astconv.rs 80.3 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20 21 22 23 24
//! `AstConv` instance; in this phase, the `get_item_type_scheme()`
//! function triggers a recursive call to `type_scheme_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type_scheme()` just looks up the item type in
//! `tcx.tcache` (using `ty::lookup_item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use middle::astconv_util::{prim_ty_to_ty, check_path_args, NO_TPS, NO_REGIONS};
52
use middle::const_eval;
53
use middle::def;
54
use middle::resolve_lifetime as rl;
55
use middle::privacy::{AllPublic, LastMod};
56
use middle::subst::{FnSpace, TypeSpace, SelfSpace, Subst, Substs};
57 58
use middle::traits;
use middle::ty::{self, RegionEscape, ToPolyTraitRef, Ty};
59
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
60
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope};
61
use util::common::{ErrorReported, FN_OUTPUT_NAME};
62
use util::ppaux::{self, Repr, UserString};
63

A
Aaron Turon 已提交
64
use std::iter::{repeat, AdditiveIterator};
65 66
use std::rc::Rc;
use std::slice;
67
use syntax::{abi, ast, ast_util};
68
use syntax::codemap::Span;
69
use syntax::parse::token;
70
use syntax::print::pprust;
71

72 73
pub trait AstConv<'tcx> {
    fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx>;
74

75 76 77
    /// Identify the type scheme for an item with a type, like a type
    /// alias, fn, or struct. This allows you to figure out the set of
    /// type parameters defined on the item.
78 79
    fn get_item_type_scheme(&self, span: Span, id: ast::DefId)
                            -> Result<ty::TypeScheme<'tcx>, ErrorReported>;
80

81 82
    /// Returns the `TraitDef` for a given trait. This allows you to
    /// figure out the set of type parameters defined on the trait.
83 84
    fn get_trait_def(&self, span: Span, id: ast::DefId)
                     -> Result<Rc<ty::TraitDef<'tcx>>, ErrorReported>;
N
Nick Cameron 已提交
85

86 87 88 89 90 91 92 93
    /// Ensure that the super-predicates for the trait with the given
    /// id are available and also for the transitive set of
    /// super-predicates.
    fn ensure_super_predicates(&self, span: Span, id: ast::DefId)
                               -> Result<(), ErrorReported>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
94 95
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
96

97 98
    /// Returns true if the trait with id `trait_def_id` defines an
    /// associated type with the name `name`.
99 100 101
    fn trait_defines_associated_type_named(&self, trait_def_id: ast::DefId, name: ast::Name)
                                           -> bool;

N
Nick Cameron 已提交
102 103 104 105
    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
106 107 108
    fn get_free_substs(&self) -> Option<&Substs<'tcx>> {
        None
    }
109

110
    /// What type should we use when a type is omitted?
111
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
                                        -> Ty<'tcx>
    {
        if ty::binds_late_bound_regions(self.tcx(), &poly_trait_ref) {
B
Brian Anderson 已提交
127
            span_err!(self.tcx().sess, span, E0212,
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                "cannot extract an associated type from a higher-ranked trait bound \
                 in this context");
            self.tcx().types.err
        } else {
            // no late-bound regions, we can just ignore the binder
            self.projected_ty(span, poly_trait_ref.0.clone(), item_name)
        }
    }

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
                    _trait_ref: Rc<ty::TraitRef<'tcx>>,
                    _item_name: ast::Name)
                    -> Ty<'tcx>
    {
B
Brian Anderson 已提交
145
        span_err!(self.tcx().sess, span, E0213,
146 147 148 149
            "associated types are not accepted in this context");

        self.tcx().types.err
    }
150 151
}

E
Eduard Burtescu 已提交
152
pub fn ast_region_to_region(tcx: &ty::ctxt, lifetime: &ast::Lifetime)
153
                            -> ty::Region {
154
    let r = match tcx.named_region_map.get(&lifetime.id) {
155 156 157
        None => {
            // should have been recorded by the `resolve_lifetime` pass
            tcx.sess.span_bug(lifetime.span, "unresolved lifetime");
158
        }
159

160
        Some(&rl::DefStaticRegion) => {
161
            ty::ReStatic
162 163
        }

164 165
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
            ty::ReLateBound(debruijn, ty::BrNamed(ast_util::local_def(id), lifetime.name))
166 167
        }

168 169
        Some(&rl::DefEarlyBoundRegion(space, index, id)) => {
            ty::ReEarlyBound(id, space, index, lifetime.name)
170 171
        }

172
        Some(&rl::DefFreeRegion(scope, id)) => {
173
            ty::ReFree(ty::FreeRegion {
174
                    scope: scope,
175
                    bound_region: ty::BrNamed(ast_util::local_def(id),
176
                                              lifetime.name)
177 178 179 180 181
                })
        }
    };

    debug!("ast_region_to_region(lifetime={} id={}) yields {}",
182 183 184
           lifetime.repr(tcx),
           lifetime.id,
           r.repr(tcx));
185 186

    r
187 188
}

189 190 191
pub fn opt_ast_region_to_region<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
192
    default_span: Span,
J
James Miller 已提交
193
    opt_lifetime: &Option<ast::Lifetime>) -> ty::Region
194
{
195 196 197
    let r = match *opt_lifetime {
        Some(ref lifetime) => {
            ast_region_to_region(this.tcx(), lifetime)
198
        }
199 200 201

        None => {
            match rscope.anon_regions(default_span, 1) {
202
                Err(v) => {
203
                    debug!("optional region in illegal location");
J
Jakub Wieczorek 已提交
204 205
                    span_err!(this.tcx().sess, default_span, E0106,
                        "missing lifetime specifier");
206 207 208 209
                    match v {
                        Some(v) => {
                            let mut m = String::new();
                            let len = v.len();
210
                            for (i, (name, n)) in v.into_iter().enumerate() {
211 212 213
                                let help_name = if name.is_empty() {
                                    format!("argument {}", i + 1)
                                } else {
214
                                    format!("`{}`", name)
215 216
                                };

J
Jorge Aparicio 已提交
217
                                m.push_str(&(if n == 1 {
218
                                    help_name
219
                                } else {
220
                                    format!("one of {}'s {} elided lifetimes", help_name, n)
221
                                })[..]);
222 223 224

                                if len == 2 && i == 0 {
                                    m.push_str(" or ");
225
                                } else if i + 2 == len {
226
                                    m.push_str(", or ");
227
                                } else if i + 1 != len {
228 229 230 231
                                    m.push_str(", ");
                                }
                            }
                            if len == 1 {
232
                                fileline_help!(this.tcx().sess, default_span,
233 234 235 236
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say which {} it is borrowed from",
                                    m);
                            } else if len == 0 {
237
                                fileline_help!(this.tcx().sess, default_span,
238 239
                                    "this function's return type contains a borrowed value, but \
                                     there is no value for it to be borrowed from");
240
                                fileline_help!(this.tcx().sess, default_span,
241 242
                                    "consider giving it a 'static lifetime");
                            } else {
243
                                fileline_help!(this.tcx().sess, default_span,
244 245 246 247 248 249 250
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say whether it is borrowed from {}",
                                    m);
                            }
                        }
                        None => {},
                    }
251
                    ty::ReStatic
252 253
                }

254
                Ok(rs) => rs[0],
255
            }
256
        }
257 258
    };

B
Ben Gamari 已提交
259
    debug!("opt_ast_region_to_region(opt_lifetime={}) yields {}",
260
            opt_lifetime.repr(this.tcx()),
261 262 263
            r.repr(this.tcx()));

    r
264 265
}

S
Steve Klabnik 已提交
266 267
/// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
/// returns an appropriate set of substitutions for this particular reference to `I`.
268
pub fn ast_path_substs_for_ty<'tcx>(
269 270
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
271
    span: Span,
272
    param_mode: PathParamMode,
273
    decl_generics: &ty::Generics<'tcx>,
274
    item_segment: &ast::PathSegment)
275
    -> Substs<'tcx>
276
{
277
    let tcx = this.tcx();
278

279 280 281 282 283 284 285 286
    // ast_path_substs() is only called to convert paths that are
    // known to refer to traits, types, or structs. In these cases,
    // all type parameters defined for the item being referenced will
    // be in the TypeSpace or SelfSpace.
    //
    // Note: in the case of traits, the self parameter is also
    // defined, but we don't currently create a `type_param_def` for
    // `Self` because it is implicit.
287 288
    assert!(decl_generics.regions.all(|d| d.space == TypeSpace));
    assert!(decl_generics.types.all(|d| d.space != FnSpace));
289

290
    let (regions, types, assoc_bindings) = match item_segment.parameters {
291
        ast::AngleBracketedParameters(ref data) => {
292
            convert_angle_bracketed_parameters(this, rscope, span, decl_generics, data)
293 294
        }
        ast::ParenthesizedParameters(ref data) => {
295
            span_err!(tcx.sess, span, E0214,
296
                "parenthesized parameters may only be used with a trait");
297
            convert_parenthesized_parameters(this, rscope, span, decl_generics, data)
298
        }
299 300
    };

301
    prohibit_projections(this.tcx(), &assoc_bindings);
302

303
    create_substs_for_ast_path(this,
304
                               span,
305
                               param_mode,
306 307 308
                               decl_generics,
                               None,
                               types,
309
                               regions)
310 311
}

312 313 314 315 316 317 318 319
#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

