id), substs);

                    // Collect the bounds, i.e. the `A+B+'c` in `impl A+B+'c`.
                    let bounds = compute_bounds(self, ty, bounds,
                                                SizedByDefault::Yes,
                                                Some(anon_scope),
                                                ast_ty.span);
                    let predicates = bounds.predicates(tcx, ty);
                    let predicates = tcx.lift_to_global(&predicates).unwrap();
                    tcx.predicates.borrow_mut().insert(def_id, ty::GenericPredicates {
1637
                        parent: None,
1638
                        predicates: predicates
1639 1640 1641
                    });

                    ty
1642 1643 1644 1645
                } else {
                    span_err!(tcx.sess, ast_ty.span, E0562,
                              "`impl Trait` not allowed outside of function \
                               and inherent method return types");
1646 1647
                    tcx.types.err
                }
1648
            }
1649
            hir::TyPath(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
1650
                debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
1651
                let opt_self_ty = maybe_qself.as_ref().map(|qself| {
1652
                    self.ast_ty_to_ty(rscope, qself)
1653
                });
1654
                self.def_to_ty(rscope, opt_self_ty, path, ast_ty.id, false)
1655 1656 1657 1658 1659
            }
            hir::TyPath(hir::QPath::TypeRelative(ref qself, ref segment)) => {
                debug!("ast_ty_to_ty: qself={:?} segment={:?}", qself, segment);
                let ty = self.ast_ty_to_ty(rscope, qself);

1660 1661 1662 1663 1664
                let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
                    path.def
                } else {
                    Def::Err
                };
1665
                self.associated_path_def_to_ty(ast_ty.id, ast_ty.span, ty, def, segment).0
1666
            }
1667
            hir::TyArray(ref ty, ref e) => {
1668 1669 1670 1671
                if let Ok(length) = eval_length(tcx.global_tcx(), &e, "array length") {
                    tcx.mk_array(self.ast_ty_to_ty(rscope, &ty), length)
                } else {
                    self.tcx().types.err
1672 1673
                }
            }
1674
            hir::TyTypeof(ref _e) => {
G
Gavin Baker 已提交
1675 1676 1677 1678 1679
                struct_span_err!(tcx.sess, ast_ty.span, E0516,
                                 "`typeof` is a reserved keyword but unimplemented")
                    .span_label(ast_ty.span, &format!("reserved keyword"))
                    .emit();

1680 1681 1682 1683 1684 1685 1686
                tcx.types.err
            }
            hir::TyInfer => {
                // TyInfer also appears as the type of arguments or return
                // values in a ExprClosure, or as
                // the type of local variables. Both of these cases are
                // handled specially and will not descend into this routine.
1687
                self.ty_infer(ast_ty.span)
1688
            }
1689 1690 1691 1692 1693
        };

        cache.borrow_mut().insert(ast_ty.id, result_ty);

        result_ty
1694
    }
1695

1696 1697 1698 1699 1700 1701 1702 1703
    pub fn ty_of_arg(&self,
                     rscope: &RegionScope,
                     a: &hir::Arg,
                     expected_ty: Option<Ty<'tcx>>)
                     -> Ty<'tcx>
    {
        match a.ty.node {
            hir::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
1704
            hir::TyInfer => self.ty_infer(a.ty.span),
1705 1706
            _ => self.ast_ty_to_ty(rscope, &a.ty),
        }
1707
    }
1708

1709 1710
    pub fn ty_of_method(&self,
                        sig: &hir::MethodSig,
1711 1712
                        untransformed_self_ty: Ty<'tcx>,
                        anon_scope: Option<AnonTypeScope>)
1713
                        -> &'tcx ty::BareFnTy<'tcx> {
1714 1715 1716 1717 1718 1719
        self.ty_of_method_or_bare_fn(sig.unsafety,
                                     sig.abi,
                                     Some(untransformed_self_ty),
                                     &sig.decl,
                                     None,
                                     anon_scope)
1720
    }
1721

1722
    pub fn ty_of_bare_fn(&self,
1723 1724
                         unsafety: hir::Unsafety,
                         abi: abi::Abi,
1725 1726
                         decl: &hir::FnDecl,
                         anon_scope: Option<AnonTypeScope>)
1727
                         -> &'tcx ty::BareFnTy<'tcx> {
1728
        self.ty_of_method_or_bare_fn(unsafety, abi, None, decl, None, anon_scope)
1729
    }
1730

1731 1732 1733 1734 1735 1736 1737
    fn ty_of_method_or_bare_fn(&self,
                               unsafety: hir::Unsafety,
                               abi: abi::Abi,
                               opt_untransformed_self_ty: Option<Ty<'tcx>>,
                               decl: &hir::FnDecl,
                               arg_anon_scope: Option<AnonTypeScope>,
                               ret_anon_scope: Option<AnonTypeScope>)
1738
                               -> &'tcx ty::BareFnTy<'tcx>
1739 1740 1741 1742 1743
    {
        debug!("ty_of_method_or_bare_fn");

        // New region names that appear inside of the arguments of the function
        // declaration are bound to that function type.
1744
        let rb = MaybeWithAnonTypes::new(BindingRscope::new(), arg_anon_scope);
1745 1746 1747 1748 1749 1750

        // `implied_output_region` is the region that will be assumed for any
        // region parameters in the return type. In accordance with the rules for
        // lifetime elision, we can determine it in two ways. First (determined
        // here), if self is by-reference, then the implied output region is the
        // region of the self parameter.
1751
        let (self_ty, explicit_self) = match (opt_untransformed_self_ty, decl.get_self()) {
1752 1753 1754
            (Some(untransformed_self_ty), Some(explicit_self)) => {
                let self_type = self.determine_self_type(&rb, untransformed_self_ty,
                                                         &explicit_self);
1755
                (Some(self_type), Some(ExplicitSelf::determine(untransformed_self_ty, self_type)))
1756
            }
1757
            _ => (None, None),
1758
        };
1759

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
        // HACK(eddyb) replace the fake self type in the AST with the actual type.
        let arg_params = if self_ty.is_some() {
            &decl.inputs[1..]
        } else {
            &decl.inputs[..]
        };
        let arg_tys: Vec<Ty> =
            arg_params.iter().map(|a| self.ty_of_arg(&rb, a, None)).collect();

        // Second, if there was exactly one lifetime (either a substitution or a
        // reference) in the arguments, then any anonymous regions in the output
        // have that lifetime.
1772 1773
        let implied_output_region = match explicit_self {
            Some(ExplicitSelf::ByReference(region, _)) => Ok(*region),
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
            _ => {
                // `pat_to_string` is expensive and
                // `find_implied_output_region` only needs its result when
                // there's an error. So we wrap it in a closure to avoid
                // calling it until necessary.
                let arg_pats = || {
                    arg_params.iter().map(|a| pprust::pat_to_string(&a.pat)).collect()
                };
                self.find_implied_output_region(&arg_tys, arg_pats)
            }
1784
        };
1785

1786 1787
        let output_ty = match decl.output {
            hir::Return(ref output) =>
1788 1789 1790 1791
                self.convert_ty_with_lifetime_elision(implied_output_region,
                                                      &output,
                                                      ret_anon_scope),
            hir::DefaultReturn(..) => self.tcx().mk_nil(),
1792
        };
1793

1794 1795 1796 1797 1798
        let input_tys = self_ty.into_iter().chain(arg_tys).collect();

        debug!("ty_of_method_or_bare_fn: input_tys={:?}", input_tys);
        debug!("ty_of_method_or_bare_fn: output_ty={:?}", output_ty);

1799
        self.tcx().mk_bare_fn(ty::BareFnTy {
1800 1801 1802
            unsafety: unsafety,
            abi: abi,
            sig: ty::Binder(ty::FnSig {
1803
                inputs: input_tys,
1804 1805 1806
                output: output_ty,
                variadic: decl.variadic
            }),
1807
        })
1808
    }
1809

1810 1811
    fn determine_self_type<'a>(&self,
                               rscope: &RegionScope,
1812 1813
                               untransformed_self_ty: Ty<'tcx>,
                               explicit_self: &hir::ExplicitSelf)
1814
                               -> Ty<'tcx>
1815
    {
1816 1817
        match explicit_self.node {
            SelfKind::Value(..) => untransformed_self_ty,
1818
            SelfKind::Region(ref lifetime, mutability) => {
1819
                let region =
1820 1821 1822 1823
                    self.opt_ast_region_to_region(
                                             rscope,
                                             explicit_self.span,
                                             lifetime);
1824
                self.tcx().mk_ref(region,
1825
                    ty::TypeAndMut {
1826
                        ty: untransformed_self_ty,
1827
                        mutbl: mutability
1828
                    })
1829
            }
1830
            SelfKind::Explicit(ref ast_type, _) => self.ast_ty_to_ty(rscope, &ast_type)
1831 1832
        }
    }
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
    pub fn ty_of_closure(&self,
        unsafety: hir::Unsafety,
        decl: &hir::FnDecl,
        abi: abi::Abi,
        expected_sig: Option<ty::FnSig<'tcx>>)
        -> ty::ClosureTy<'tcx>
    {
        debug!("ty_of_closure(expected_sig={:?})",
               expected_sig);