320
fn create_region_substs<'tcx>(
321 322
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
323
    span: Span,
324
    decl_generics: &ty::Generics<'tcx>,
325
    regions_provided: Vec<ty::Region>)
326
    -> Substs<'tcx>
327 328 329
{
    let tcx = this.tcx();

330
    // If the type is parameterized by the this region, then replace this
331 332
    // region with the current anon region binding (in other words,
    // whatever & would get replaced with).
333
    let expected_num_region_params = decl_generics.regions.len(TypeSpace);
334
    let supplied_num_region_params = regions_provided.len();
335
    let regions = if expected_num_region_params == supplied_num_region_params {
336
        regions_provided
337 338
    } else {
        let anon_regions =
339
            rscope.anon_regions(span, expected_num_region_params);
340

341
        if supplied_num_region_params != 0 || anon_regions.is_err() {
342 343 344
            report_lifetime_number_error(tcx, span,
                                         supplied_num_region_params,
                                         expected_num_region_params);
345
        }
346 347

        match anon_regions {
348 349
            Ok(anon_regions) => anon_regions,
            Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
350
        }
351
    };
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    Substs::new_type(vec![], regions)
}

/// Given the type/region arguments provided to some path (along with
/// an implicit Self, if this is a trait reference) returns the complete
/// set of substitutions. This may involve applying defaulted type parameters.
///
/// Note that the type listing given here is *exactly* what the user provided.
///
/// The `region_substs` should be the result of `create_region_substs`
/// -- that is, a substitution with no types but the correct number of
/// regions.
fn create_substs_for_ast_path<'tcx>(
    this: &AstConv<'tcx>,
    span: Span,
367
    param_mode: PathParamMode,
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    decl_generics: &ty::Generics<'tcx>,
    self_ty: Option<Ty<'tcx>>,
    types_provided: Vec<Ty<'tcx>>,
    region_substs: Substs<'tcx>)
    -> Substs<'tcx>
{
    let tcx = this.tcx();

    debug!("create_substs_for_ast_path(decl_generics={}, self_ty={}, \
           types_provided={}, region_substs={}",
           decl_generics.repr(tcx), self_ty.repr(tcx), types_provided.repr(tcx),
           region_substs.repr(tcx));

    assert_eq!(region_substs.regions().len(TypeSpace), decl_generics.regions.len(TypeSpace));
    assert!(region_substs.types.is_empty());
383 384

    // Convert the type parameters supplied by the user.
385
    let ty_param_defs = decl_generics.types.get_slice(TypeSpace);
386 387 388 389 390
    let formal_ty_param_count = ty_param_defs.len();
    let required_ty_param_count = ty_param_defs.iter()
                                               .take_while(|x| x.default.is_none())
                                               .count();

391 392 393 394 395 396 397 398 399 400
    // Fill with `ty_infer` if no params were specified, as long as
    // they were optional (e.g. paths inside expressions).
    let mut type_substs = if param_mode == PathParamMode::Optional &&
                             types_provided.is_empty() {
        (0..formal_ty_param_count).map(|_| this.ty_infer(span)).collect()
    } else {
        types_provided
    };

    let supplied_ty_param_count = type_substs.len();
401 402 403
    check_type_argument_count(this.tcx(), span, supplied_ty_param_count,
                              required_ty_param_count, formal_ty_param_count);

404
    if supplied_ty_param_count < required_ty_param_count {
405 406 407
        while type_substs.len() < required_ty_param_count {
            type_substs.push(tcx.types.err);
        }
408
    } else if supplied_ty_param_count > formal_ty_param_count {
409
        type_substs.truncate(formal_ty_param_count);
410
    }
411 412
    assert!(type_substs.len() >= required_ty_param_count &&
            type_substs.len() <= formal_ty_param_count);
413

414 415
    let mut substs = region_substs;
    substs.types.extend(TypeSpace, type_substs.into_iter());
416

417 418 419 420 421 422 423 424 425 426
    match self_ty {
        None => {
            // If no self-type is provided, it's still possible that
            // one was declared, because this could be an object type.
        }
        Some(ty) => {
            // If a self-type is provided, one should have been
            // "declared" (in other words, this should be a
            // trait-ref).
            assert!(decl_generics.types.get_self().is_some());
427
            substs.types.push(SelfSpace, ty);
428
        }
429
    }
430

431 432
    let actual_supplied_ty_param_count = substs.types.len(TypeSpace);
    for param in &ty_param_defs[actual_supplied_ty_param_count..] {
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        if let Some(default) = param.default {
            // If we are converting an object type, then the
            // `Self` parameter is unknown. However, some of the
            // other type parameters may reference `Self` in their
            // defaults. This will lead to an ICE if we are not
            // careful!
            if self_ty.is_none() && ty::type_has_self(default) {
                tcx.sess.span_err(
                    span,
                    &format!("the type parameter `{}` must be explicitly specified \
                              in an object type because its default value `{}` references \
                              the type `Self`",
                             param.name.user_string(tcx),
                             default.user_string(tcx)));
                substs.types.push(TypeSpace, tcx.types.err);
            } else {
449 450 451
                // This is a default type parameter.
                let default = default.subst_spanned(tcx,
                                                    &substs,
452
                                                    Some(span));
453 454
                substs.types.push(TypeSpace, default);
            }
455 456
        } else {
            tcx.sess.span_bug(span, "extra parameter without default");
457
        }
458
    }
459

460
    substs
461
}
462

463 464 465 466 467 468
struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

469 470
fn convert_angle_bracketed_parameters<'tcx>(this: &AstConv<'tcx>,
                                            rscope: &RegionScope,
471 472
                                            span: Span,
                                            decl_generics: &ty::Generics<'tcx>,
473
                                            data: &ast::AngleBracketedParameterData)
474
                                            -> (Substs<'tcx>,
475 476
                                                Vec<Ty<'tcx>>,
                                                Vec<ConvertedBinding<'tcx>>)
477 478 479
{
    let regions: Vec<_> =
        data.lifetimes.iter()
480 481
                      .map(|l| ast_region_to_region(this.tcx(), l))
                      .collect();
482

483 484
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, regions);
485

486 487
    let types: Vec<_> =
        data.types.iter()
488 489 490 491
                  .enumerate()
                  .map(|(i,t)| ast_ty_arg_to_ty(this, rscope, decl_generics,
                                                i, &region_substs, t))
                  .collect();
492

493 494
    let assoc_bindings: Vec<_> =
        data.bindings.iter()
495 496 497 498
                     .map(|b| ConvertedBinding { item_name: b.ident.name,
                                                 ty: ast_ty_to_ty(this, rscope, &*b.ty),
                                                 span: b.span })
                     .collect();
499

500
    (region_substs, types, assoc_bindings)
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/// Returns the appropriate lifetime to use for any output lifetimes
/// (if one exists) and a vector of the (pattern, number of lifetimes)
/// corresponding to each input type/pattern.
fn find_implied_output_region(input_tys: &[Ty], input_pats: Vec<String>)
                              -> (Option<ty::Region>, Vec<(String, uint)>)
{
    let mut lifetimes_for_params: Vec<(String, uint)> = Vec::new();
    let mut possible_implied_output_region = None;

    for (input_type, input_pat) in input_tys.iter().zip(input_pats.into_iter()) {
        let mut accumulator = Vec::new();
        ty::accumulate_lifetimes_in_type(&mut accumulator, *input_type);

        if accumulator.len() == 1 {
            // there's a chance that the unique lifetime of this
            // iteration will be the appropriate lifetime for output
            // parameters, so lets store it.
            possible_implied_output_region = Some(accumulator[0])
        }

        lifetimes_for_params.push((input_pat, accumulator.len()));
    }

    let implied_output_region = if lifetimes_for_params.iter().map(|&(_, n)| n).sum() == 1 {
        assert!(possible_implied_output_region.is_some());
        possible_implied_output_region
    } else {
        None
    };
    (implied_output_region, lifetimes_for_params)
}

535 536 537 538 539
fn convert_ty_with_lifetime_elision<'tcx>(this: &AstConv<'tcx>,
                                          implied_output_region: Option<ty::Region>,
                                          param_lifetimes: Vec<(String, uint)>,
                                          ty: &ast::Ty)
                                          -> Ty<'tcx>
540 541 542
{
    match implied_output_region {
        Some(implied_output_region) => {
543
            let rb = ElidableRscope::new(implied_output_region);
544 545 546 547 548 549 550 551 552 553 554 555
            ast_ty_to_ty(this, &rb, ty)
        }
        None => {
            // All regions must be explicitly specified in the output
            // if the lifetime elision rules do not apply. This saves
            // the user from potentially-confusing errors.
            let rb = UnelidableRscope::new(param_lifetimes);
            ast_ty_to_ty(this, &rb, ty)
        }
    }
}

556
fn convert_parenthesized_parameters<'tcx>(this: &AstConv<'tcx>,
557 558 559
                                          rscope: &RegionScope,
                                          span: Span,
                                          decl_generics: &ty::Generics<'tcx>,
560
                                          data: &ast::ParenthesizedParameterData)
561
                                          -> (Substs<'tcx>,
562 563
                                              Vec<Ty<'tcx>>,
                                              Vec<ConvertedBinding<'tcx>>)
564
{
565 566 567
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, Vec::new());

568
    let binding_rscope = BindingRscope::new();
569 570 571 572 573
    let inputs =
        data.inputs.iter()
                   .map(|a_t| ast_ty_arg_to_ty(this, &binding_rscope, decl_generics,
                                               0, &region_substs, a_t))
                   .collect::<Vec<Ty<'tcx>>>();
574

A
Aaron Turon 已提交
575
    let input_params: Vec<_> = repeat(String::new()).take(inputs.len()).collect();
576 577 578
    let (implied_output_region,
         params_lifetimes) = find_implied_output_region(&*inputs, input_params);

579 580
    let input_ty = ty::mk_tup(this.tcx(), inputs);

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    let (output, output_span) = match data.output {
        Some(ref output_ty) => {
            (convert_ty_with_lifetime_elision(this,
                                              implied_output_region,
                                              params_lifetimes,
                                              &**output_ty),
             output_ty.span)
        }
        None => {
            (ty::mk_nil(this.tcx()), data.span)
        }
    };

    let output_binding = ConvertedBinding {
        item_name: token::intern(FN_OUTPUT_NAME),
        ty: output,
        span: output_span
598 599
    };

600
    (region_substs, vec![input_ty], vec![output_binding])
601
}
602

603 604 605
pub fn instantiate_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
606 607
    ast_trait_ref: &ast::PolyTraitRef,
    self_ty: Option<Ty<'tcx>>,
608 609
    poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
610
{
611 612
    let mut projections = Vec::new();

613
    // The trait reference introduces a binding level here, so
614 615 616 617 618 619
    // we need to shift the `rscope`. It'd be nice if we could
    // do away with this rscope stuff and work this knowledge
    // into resolve_lifetimes, as we do with non-omitted
    // lifetimes. Oh well, not there yet.
    let shifted_rscope = ShiftedRscope::new(rscope);

620
    let trait_ref = instantiate_trait_ref(this, &shifted_rscope,
621
                                          &ast_trait_ref.trait_ref,
622
                                          None, self_ty, Some(&mut projections));
623

624
    for projection in projections {
625 626 627 628
        poly_projections.push(ty::Binder(projection));
    }

    ty::Binder(trait_ref)
629
}
630

631 632 633
/// Instantiates the path for the given trait reference, assuming that it's
/// bound to a valid trait type. Returns the def_id for the defining trait.
/// Fails if the type is a type other than a trait type.
634 635 636
///
/// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
/// are disallowed. Otherwise, they are pushed onto the vector given.
637 638 639
pub fn instantiate_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
640
    trait_ref: &ast::TraitRef,
641
    impl_id: Option<ast::NodeId>,
642 643 644
    self_ty: Option<Ty<'tcx>>,
    projections: Option<&mut Vec<ty::ProjectionPredicate<'tcx>>>)
    -> Rc<ty::TraitRef<'tcx>>
N
Niko Matsakis 已提交
645
{
646
    let path = &trait_ref.path;
647
    match ::lookup_full_def(this.tcx(), path.span, trait_ref.ref_id) {
648
        def::DefTrait(trait_def_id) => {
649 650
            let trait_ref = ast_path_to_trait_ref(this,
                                                  rscope,
651
                                                  path.span,
652
                                                  PathParamMode::Explicit,
653 654
                                                  trait_def_id,
                                                  self_ty,
655
                                                  path.segments.last().unwrap(),
656
                                                  projections);
657 658 659
            if let Some(id) = impl_id {
                this.tcx().impl_trait_refs.borrow_mut().insert(id, trait_ref.clone());
            }
N
Niko Matsakis 已提交
660 661 662
            trait_ref
        }
        _ => {
663 664
            span_fatal!(this.tcx().sess, path.span, E0245, "`{}` is not a trait",
                        path.user_string(this.tcx()));
N
Niko Matsakis 已提交
665 666 667 668
        }
    }
}

669 670 671
fn object_path_to_poly_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
672
    span: Span,
673
    param_mode: PathParamMode,
674
    trait_def_id: ast::DefId,
675
    trait_segment: &ast::PathSegment,
676 677 678 679 680 681 682 683 684 685
    mut projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
    // we are introducing a binder here, so shift the
    // anonymous regions depth to account for that
    let shifted_rscope = ShiftedRscope::new(rscope);

    let mut tmp = Vec::new();
    let trait_ref = ty::Binder(ast_path_to_trait_ref(this,
                                                     &shifted_rscope,
686
                                                     span,
687
                                                     param_mode,
688 689
                                                     trait_def_id,
                                                     None,
690
                                                     trait_segment,
691 692 693 694 695
                                                     Some(&mut tmp)));
    projections.extend(tmp.into_iter().map(ty::Binder));
    trait_ref
}

696 697 698
fn ast_path_to_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
699
    span: Span,
700
    param_mode: PathParamMode,
701
    trait_def_id: ast::DefId,
702
    self_ty: Option<Ty<'tcx>>,
703
    trait_segment: &ast::PathSegment,
704 705
    mut projections: Option<&mut Vec<ty::ProjectionPredicate<'tcx>>>)
    -> Rc<ty::TraitRef<'tcx>>
706
{
707
    debug!("ast_path_to_trait_ref {:?}", trait_segment);
708
    let trait_def = match this.get_trait_def(span, trait_def_id) {
709 710 711 712 713 714 715
        Ok(trait_def) => trait_def,
        Err(ErrorReported) => {
            // No convenient way to recover from a cycle here. Just bail. Sorry!
            this.tcx().sess.abort_if_errors();
            this.tcx().sess.bug("ErrorReported returned, but no errors reports?")
        }
    };
716

717
    let (regions, types, assoc_bindings) = match trait_segment.parameters {
718
        ast::AngleBracketedParameters(ref data) => {
719
            // For now, require that parenthetical notation be used
720
            // only with `Fn()` etc.
721
            if !this.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
722
                span_err!(this.tcx().sess, span, E0215,
723 724
                                         "angle-bracket notation is not stable when \
                                         used with the `Fn` family of traits, use parentheses");
725
                fileline_help!(this.tcx().sess, span,
726 727 728 729
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

730
            convert_angle_bracketed_parameters(this, rscope, span, &trait_def.generics, data)
731 732
        }
        ast::ParenthesizedParameters(ref data) => {
733 734
            // For now, require that parenthetical notation be used
            // only with `Fn()` etc.
735
            if !this.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
736
                span_err!(this.tcx().sess, span, E0216,
737 738
                                         "parenthetical notation is only stable when \
                                         used with the `Fn` family of traits");
739
                fileline_help!(this.tcx().sess, span,
740 741 742 743
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

744
            convert_parenthesized_parameters(this, rscope, span, &trait_def.generics, data)
745 746 747 748
        }
    };

    let substs = create_substs_for_ast_path(this,
749
                                            span,
750
                                            param_mode,
751 752 753
                                            &trait_def.generics,
                                            self_ty,
                                            types,
754 755 756 757 758 759 760
                                            regions);
    let substs = this.tcx().mk_substs(substs);

    let trait_ref = Rc::new(ty::TraitRef::new(trait_def_id, substs));

    match projections {
        None => {
761
            prohibit_projections(this.tcx(), &assoc_bindings);
762 763
        }
        Some(ref mut v) => {
764
            for binding in &assoc_bindings {
765 766
                match ast_type_binding_to_projection_predicate(this, trait_ref.clone(),
                                                               self_ty, binding) {
767 768 769 770 771 772 773 774 775
                    Ok(pp) => { v.push(pp); }
                    Err(ErrorReported) => { }
                }
            }
        }
    }

    trait_ref
}
776

777
fn ast_type_binding_to_projection_predicate<'tcx>(
778
    this: &AstConv<'tcx>,
779 780
    mut trait_ref: Rc<ty::TraitRef<'tcx>>,
    self_ty: Option<Ty<'tcx>>,
781 782 783
    binding: &ConvertedBinding<'tcx>)
    -> Result<ty::ProjectionPredicate<'tcx>, ErrorReported>
{
784 785
    let tcx = this.tcx();

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
    // Given something like `U : SomeTrait<T=X>`, we want to produce a
    // predicate like `<U as SomeTrait>::T = X`. This is somewhat
    // subtle in the event that `T` is defined in a supertrait of
    // `SomeTrait`, because in that case we need to upcast.
    //
    // That is, consider this case:
    //
    // ```
    // trait SubTrait : SuperTrait<int> { }
    // trait SuperTrait<A> { type T; }
    //
    // ... B : SubTrait<T=foo> ...
    // ```
    //
    // We want to produce `<B as SuperTrait<int>>::T == foo`.