        // new region names that appear inside of the fn decl are bound to
        // that function type
        let rb = rscope::BindingRscope::new();

        let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
            let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
                // no guarantee that the correct number of expected args
                // were supplied
                if i < e.inputs.len() {
                    Some(e.inputs[i])
                } else {
                    None
                }
            });
            self.ty_of_arg(&rb, a, expected_arg_ty)
        }).collect();
1860

1861
        let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
1862

1863 1864 1865 1866 1867
        let is_infer = match decl.output {
            hir::Return(ref output) if output.node == hir::TyInfer => true,
            hir::DefaultReturn(..) => true,
            _ => false
        };
1868

1869 1870 1871
        let output_ty = match decl.output {
            _ if is_infer && expected_ret_ty.is_some() =>
                expected_ret_ty.unwrap(),
1872
            _ if is_infer => self.ty_infer(decl.output.span()),
1873
            hir::Return(ref output) =>
1874
                self.ast_ty_to_ty(&rb, &output),
1875 1876
            hir::DefaultReturn(..) => bug!(),
        };
1877

1878 1879
        debug!("ty_of_closure: input_tys={:?}", input_tys);
        debug!("ty_of_closure: output_ty={:?}", output_ty);
1880

1881 1882 1883 1884 1885 1886 1887
        ty::ClosureTy {
            unsafety: unsafety,
            abi: abi,
            sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                       output: output_ty,
                                       variadic: decl.variadic}),
        }
1888
    }
1889

1890
    fn conv_object_ty_poly_trait_ref(&self,
1891 1892 1893 1894 1895 1896 1897
        rscope: &RegionScope,
        span: Span,
        ast_bounds: &[hir::TyParamBound])
        -> Ty<'tcx>
    {
        let mut partitioned_bounds = partition_bounds(self.tcx(), span, &ast_bounds[..]);

1898 1899
        let trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
            partitioned_bounds.trait_bounds.remove(0)
1900 1901 1902 1903 1904
        } else {
            span_err!(self.tcx().sess, span, E0224,
                      "at least one non-builtin trait is required for an object type");
            return self.tcx().types.err;
        };
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914
        let trait_ref = &trait_bound.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);
        self.trait_path_to_object_type(rscope,
                                       trait_ref.path.span,
                                       trait_def_id,
                                       trait_ref.ref_id,
                                       trait_ref.path.segments.last().unwrap(),
                                       span,
                                       partitioned_bounds)
1915
    }
1916

1917 1918 1919 1920 1921 1922 1923 1924
    /// Given the bounds on an object, determines what single region bound (if any) we can
    /// use to summarize this type. The basic idea is that we will use the bound the user
    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
    /// for region bounds. It may be that we can derive no bound at all, in which case
    /// we return `None`.
    fn compute_object_lifetime_bound(&self,
        span: Span,
        explicit_region_bounds: &[&hir::Lifetime],
1925
        principal_trait_ref: ty::PolyExistentialTraitRef<'tcx>,
1926
        builtin_bounds: ty::BuiltinBounds)
1927
        -> Option<&'tcx ty::Region> // if None, use the default
1928 1929
    {
        let tcx = self.tcx();
1930

1931 1932 1933 1934 1935
        debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
               principal_trait_ref={:?}, builtin_bounds={:?})",
               explicit_region_bounds,
               principal_trait_ref,
               builtin_bounds);
1936

1937 1938 1939 1940
        if explicit_region_bounds.len() > 1 {
            span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
                "only a single explicit lifetime bound is permitted");
        }
1941

1942 1943 1944 1945 1946
        if !explicit_region_bounds.is_empty() {
            // Explicitly specified region bound. Use that.
            let r = explicit_region_bounds[0];
            return Some(ast_region_to_region(tcx, r));
        }
1947

1948 1949
        if let Err(ErrorReported) =
                self.ensure_super_predicates(span, principal_trait_ref.def_id()) {
1950
            return Some(tcx.mk_region(ty::ReStatic));
1951
        }
1952

1953 1954 1955
        // No explicit region bound specified. Therefore, examine trait
        // bounds and see if we can derive region bounds from those.
        let derived_region_bounds =
1956
            object_region_bounds(tcx, principal_trait_ref, builtin_bounds);
1957