802
    // Simple case: X is defined in the current trait.
803
    if this.trait_defines_associated_type_named(trait_ref.def_id, binding.item_name) {
804 805 806 807 808 809 810 811 812
        return Ok(ty::ProjectionPredicate {
            projection_ty: ty::ProjectionTy {
                trait_ref: trait_ref,
                item_name: binding.item_name,
            },
            ty: binding.ty,
        });
    }

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    // Otherwise, we have to walk through the supertraits to find
    // those that do.  This is complicated by the fact that, for an
    // object type, the `Self` type is not present in the
    // substitutions (after all, it's being constructed right now),
    // but the `supertraits` iterator really wants one. To handle
    // this, we currently insert a dummy type and then remove it
    // later. Yuck.

    let dummy_self_ty = ty::mk_infer(tcx, ty::FreshTy(0));
    if self_ty.is_none() { // if converting for an object type
        let mut dummy_substs = trait_ref.substs.clone();
        assert!(dummy_substs.self_ty().is_none());
        dummy_substs.types.push(SelfSpace, dummy_self_ty);
        trait_ref = Rc::new(ty::TraitRef::new(trait_ref.def_id,
                                              tcx.mk_substs(dummy_substs)));
    }

830 831
    try!(this.ensure_super_predicates(binding.span, trait_ref.def_id));

832 833
    let mut candidates: Vec<ty::PolyTraitRef> =
        traits::supertraits(tcx, trait_ref.to_poly_trait_ref())
834
        .filter(|r| this.trait_defines_associated_type_named(r.def_id(), binding.item_name))
835
        .collect();
836

837 838 839
    // If converting for an object type, then remove the dummy-ty from `Self` now.
    // Yuckety yuck.
    if self_ty.is_none() {
840
        for candidate in &mut candidates {
841 842 843 844 845 846 847 848
            let mut dummy_substs = candidate.0.substs.clone();
            assert!(dummy_substs.self_ty() == Some(dummy_self_ty));
            dummy_substs.types.pop(SelfSpace);
            *candidate = ty::Binder(Rc::new(ty::TraitRef::new(candidate.def_id(),
                                                              tcx.mk_substs(dummy_substs))));
        }
    }

849
    if candidates.len() > 1 {
B
Brian Anderson 已提交
850 851
        span_err!(tcx.sess, binding.span, E0217,
            "ambiguous associated type: `{}` defined in multiple supertraits `{}`",
852
                    token::get_name(binding.item_name),
B
Brian Anderson 已提交
853
                    candidates.user_string(tcx));
854 855 856 857 858 859
        return Err(ErrorReported);
    }

    let candidate = match candidates.pop() {
        Some(c) => c,
        None => {
B
Brian Anderson 已提交
860 861
            span_err!(tcx.sess, binding.span, E0218,
                "no associated type `{}` defined in `{}`",
862
                        token::get_name(binding.item_name),
B
Brian Anderson 已提交
863
                        trait_ref.user_string(tcx));
864 865 866 867
            return Err(ErrorReported);
        }
    };

868
    if ty::binds_late_bound_regions(tcx, &candidate) {
B
Brian Anderson 已提交
869 870
        span_err!(tcx.sess, binding.span, E0219,
            "associated type `{}` defined in higher-ranked supertrait `{}`",
871
                    token::get_name(binding.item_name),
B
Brian Anderson 已提交
872
                    candidate.user_string(tcx));
873 874 875 876 877
        return Err(ErrorReported);
    }

    Ok(ty::ProjectionPredicate {
        projection_ty: ty::ProjectionTy {
878
            trait_ref: candidate.0,
879 880 881 882
            item_name: binding.item_name,
        },
        ty: binding.ty,
    })
883 884
}

885
fn ast_path_to_ty<'tcx>(
886 887
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
888
    span: Span,
889
    param_mode: PathParamMode,
890
    did: ast::DefId,
891 892
    item_segment: &ast::PathSegment)
    -> Ty<'tcx>
893
{
894
    let tcx = this.tcx();
895
    let (generics, decl_ty) = match this.get_item_type_scheme(span, did) {
896
        Ok(ty::TypeScheme { generics,  ty: decl_ty }) => {
897
            (generics, decl_ty)
898 899
        }
        Err(ErrorReported) => {
900
            return tcx.types.err;
901 902
        }
    };
903

904 905 906 907
    let substs = ast_path_substs_for_ty(this, rscope,
                                        span, param_mode,
                                        &generics, item_segment);

908 909 910 911
    // FIXME(#12938): This is a hack until we have full support for DST.
    if Some(did) == this.tcx().lang_items.owned_box() {
        assert_eq!(substs.types.len(TypeSpace), 1);
        return ty::mk_uniq(this.tcx(), *substs.types.get(TypeSpace, 0));
912 913
    }

914
    decl_ty.subst(this.tcx(), &substs)
915 916
}

917 918
type TraitAndProjections<'tcx> = (ty::PolyTraitRef<'tcx>, Vec<ty::PolyProjectionPredicate<'tcx>>);

919 920 921 922 923
fn ast_ty_to_trait_ref<'tcx>(this: &AstConv<'tcx>,
                             rscope: &RegionScope,
                             ty: &ast::Ty,
                             bounds: &[ast::TyParamBound])
                             -> Result<TraitAndProjections<'tcx>, ErrorReported>
924
{
925 926 927 928 929 930 931 932 933 934
    /*!
     * In a type like `Foo + Send`, we want to wait to collect the
     * full set of bounds before we make the object type, because we
     * need them to infer a region bound.  (For example, if we tried
     * made a type from just `Foo`, then it wouldn't be enough to
     * infer a 'static bound, and hence the user would get an error.)
     * So this function is used when we're dealing with a sum type to
     * convert the LHS. It only accepts a type that refers to a trait
     * name, and reports an error otherwise.
     */
935

936
    match ty.node {
937
        ast::TyPath(None, ref path) => {
938 939 940 941
            let def = match this.tcx().def_map.borrow().get(&ty.id) {
                Some(&def::PathResolution { base_def, depth: 0, .. }) => Some(base_def),
                _ => None
            };
942 943
            match def {
                Some(def::DefTrait(trait_def_id)) => {
944
                    let mut projection_bounds = Vec::new();
945 946
                    let trait_ref = object_path_to_poly_trait_ref(this,
                                                                  rscope,
947
                                                                  path.span,
948
                                                                  PathParamMode::Explicit,
949
                                                                  trait_def_id,
950
                                                                  path.segments.last().unwrap(),
951
                                                                  &mut projection_bounds);
952
                    Ok((trait_ref, projection_bounds))
953 954
                }
                _ => {
955
                    span_err!(this.tcx().sess, ty.span, E0172, "expected a reference to a trait");
956 957 958
                    Err(ErrorReported)
                }
            }
959
        }
960
        _ => {
961
            span_err!(this.tcx().sess, ty.span, E0178,
962 963 964 965
                      "expected a path on the left-hand side of `+`, not `{}`",
                      pprust::ty_to_string(ty));
            match ty.node {
                ast::TyRptr(None, ref mut_ty) => {
966
                    fileline_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
967
                               "perhaps you meant `&{}({} +{})`? (per RFC 438)",
968 969 970
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
971
                }
972
               ast::TyRptr(Some(ref lt), ref mut_ty) => {
973
                    fileline_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
974
                               "perhaps you meant `&{} {}({} +{})`? (per RFC 438)",
975 976 977 978 979 980 981
                               pprust::lifetime_to_string(lt),
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
                }

                _ => {
982
                    fileline_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
983
                               "perhaps you forgot parentheses? (per RFC 438)");
984 985
                }
            }
986
            Err(ErrorReported)
987
        }
988
    }
989 990
}

991 992 993 994 995 996 997
fn trait_ref_to_object_type<'tcx>(this: &AstConv<'tcx>,
                                  rscope: &RegionScope,
                                  span: Span,
                                  trait_ref: ty::PolyTraitRef<'tcx>,
                                  projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
                                  bounds: &[ast::TyParamBound])
                                  -> Ty<'tcx>
998 999 1000 1001
{
    let existential_bounds = conv_existential_bounds(this,
                                                     rscope,
                                                     span,
1002
                                                     trait_ref.clone(),
1003
                                                     projection_bounds,
1004 1005 1006 1007 1008 1009 1010
                                                     bounds);

    let result = ty::mk_trait(this.tcx(), trait_ref, existential_bounds);
    debug!("trait_ref_to_object_type: result={}",
           result.repr(this.tcx()));

    result
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
fn report_ambiguous_associated_type(tcx: &ty::ctxt,
                                    span: Span,
                                    type_str: &str,
                                    trait_str: &str,
                                    name: &str) {
    span_err!(tcx.sess, span, E0223,
              "ambiguous associated type; specify the type using the syntax \
               `<{} as {}>::{}`",
              type_str, trait_str, name);
}

1024
fn associated_path_def_to_ty<'tcx>(this: &AstConv<'tcx>,
1025 1026 1027 1028 1029
                                   span: Span,
                                   ty: Ty<'tcx>,
                                   ty_path_def: def::Def,
                                   item_segment: &ast::PathSegment)
                                   -> (Ty<'tcx>, def::Def)
1030 1031
{
    let tcx = this.tcx();
1032
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
1033 1034
    let assoc_name = item_segment.identifier.name;

1035 1036 1037 1038 1039 1040 1041
    let is_param = match (&ty.sty, ty_path_def) {
        (&ty::ty_param(_), def::DefTyParam(..)) |
        (&ty::ty_param(_), def::DefSelfTy(_)) => true,
        _ => false
    };

    let ty_param_node_id = if is_param {
1042 1043
        ty_path_def.local_node_id()
    } else {
1044 1045
        report_ambiguous_associated_type(
            tcx, span, &ty.user_string(tcx), "Trait", &token::get_name(assoc_name));
1046 1047
        return (tcx.types.err, ty_path_def);
    };
1048

1049 1050
    let ty_param_name = tcx.ty_param_defs.borrow()[ty_param_node_id].name;

1051 1052 1053 1054 1055 1056 1057 1058 1059
    let bounds = match this.get_type_parameter_bounds(span, ty_param_node_id) {
        Ok(v) => v,
        Err(ErrorReported) => { return (tcx.types.err, ty_path_def); }
    };

    // ensure the super predicates and stop if we encountered an error
    if bounds.iter().any(|b| this.ensure_super_predicates(span, b.def_id()).is_err()) {
        return (this.tcx().types.err, ty_path_def);
    }
1060 1061 1062

    let mut suitable_bounds: Vec<_> =
        traits::transitive_bounds(tcx, &bounds)
1063
        .filter(|b| this.trait_defines_associated_type_named(b.def_id(), assoc_name))
1064
        .collect();
1065 1066

    if suitable_bounds.len() == 0 {
1067
        span_err!(tcx.sess, span, E0220,
B
Brian Anderson 已提交
1068
                          "associated type `{}` not found for type parameter `{}`",
1069
                                  token::get_name(assoc_name),
B
Brian Anderson 已提交
1070
                                  token::get_name(ty_param_name));
1071
        return (this.tcx().types.err, ty_path_def);
1072 1073 1074
    }

    if suitable_bounds.len() > 1 {
1075
        span_err!(tcx.sess, span, E0221,
B
Brian Anderson 已提交
1076
                          "ambiguous associated type `{}` in bounds of `{}`",
1077
                                  token::get_name(assoc_name),
B
Brian Anderson 已提交
1078
                                  token::get_name(ty_param_name));
1079

1080
        for suitable_bound in &suitable_bounds {
1081
            span_note!(this.tcx().sess, span,
1082 1083 1084 1085 1086 1087 1088
                       "associated type `{}` could derive from `{}`",
                       token::get_name(ty_param_name),
                       suitable_bound.user_string(this.tcx()));
        }
    }

    let suitable_bound = suitable_bounds.pop().unwrap().clone();
1089 1090 1091 1092 1093 1094 1095 1096 1097
    let trait_did = suitable_bound.0.def_id;

    let ty = this.projected_ty_from_poly_trait_ref(span, suitable_bound, assoc_name);

    let item_did = if trait_did.krate == ast::LOCAL_CRATE {
        // `ty::trait_items` used below requires information generated
        // by type collection, which may be in progress at this point.
        match this.tcx().map.expect_item(trait_did.node).node {
            ast::ItemTrait(_, _, _, ref trait_items) => {
1098 1099 1100
                let item = trait_items.iter().find(|i| i.ident.name == assoc_name)
                                      .expect("missing associated type");
                ast_util::local_def(item.id)
1101 1102 1103 1104 1105 1106 1107 1108 1109
            }
            _ => unreachable!()
        }
    } else {
        let trait_items = ty::trait_items(this.tcx(), trait_did);
        let item = trait_items.iter().find(|i| i.name() == assoc_name);
        item.expect("missing associated type").def_id()
    };
    (ty, def::DefAssociatedTy(trait_did, item_did))
1110 1111
}

1112 1113
fn qpath_to_ty<'tcx>(this: &AstConv<'tcx>,
                     rscope: &RegionScope,
1114
                     span: Span,
1115 1116
                     param_mode: PathParamMode,
                     opt_self_ty: Option<Ty<'tcx>>,
1117 1118 1119
                     trait_def_id: ast::DefId,
                     trait_segment: &ast::PathSegment,
                     item_segment: &ast::PathSegment)
1120
                     -> Ty<'tcx>
1121
{
1122
    let tcx = this.tcx();
1123

1124
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
1125

1126
    let self_ty = if let Some(ty) = opt_self_ty {
1127
        ty
1128 1129
    } else {
        let path_str = ty::item_path_str(tcx, trait_def_id);
1130 1131
        report_ambiguous_associated_type(
            tcx, span, "Type", &path_str, &token::get_ident(item_segment.identifier));
1132 1133
        return tcx.types.err;
    };
1134

1135
    debug!("qpath_to_ty: self_type={}", self_ty.repr(tcx));
1136

1137
    let trait_ref = ast_path_to_trait_ref(this,
1138
                                          rscope,
1139
                                          span,
1140
                                          param_mode,
1141 1142 1143
                                          trait_def_id,
                                          Some(self_ty),
                                          trait_segment,
1144
                                          None);
1145

1146
    debug!("qpath_to_ty: trait_ref={}", trait_ref.repr(tcx));
1147

1148
    this.projected_ty(span, trait_ref, item_segment.identifier.name)
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
/// Convert a type supplied as value for a type argument from AST into our
/// our internal representation. This is the same as `ast_ty_to_ty` but that
/// it applies the object lifetime default.
///
/// # Parameters
///
/// * `this`, `rscope`: the surrounding context
/// * `decl_generics`: the generics of the struct/enum/trait declaration being
///   referenced
/// * `index`: the index of the type parameter being instantiated from the list
///   (we assume it is in the `TypeSpace`)
/// * `region_substs`: a partial substitution consisting of
///   only the region type parameters being supplied to this type.
/// * `ast_ty`: the ast representation of the type being supplied
pub fn ast_ty_arg_to_ty<'tcx>(this: &AstConv<'tcx>,
                              rscope: &RegionScope,
                              decl_generics: &ty::Generics<'tcx>,
                              index: usize,
                              region_substs: &Substs<'tcx>,
                              ast_ty: &ast::Ty)
                              -> Ty<'tcx>
{
    let tcx = this.tcx();

    if let Some(def) = decl_generics.types.opt_get(TypeSpace, index) {
        let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
        let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
        ast_ty_to_ty(this, rscope1, ast_ty)
    } else {
        ast_ty_to_ty(this, rscope, ast_ty)
    }
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
pub fn finish_resolving_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                                        rscope: &RegionScope,
                                        span: Span,
                                        param_mode: PathParamMode,
                                        def: &mut def::Def,
                                        opt_self_ty: Option<Ty<'tcx>>,
                                        segments: &[ast::PathSegment],
                                        assoc_segments: &[ast::PathSegment])
                                        -> Ty<'tcx> {
    let tcx = this.tcx();

    let base_ty = match *def {
        def::DefTrait(trait_def_id) => {
            // N.B. this case overlaps somewhat with
            // TyObjectSum, see that fn for details
            let mut projection_bounds = Vec::new();

            let trait_ref = object_path_to_poly_trait_ref(this,
                                                          rscope,
                                                          span,
                                                          param_mode,
                                                          trait_def_id,
                                                          segments.last().unwrap(),
                                                          &mut projection_bounds);

            check_path_args(tcx, segments.init(), NO_TPS | NO_REGIONS);
            trait_ref_to_object_type(this, rscope, span, trait_ref,
                                     projection_bounds, &[])
        }
        def::DefTy(did, _) | def::DefStruct(did) => {
            check_path_args(tcx, segments.init(), NO_TPS | NO_REGIONS);
            ast_path_to_ty(this, rscope, span,
                           param_mode, did,
                           segments.last().unwrap())
        }
        def::DefTyParam(space, index, _, name) => {
            check_path_args(tcx, segments, NO_TPS | NO_REGIONS);
            ty::mk_param(tcx, space, index, name)
        }
        def::DefSelfTy(_) => {
            // n.b.: resolve guarantees that the this type only appears in a
            // trait, which we rely upon in various places when creating
            // substs
            check_path_args(tcx, segments, NO_TPS | NO_REGIONS);
            ty::mk_self_type(tcx)
        }
        def::DefAssociatedTy(trait_did, _) => {
            check_path_args(tcx, &segments[..segments.len()-2], NO_TPS | NO_REGIONS);
            qpath_to_ty(this, rscope, span, param_mode,
                        opt_self_ty, trait_did,
                        &segments[segments.len()-2],
                        segments.last().unwrap())
        }
        def::DefMod(id) => {
1238 1239 1240 1241
            // Used as sentinel by callers to indicate the `<T>::A::B::C` form.
            // FIXME(#22519) This part of the resolution logic should be
            // avoided entirely for that form, once we stop needed a Def
            // for `associated_path_def_to_ty`.
1242 1243 1244
            if segments.is_empty() {
                opt_self_ty.expect("missing T in <T>::a::b::c")
            } else {
1245 1246 1247
                span_err!(tcx.sess, span, E0247, "found module name used as a type: {}",
                          tcx.map.node_to_string(id.node));
                return this.tcx().types.err;
1248
            }
1249 1250 1251 1252 1253
        }
        def::DefPrimTy(prim_ty) => {
            prim_ty_to_ty(tcx, segments, prim_ty)
        }
        _ => {
1254 1255 1256
            span_err!(tcx.sess, span, E0248,
                      "found value name used as a type: {:?}", *def);
            return this.tcx().types.err;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        }
    };

    // If any associated type segments remain, attempt to resolve them.
    let mut ty = base_ty;
    for segment in assoc_segments {
        if ty.sty == ty::ty_err {
            break;
        }
        // This is pretty bad (it will fail except for T::A and Self::A).
        let (a_ty, a_def) = associated_path_def_to_ty(this, span,
                                                      ty, *def, segment);
        ty = a_ty;
        *def = a_def;
    }
    ty
}

1275 1276 1277 1278 1279 1280
/// Parses the programmer's textual representation of a type into our
/// internal notion of a type.
pub fn ast_ty_to_ty<'tcx>(this: &AstConv<'tcx>,
                          rscope: &RegionScope,
                          ast_ty: &ast::Ty)
                          -> Ty<'tcx>
1281 1282 1283
{
    debug!("ast_ty_to_ty(ast_ty={})",
           ast_ty.repr(this.tcx()));
1284

1285
    let tcx = this.tcx();
1286

1287 1288
    if let Some(&ty) = tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) {
        return ty;
1289 1290
    }