1958 1959 1960 1961 1962
        // If there are no derived region bounds, then report back that we
        // can find no region bound. The caller will use the default.
        if derived_region_bounds.is_empty() {
            return None;
        }
1963

1964 1965
        // If any of the derived region bounds are 'static, that is always
        // the best choice.
1966 1967
        if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
            return Some(tcx.mk_region(ty::ReStatic));
1968
        }
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978
        // Determine whether there is exactly one unique region in the set
        // of derived region bounds. If so, use that. Otherwise, report an
        // error.
        let r = derived_region_bounds[0];
        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
            span_err!(tcx.sess, span, E0227,
                      "ambiguous lifetime bound, explicit lifetime bound required");
        }
        return Some(r);
1979
    }
1980
}
1981 1982 1983

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
1984 1985
    pub trait_bounds: Vec<&'a hir::PolyTraitRef>,
    pub region_bounds: Vec<&'a hir::Lifetime>,
1986 1987
}

S
Steve Klabnik 已提交
1988 1989
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
1990 1991 1992 1993
pub fn partition_bounds<'a, 'b, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                            _span: Span,
                                            ast_bounds: &'b [hir::TyParamBound])
                                            -> PartitionedBounds<'b>
1994
{
1995
    let mut builtin_bounds = ty::BuiltinBounds::empty();
1996 1997
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
1998
    for ast_bound in ast_bounds {
1999
        match *ast_bound {
2000
            hir::TraitTyParamBound(ref b, hir::TraitBoundModifier::None) => {
2001
                match b.trait_ref.path.def {
2002
                    Def::Trait(trait_did) => {
2003
                        if tcx.try_add_builtin_trait(trait_did,
2004
                                                     &mut builtin_bounds) {
2005 2006
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
2007
                            if !parameters.types().is_empty() {
2008
                                check_type_argument_count(tcx, b.trait_ref.path.span,
2009
                                                          parameters.types().len(), &[]);
2010
                            }
2011
                            if !parameters.lifetimes().is_empty() {
2012 2013
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
2014
                            }
2015
                            continue; // success
2016 2017
                        }
                    }
2018 2019 2020 2021
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
2022
                }
2023 2024
                trait_bounds.push(b);
            }
2025 2026
            hir::TraitTyParamBound(_, hir::TraitBoundModifier::Maybe) => {}
            hir::RegionTyParamBound(ref l) => {
2027 2028
                region_bounds.push(l);
            }
2029
        }
2030 2031 2032 2033 2034 2035
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
2036 2037
    }
}
2038

2039
fn check_type_argument_count(tcx: TyCtxt, span: Span, supplied: usize,
2040 2041 2042
                             ty_param_defs: &[ty::TypeParameterDef]) {
    let accepted = ty_param_defs.len();
    let required = ty_param_defs.iter().take_while(|x| x.default.is_none()) .count();
2043 2044 2045 2046 2047 2048
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
2049
        let arguments_plural = if required == 1 { "" } else { "s" };
2050 2051 2052 2053 2054 2055 2056 2057 2058

        struct_span_err!(tcx.sess, span, E0243,
                "wrong number of type arguments: {} {}, found {}",
                expected, required, supplied)
            .span_label(span,
                &format!("{} {} type argument{}",
                    expected,
                    required,
                    arguments_plural))
2059
            .emit();
2060
    } else if supplied > accepted {
2061
        let expected = if required < accepted {
2062
            format!("expected at most {}", accepted)
2063
        } else {
2064
            format!("expected {}", accepted)
2065
        };
2066
        let arguments_plural = if accepted == 1 { "" } else { "s" };
2067

2068 2069 2070
        struct_span_err!(tcx.sess, span, E0244,
                "wrong number of type arguments: {}, found {}",
                expected, supplied)
2071 2072
            .span_label(
                span,
2073 2074 2075
                &format!("{} type argument{}",
                    if accepted == 0 { "expected no" } else { &expected },
                    arguments_plural)
2076 2077
            )
            .emit();
2078 2079 2080
    }
}

2081
fn report_lifetime_number_error(tcx: TyCtxt, span: Span, number: usize, expected: usize) {
O
Omer Sheikh 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    let label = if number < expected {
        if expected == 1 {
            format!("expected {} lifetime parameter", expected)
        } else {
            format!("expected {} lifetime parameters", expected)
        }
    } else {
        let additional = number - expected;
        if additional == 1 {
            "unexpected lifetime parameter".to_string()
        } else {
            format!("{} unexpected lifetime parameters", additional)
        }
    };
    struct_span_err!(tcx.sess, span, E0107,
                     "wrong number of lifetime parameters: expected {}, found {}",
                     expected, number)
        .span_label(span, &label)
        .emit();
2101
}
2102 2103 2104 2105 2106