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    let typ = match ast_ty.node {
        ast::TyVec(ref ty) => {
            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty), None)
        }
        ast::TyObjectSum(ref ty, ref bounds) => {
            match ast_ty_to_trait_ref(this, rscope, &**ty, bounds) {
                Ok((trait_ref, projection_bounds)) => {
                    trait_ref_to_object_type(this,
                                             rscope,
                                             ast_ty.span,
                                             trait_ref,
                                             projection_bounds,
                                             bounds)
1304
                }
1305 1306
                Err(ErrorReported) => {
                    this.tcx().types.err
1307 1308
                }
            }
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        }
        ast::TyPtr(ref mt) => {
            ty::mk_ptr(tcx, ty::mt {
                ty: ast_ty_to_ty(this, rscope, &*mt.ty),
                mutbl: mt.mutbl
            })
        }
        ast::TyRptr(ref region, ref mt) => {
            let r = opt_ast_region_to_region(this, rscope, ast_ty.span, region);
            debug!("ty_rptr r={}", r.repr(this.tcx()));
            let rscope1 =
                &ObjectLifetimeDefaultRscope::new(
                    rscope,
                    Some(ty::ObjectLifetimeDefault::Specific(r)));
            let t = ast_ty_to_ty(this, rscope1, &*mt.ty);
            ty::mk_rptr(tcx, tcx.mk_region(r), ty::mt {ty: t, mutbl: mt.mutbl})
        }
        ast::TyTup(ref fields) => {
            let flds = fields.iter()
                             .map(|t| ast_ty_to_ty(this, rscope, &**t))
                             .collect();
            ty::mk_tup(tcx, flds)
        }
        ast::TyParen(ref typ) => ast_ty_to_ty(this, rscope, &**typ),
        ast::TyBareFn(ref bf) => {
            if bf.decl.variadic && bf.abi != abi::C {
                span_err!(tcx.sess, ast_ty.span, E0222,
                          "variadic function must have C calling convention");
N
Niko Matsakis 已提交
1337
            }
1338 1339 1340 1341 1342 1343
            let bare_fn = ty_of_bare_fn(this, bf.unsafety, bf.abi, &*bf.decl);
            ty::mk_bare_fn(tcx, None, tcx.mk_bare_fn(bare_fn))
        }
        ast::TyPolyTraitRef(ref bounds) => {
            conv_ty_poly_trait_ref(this, rscope, ast_ty.span, bounds)
        }
1344
        ast::TyPath(ref maybe_qself, ref path) => {
1345 1346
            let path_res = if let Some(&d) = tcx.def_map.borrow().get(&ast_ty.id) {
                d
1347 1348 1349 1350 1351 1352 1353
            } else if let Some(ast::QSelf { position: 0, .. }) = *maybe_qself {
                // Create some fake resolution that can't possibly be a type.
                def::PathResolution {
                    base_def: def::DefMod(ast_util::local_def(ast::CRATE_NODE_ID)),
                    last_private: LastMod(AllPublic),
                    depth: path.segments.len()
                }
1354 1355 1356 1357
            } else {
                tcx.sess.span_bug(ast_ty.span,
                                  &format!("unbound path {}", ast_ty.repr(tcx)))
            };
1358 1359
            let mut def = path_res.base_def;
            let base_ty_end = path.segments.len() - path_res.depth;
1360 1361 1362
            let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                ast_ty_to_ty(this, rscope, &qself.ty)
            });
1363 1364 1365 1366 1367
            let ty = finish_resolving_def_to_ty(this, rscope, ast_ty.span,
                                                PathParamMode::Explicit, &mut def,
                                                opt_self_ty,
                                                &path.segments[..base_ty_end],
                                                &path.segments[base_ty_end..]);
1368

1369
            if path_res.depth != 0 && ty.sty != ty::ty_err {
1370
                // Write back the new resolution.
1371 1372 1373 1374 1375
                tcx.def_map.borrow_mut().insert(ast_ty.id, def::PathResolution {
                    base_def: def,
                    last_private: path_res.last_private,
                    depth: 0
                });
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
            }

            ty
        }
        ast::TyFixedLengthVec(ref ty, ref e) => {
            match const_eval::eval_const_expr_partial(tcx, &**e, Some(tcx.types.uint)) {
                Ok(r) => {
                    match r {
                        const_eval::const_int(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as uint)),
                        const_eval::const_uint(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as uint)),
                        _ => {
1391 1392 1393
                            span_err!(tcx.sess, ast_ty.span, E0249,
                                      "expected constant expr for array length");
                            this.tcx().types.err
1394 1395
                        }
                    }
1396
                }
1397 1398 1399
                Err(ref r) => {
                    let subspan  =
                        ast_ty.span.lo <= r.span.lo && r.span.hi <= ast_ty.span.hi;
1400
                    span_err!(tcx.sess, r.span, E0250,
1401
                              "array length constant evaluation error: {}",
1402
                              r.description());
1403 1404 1405 1406
                    if !subspan {
                        span_note!(tcx.sess, ast_ty.span, "for array length here")
                    }
                    this.tcx().types.err
1407 1408
                }
            }
1409
        }
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
        ast::TyTypeof(ref _e) => {
            tcx.sess.span_bug(ast_ty.span, "typeof is reserved but unimplemented");
        }
        ast::TyInfer => {
            // TyInfer also appears as the type of arguments or return
            // values in a ExprClosure, or as
            // the type of local variables. Both of these cases are
            // handled specially and will not descend into this routine.
            this.ty_infer(ast_ty.span)
        }
    };
1421

1422
    tcx.ast_ty_to_ty_cache.borrow_mut().insert(ast_ty.id, typ);
B
Brian Anderson 已提交
1423
    return typ;
1424 1425
}

1426 1427 1428 1429 1430 1431
pub fn ty_of_arg<'tcx>(this: &AstConv<'tcx>,
                       rscope: &RegionScope,
                       a: &ast::Arg,
                       expected_ty: Option<Ty<'tcx>>)
                       -> Ty<'tcx>
{
E
Erick Tryzelaar 已提交
1432
    match a.ty.node {
1433 1434
        ast::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
        ast::TyInfer => this.ty_infer(a.ty.span),
1435
        _ => ast_ty_to_ty(this, rscope, &*a.ty),
1436
    }
1437 1438
}

1439 1440
struct SelfInfo<'a, 'tcx> {
    untransformed_self_ty: Ty<'tcx>,
1441
    explicit_self: &'a ast::ExplicitSelf,
1442 1443
}

1444
pub fn ty_of_method<'tcx>(this: &AstConv<'tcx>,
1445 1446
                          sig: &ast::MethodSig,
                          untransformed_self_ty: Ty<'tcx>)
1447
                          -> (ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory) {
1448
    let self_info = Some(SelfInfo {
1449
        untransformed_self_ty: untransformed_self_ty,
1450
        explicit_self: &sig.explicit_self,
1451 1452 1453
    });
    let (bare_fn_ty, optional_explicit_self_category) =
        ty_of_method_or_bare_fn(this,
1454 1455
                                sig.unsafety,
                                sig.abi,
1456
                                self_info,
1457
                                &sig.decl);
1458
    (bare_fn_ty, optional_explicit_self_category.unwrap())
1459 1460
}

1461
pub fn ty_of_bare_fn<'tcx>(this: &AstConv<'tcx>, unsafety: ast::Unsafety, abi: abi::Abi,
1462
                                              decl: &ast::FnDecl) -> ty::BareFnTy<'tcx> {
N
Niko Matsakis 已提交
1463
    let (bare_fn_ty, _) = ty_of_method_or_bare_fn(this, unsafety, abi, None, decl);
1464
    bare_fn_ty
1465 1466
}

1467 1468 1469 1470 1471 1472
fn ty_of_method_or_bare_fn<'a, 'tcx>(this: &AstConv<'tcx>,
                                     unsafety: ast::Unsafety,
                                     abi: abi::Abi,
                                     opt_self_info: Option<SelfInfo<'a, 'tcx>>,
                                     decl: &ast::FnDecl)
                                     -> (ty::BareFnTy<'tcx>, Option<ty::ExplicitSelfCategory>)
1473
{
1474
    debug!("ty_of_method_or_bare_fn");
1475

1476 1477
    // New region names that appear inside of the arguments of the function
    // declaration are bound to that function type.
1478
    let rb = rscope::BindingRscope::new();
1479

1480 1481 1482 1483 1484
    // `implied_output_region` is the region that will be assumed for any
    // region parameters in the return type. In accordance with the rules for
    // lifetime elision, we can determine it in two ways. First (determined
    // here), if self is by-reference, then the implied output region is the
    // region of the self parameter.
1485
    let mut explicit_self_category_result = None;
1486 1487 1488
    let (self_ty, mut implied_output_region) = match opt_self_info {
        None => (None, None),
        Some(self_info) => {
1489 1490 1491
            // This type comes from an impl or trait; no late-bound
            // regions should be present.
            assert!(!self_info.untransformed_self_ty.has_escaping_regions());
1492