// A helper struct for conveniently grouping a set of bounds which we pass to
// and return from functions in multiple places.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct Bounds<'tcx> {
2107
    pub region_bounds: Vec<&'tcx ty::Region>,
2108 2109 2110 2111 2112
    pub builtin_bounds: ty::BuiltinBounds,
    pub trait_bounds: Vec<ty::PolyTraitRef<'tcx>>,
    pub projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
}

2113 2114
impl<'a, 'gcx, 'tcx> Bounds<'tcx> {
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, param_ty: Ty<'tcx>)
2115
                      -> Vec<ty::Predicate<'tcx>>
2116 2117 2118 2119
    {
        let mut vec = Vec::new();

        for builtin_bound in &self.builtin_bounds {
2120
            match tcx.trait_ref_for_builtin_bound(builtin_bound, param_ty) {
2121
                Ok(trait_ref) => { vec.push(trait_ref.to_predicate()); }
2122 2123 2124 2125 2126 2127 2128
                Err(ErrorReported) => { }
            }
        }

        for &region_bound in &self.region_bounds {
            // account for the binder being introduced below; no need to shift `param_ty`
            // because, at present at least, it can only refer to early-bound regions
2129
            let region_bound = tcx.mk_region(ty::fold::shift_region(*region_bound, 1));
2130
            vec.push(ty::Binder(ty::OutlivesPredicate(param_ty, region_bound)).to_predicate());
2131 2132 2133
        }

        for bound_trait_ref in &self.trait_bounds {
2134
            vec.push(bound_trait_ref.to_predicate());
2135 2136 2137
        }

        for projection in &self.projection_bounds {
2138
            vec.push(projection.to_predicate());
2139 2140 2141 2142 2143
        }

        vec
    }
}
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

pub enum ExplicitSelf<'tcx> {
    ByValue,
    ByReference(&'tcx ty::Region, hir::Mutability),
    ByBox
}

impl<'tcx> ExplicitSelf<'tcx> {
    /// We wish to (for now) categorize an explicit self
    /// declaration like `self: SomeType` into either `self`,
    /// `&self`, `&mut self`, or `Box<self>`. We do this here
    /// by some simple pattern matching. A more precise check
    /// is done later in `check_method_self_type()`.
    ///
    /// Examples:
    ///
    /// ```
    /// impl Foo for &T {
    ///     // Legal declarations:
    ///     fn method1(self: &&T); // ExplicitSelf::ByReference
    ///     fn method2(self: &T); // ExplicitSelf::ByValue
    ///     fn method3(self: Box<&T>); // ExplicitSelf::ByBox
    ///
    ///     // Invalid cases will be caught later by `check_method_self_type`:
    ///     fn method_err1(self: &mut T); // ExplicitSelf::ByReference
    /// }
    /// ```
    ///
    /// To do the check we just count the number of "modifiers"
    /// on each type and compare them. If they are the same or
    /// the impl has more, we call it "by value". Otherwise, we
    /// look at the outermost modifier on the method decl and
    /// call it by-ref, by-box as appropriate. For method1, for
    /// example, the impl type has one modifier, but the method
    /// type has two, so we end up with
    /// ExplicitSelf::ByReference.
    pub fn determine(untransformed_self_ty: Ty<'tcx>,
                     self_arg_ty: Ty<'tcx>)
                     -> ExplicitSelf<'tcx> {
        fn count_modifiers(ty: Ty) -> usize {
            match ty.sty {
                ty::TyRef(_, mt) => count_modifiers(mt.ty) + 1,
                ty::TyBox(t) => count_modifiers(t) + 1,
                _ => 0,
            }
        }

        let impl_modifiers = count_modifiers(untransformed_self_ty);
        let method_modifiers = count_modifiers(self_arg_ty);

        if impl_modifiers >= method_modifiers {
            ExplicitSelf::ByValue
        } else {
            match self_arg_ty.sty {
                ty::TyRef(r, mt) => ExplicitSelf::ByReference(r, mt.mutbl),
                ty::TyBox(_) => ExplicitSelf::ByBox,
                _ => ExplicitSelf::ByValue,
            }
        }
    }
}