1493 1494 1495 1496 1497
            // Figure out and record the explicit self category.
            let explicit_self_category =
                determine_explicit_self_category(this, &rb, &self_info);
            explicit_self_category_result = Some(explicit_self_category);
            match explicit_self_category {
1498 1499 1500
                ty::StaticExplicitSelfCategory => {
                    (None, None)
                }
1501
                ty::ByValueExplicitSelfCategory => {
1502
                    (Some(self_info.untransformed_self_ty), None)
1503 1504 1505
                }
                ty::ByReferenceExplicitSelfCategory(region, mutability) => {
                    (Some(ty::mk_rptr(this.tcx(),
H
Huon Wilson 已提交
1506
                                      this.tcx().mk_region(region),
1507
                                      ty::mt {
1508
                                        ty: self_info.untransformed_self_ty,
1509 1510 1511 1512 1513
                                        mutbl: mutability
                                      })),
                     Some(region))
                }
                ty::ByBoxExplicitSelfCategory => {
1514
                    (Some(ty::mk_uniq(this.tcx(), self_info.untransformed_self_ty)), None)
1515
                }
1516 1517
            }
        }
1518
    };
1519 1520

    // HACK(eddyb) replace the fake self type in the AST with the actual type.
1521
    let input_params = if self_ty.is_some() {
A
Aaron Turon 已提交
1522
        &decl.inputs[1..]
1523
    } else {
1524
        &decl.inputs[..]
1525
    };
1526 1527 1528 1529
    let input_tys = input_params.iter().map(|a| ty_of_arg(this, &rb, a, None));
    let input_pats: Vec<String> = input_params.iter()
                                              .map(|a| pprust::pat_to_string(&*a.pat))
                                              .collect();
1530
    let self_and_input_tys: Vec<Ty> =
A
Aaron Turon 已提交
1531
        self_ty.into_iter().chain(input_tys).collect();
1532

1533

1534 1535 1536
    // Second, if there was exactly one lifetime (either a substitution or a
    // reference) in the arguments, then any anonymous regions in the output
    // have that lifetime.
1537 1538
    let lifetimes_for_params = if implied_output_region.is_none() {
        let input_tys = if self_ty.is_some() {
1539
            // Skip the first argument if `self` is present.
A
Aaron Turon 已提交
1540
            &self_and_input_tys[1..]
1541
        } else {
1542
            &self_and_input_tys[..]
1543
        };
1544

1545 1546 1547 1548 1549 1550
        let (ior, lfp) = find_implied_output_region(input_tys, input_pats);
        implied_output_region = ior;
        lfp
    } else {
        vec![]
    };
1551

1552 1553 1554 1555
    let output_ty = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer =>
            ty::FnConverging(this.ty_infer(output.span)),
        ast::Return(ref output) =>
1556 1557 1558 1559
            ty::FnConverging(convert_ty_with_lifetime_elision(this,
                                                              implied_output_region,
                                                              lifetimes_for_params,
                                                              &**output)),
1560 1561
        ast::DefaultReturn(..) => ty::FnConverging(ty::mk_nil(this.tcx())),
        ast::NoReturn(..) => ty::FnDiverging
1562 1563
    };

1564
    (ty::BareFnTy {
N
Niko Matsakis 已提交
1565
        unsafety: unsafety,
1566
        abi: abi,
1567
        sig: ty::Binder(ty::FnSig {
1568 1569 1570
            inputs: self_and_input_tys,
            output: output_ty,
            variadic: decl.variadic
1571
        }),
1572 1573 1574
    }, explicit_self_category_result)
}

1575 1576 1577 1578
fn determine_explicit_self_category<'a, 'tcx>(this: &AstConv<'tcx>,
                                              rscope: &RegionScope,
                                              self_info: &SelfInfo<'a, 'tcx>)
                                              -> ty::ExplicitSelfCategory
1579 1580
{
    return match self_info.explicit_self.node {
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
        ast::SelfStatic => ty::StaticExplicitSelfCategory,
        ast::SelfValue(_) => ty::ByValueExplicitSelfCategory,
        ast::SelfRegion(ref lifetime, mutability, _) => {
            let region =
                opt_ast_region_to_region(this,
                                         rscope,
                                         self_info.explicit_self.span,
                                         lifetime);
            ty::ByReferenceExplicitSelfCategory(region, mutability)
        }
1591 1592
        ast::SelfExplicit(ref ast_type, _) => {
            let explicit_type = ast_ty_to_ty(this, rscope, &**ast_type);
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
            // We wish to (for now) categorize an explicit self
            // declaration like `self: SomeType` into either `self`,
            // `&self`, `&mut self`, or `Box<self>`. We do this here
            // by some simple pattern matching. A more precise check
            // is done later in `check_method_self_type()`.
            //
            // Examples:
            //
            // ```
            // impl Foo for &T {
            //     // Legal declarations:
            //     fn method1(self: &&T); // ByReferenceExplicitSelfCategory
            //     fn method2(self: &T); // ByValueExplicitSelfCategory
            //     fn method3(self: Box<&T>); // ByBoxExplicitSelfCategory
            //
            //     // Invalid cases will be caught later by `check_method_self_type`:
            //     fn method_err1(self: &mut T); // ByReferenceExplicitSelfCategory
            // }
            // ```
            //
            // To do the check we just count the number of "modifiers"
            // on each type and compare them. If they are the same or
            // the impl has more, we call it "by value". Otherwise, we
            // look at the outermost modifier on the method decl and
            // call it by-ref, by-box as appropriate. For method1, for
            // example, the impl type has one modifier, but the method
            // type has two, so we end up with
            // ByReferenceExplicitSelfCategory.

            let impl_modifiers = count_modifiers(self_info.untransformed_self_ty);
            let method_modifiers = count_modifiers(explicit_type);

            debug!("determine_explicit_self_category(self_info.untransformed_self_ty={} \
                   explicit_type={} \
                   modifiers=({},{})",
                   self_info.untransformed_self_ty.repr(this.tcx()),
                   explicit_type.repr(this.tcx()),
                   impl_modifiers,
                   method_modifiers);

            if impl_modifiers >= method_modifiers {
                ty::ByValueExplicitSelfCategory
            } else {
1637
                match explicit_type.sty {
H
Huon Wilson 已提交
1638
                    ty::ty_rptr(r, mt) => ty::ByReferenceExplicitSelfCategory(*r, mt.mutbl),
1639 1640
                    ty::ty_uniq(_) => ty::ByBoxExplicitSelfCategory,
                    _ => ty::ByValueExplicitSelfCategory,
1641 1642
                }
            }
1643 1644
        }
    };
1645

1646
    fn count_modifiers(ty: Ty) -> uint {
1647
        match ty.sty {
1648 1649 1650
            ty::ty_rptr(_, mt) => count_modifiers(mt.ty) + 1,
            ty::ty_uniq(t) => count_modifiers(t) + 1,
            _ => 0,
1651 1652
        }
    }
1653 1654
}

1655 1656
pub fn ty_of_closure<'tcx>(
    this: &AstConv<'tcx>,
N
Niko Matsakis 已提交
1657
    unsafety: ast::Unsafety,
1658
    decl: &ast::FnDecl,
1659
    abi: abi::Abi,
1660 1661
    expected_sig: Option<ty::FnSig<'tcx>>)
    -> ty::ClosureTy<'tcx>
1662
{
1663 1664
    debug!("ty_of_closure(expected_sig={})",
           expected_sig.repr(this.tcx()));
1665 1666 1667

    // new region names that appear inside of the fn decl are bound to
    // that function type
1668
    let rb = rscope::BindingRscope::new();
1669

1670
    let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
1671
        let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
1672 1673
            // no guarantee that the correct number of expected args
            // were supplied
1674
            if i < e.inputs.len() {
1675
                Some(e.inputs[i])
1676 1677 1678
            } else {
                None
            }
1679
        });
J
James Miller 已提交
1680
        ty_of_arg(this, &rb, a, expected_arg_ty)
1681
    }).collect();
1682

1683
    let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
1684

1685 1686 1687 1688 1689 1690
    let is_infer = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer => true,
        ast::DefaultReturn(..) => true,
        _ => false
    };

1691
    let output_ty = match decl.output {
1692
        _ if is_infer && expected_ret_ty.is_some() =>
1693
            expected_ret_ty.unwrap(),
1694 1695
        _ if is_infer =>
            ty::FnConverging(this.ty_infer(decl.output.span())),
1696 1697
        ast::Return(ref output) =>
            ty::FnConverging(ast_ty_to_ty(this, &rb, &**output)),
1698 1699
        ast::DefaultReturn(..) => unreachable!(),
        ast::NoReturn(..) => ty::FnDiverging
1700 1701
    };

1702 1703 1704
    debug!("ty_of_closure: input_tys={}", input_tys.repr(this.tcx()));
    debug!("ty_of_closure: output_ty={}", output_ty.repr(this.tcx()));

1705
    ty::ClosureTy {
N
Niko Matsakis 已提交
1706
        unsafety: unsafety,
1707
        abi: abi,
1708 1709 1710
        sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                   output: output_ty,
                                   variadic: decl.variadic}),
1711 1712
    }
}
1713

S
Steve Klabnik 已提交
1714 1715 1716 1717
/// Given an existential type like `Foo+'a+Bar`, this routine converts the `'a` and `Bar` intos an
/// `ExistentialBounds` struct. The `main_trait_refs` argument specifies the `Foo` -- it is absent
/// for closures. Eventually this should all be normalized, I think, so that there is no "main
/// trait ref" and instead we just have a flat list of bounds as the existential type.
1718
fn conv_existential_bounds<'tcx>(
1719 1720
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1721
    span: Span,
1722
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1723
    projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
1724
    ast_bounds: &[ast::TyParamBound])
1725
    -> ty::ExistentialBounds<'tcx>
1726
{
1727
    let partitioned_bounds =
1728
        partition_bounds(this.tcx(), span, ast_bounds);
1729 1730

    conv_existential_bounds_from_partitioned_bounds(
1731
        this, rscope, span, principal_trait_ref, projection_bounds, partitioned_bounds)
1732 1733
}

1734 1735 1736
fn conv_ty_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1737 1738
    span: Span,
    ast_bounds: &[ast::TyParamBound])
1739
    -> Ty<'tcx>
1740
{
1741
    let mut partitioned_bounds = partition_bounds(this.tcx(), span, &ast_bounds[..]);
1742

1743
    let mut projection_bounds = Vec::new();
A
Aaron Turon 已提交
1744 1745
    let main_trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
        let trait_bound = partitioned_bounds.trait_bounds.remove(0);
1746 1747 1748 1749 1750
        instantiate_poly_trait_ref(this,
                                   rscope,
                                   trait_bound,
                                   None,
                                   &mut projection_bounds)
A
Aaron Turon 已提交
1751
    } else {
B
Brian Anderson 已提交
1752
        span_err!(this.tcx().sess, span, E0224,
1753 1754
                  "at least one non-builtin trait is required for an object type");
        return this.tcx().types.err;
1755 1756
    };

1757 1758 1759 1760
    let bounds =
        conv_existential_bounds_from_partitioned_bounds(this,
                                                        rscope,
                                                        span,
1761
                                                        main_trait_bound.clone(),
1762
                                                        projection_bounds,
1763
                                                        partitioned_bounds);
1764

1765
    ty::mk_trait(this.tcx(), main_trait_bound, bounds)
1766 1767
}

1768 1769 1770
pub fn conv_existential_bounds_from_partitioned_bounds<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1771
    span: Span,
1772
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1773
    mut projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>, // Empty for boxed closures
1774
    partitioned_bounds: PartitionedBounds)
1775
    -> ty::ExistentialBounds<'tcx>
1776
{
1777 1778
    let PartitionedBounds { builtin_bounds,
                            trait_bounds,
1779
                            region_bounds } =
1780
        partitioned_bounds;
1781 1782

    if !trait_bounds.is_empty() {
1783
        let b = &trait_bounds[0];
B
Brian Anderson 已提交
1784
        span_err!(this.tcx().sess, b.trait_ref.path.span, E0225,
1785
                  "only the builtin traits can be used as closure or object bounds");
1786 1787
    }

1788 1789 1790 1791 1792 1793
    let region_bound = compute_object_lifetime_bound(this,
                                                     rscope,
                                                     span,
                                                     &region_bounds,
                                                     principal_trait_ref,
                                                     builtin_bounds);
1794

1795
    ty::sort_bounds_list(&mut projection_bounds);
1796

1797 1798 1799
    ty::ExistentialBounds {
        region_bound: region_bound,
        builtin_bounds: builtin_bounds,
1800
        projection_bounds: projection_bounds,
1801 1802 1803
    }
}

1804
/// Given the bounds on an object, determines what single region bound
S
Steve Klabnik 已提交
1805 1806 1807
/// (if any) we can use to summarize this type. The basic idea is that we will use the bound the
/// user provided, if they provided one, and otherwise search the supertypes of trait bounds for
/// region bounds. It may be that we can derive no bound at all, in which case we return `None`.
1808 1809 1810 1811 1812 1813 1814 1815
fn compute_object_lifetime_bound<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    explicit_region_bounds: &[&ast::Lifetime],
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
    builtin_bounds: ty::BuiltinBounds)
    -> ty::Region
1816
{
1817 1818
    let tcx = this.tcx();

1819
    debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
1820 1821 1822 1823 1824 1825
           principal_trait_ref={}, builtin_bounds={})",
           explicit_region_bounds,
           principal_trait_ref.repr(tcx),
           builtin_bounds.repr(tcx));

    if explicit_region_bounds.len() > 1 {
B
Brian Anderson 已提交
1826 1827
        span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
            "only a single explicit lifetime bound is permitted");
1828 1829
    }

1830
    if explicit_region_bounds.len() != 0 {
1831
        // Explicitly specified region bound. Use that.
1832
        let r = explicit_region_bounds[0];
1833
        return ast_region_to_region(tcx, r);
1834 1835
    }

1836 1837 1838 1839
    if let Err(ErrorReported) = this.ensure_super_predicates(span,principal_trait_ref.def_id()) {
        return ty::ReStatic;
    }

1840 1841 1842
    // No explicit region bound specified. Therefore, examine trait
    // bounds and see if we can derive region bounds from those.
    let derived_region_bounds =
1843
        object_region_bounds(tcx, &principal_trait_ref, builtin_bounds);
1844 1845 1846 1847

    // If there are no derived region bounds, then report back that we
    // can find no region bound.
    if derived_region_bounds.len() == 0 {
1848 1849 1850 1851 1852 1853 1854 1855 1856
        match rscope.object_lifetime_default(span) {
            Some(r) => { return r; }
            None => {
                span_err!(this.tcx().sess, span, E0228,
                          "the lifetime bound for this object type cannot be deduced \
                           from context; please supply an explicit bound");
                return ty::ReStatic;
            }
        }
1857 1858 1859 1860 1861
    }

    // If any of the derived region bounds are 'static, that is always
    // the best choice.
    if derived_region_bounds.iter().any(|r| ty::ReStatic == *r) {
1862
        return ty::ReStatic;
1863 1864 1865 1866 1867
    }

    // Determine whether there is exactly one unique region in the set
    // of derived region bounds. If so, use that. Otherwise, report an
    // error.
1868
    let r = derived_region_bounds[0];
A
Aaron Turon 已提交
1869
    if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
B
Brian Anderson 已提交
1870
        span_err!(tcx.sess, span, E0227,
1871
                  "ambiguous lifetime bound, explicit lifetime bound required");
1872
    }
1873
    return r;
1874 1875
}

N
Niko Matsakis 已提交
1876 1877 1878 1879 1880 1881
/// Given an object type like `SomeTrait+Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `ty::required_region_bounds`, see that for more information.
1882 1883 1884 1885 1886
pub fn object_region_bounds<'tcx>(
    tcx: &ty::ctxt<'tcx>,
    principal: &ty::PolyTraitRef<'tcx>,
    others: ty::BuiltinBounds)
    -> Vec<ty::Region>
1887
{
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
    // Since we don't actually *know* the self type for an object,
    // this "open(err)" serves as a kind of dummy standin -- basically
    // a skolemized type.
    let open_ty = ty::mk_infer(tcx, ty::FreshTy(0));

    // Note that we preserve the overall binding levels here.
    assert!(!open_ty.has_escaping_regions());
    let substs = tcx.mk_substs(principal.0.substs.with_self_ty(open_ty));
    let trait_refs = vec!(ty::Binder(Rc::new(ty::TraitRef::new(principal.0.def_id, substs))));

    let param_bounds = ty::ParamBounds {
        region_bounds: Vec::new(),
        builtin_bounds: others,
        trait_bounds: trait_refs,
        projection_bounds: Vec::new(), // not relevant to computing region bounds
    };

    let predicates = ty::predicates(tcx, open_ty, &param_bounds);
    ty::required_region_bounds(tcx, open_ty, predicates)
1907 1908 1909 1910
}

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
1911
    pub trait_bounds: Vec<&'a ast::PolyTraitRef>,
1912 1913 1914
    pub region_bounds: Vec<&'a ast::Lifetime>,
}

S
Steve Klabnik 已提交
1915 1916
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
1917 1918
pub fn partition_bounds<'a>(tcx: &ty::ctxt,
                            _span: Span,
1919
                            ast_bounds: &'a [ast::TyParamBound])
1920 1921 1922 1923 1924
                            -> PartitionedBounds<'a>
{
    let mut builtin_bounds = ty::empty_builtin_bounds();
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
1925
    for ast_bound in ast_bounds {
1926
        match *ast_bound {
N
Nick Cameron 已提交
1927
            ast::TraitTyParamBound(ref b, ast::TraitBoundModifier::None) => {
1928
                match ::lookup_full_def(tcx, b.trait_ref.path.span, b.trait_ref.ref_id) {
1929
                    def::DefTrait(trait_did) => {
1930 1931 1932
                        if ty::try_add_builtin_trait(tcx,
                                                     trait_did,
                                                     &mut builtin_bounds) {
1933 1934
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
1935 1936 1937 1938 1939 1940 1941
                            if parameters.types().len() > 0 {
                                check_type_argument_count(tcx, b.trait_ref.path.span,
                                                          parameters.types().len(), 0, 0);
                            }
                            if parameters.lifetimes().len() > 0{
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
1942
                            }
1943
                            continue; // success
1944 1945
                        }
                    }
1946 1947 1948 1949
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
1950
                }
1951 1952
                trait_bounds.push(b);
            }
N
Nick Cameron 已提交
1953
            ast::TraitTyParamBound(_, ast::TraitBoundModifier::Maybe) => {}
1954 1955 1956
            ast::RegionTyParamBound(ref l) => {
                region_bounds.push(l);
            }
1957
        }
1958 1959 1960 1961 1962 1963
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
1964 1965
    }
}
1966 1967 1968 1969 1970

fn prohibit_projections<'tcx>(tcx: &ty::ctxt<'tcx>,
                              bindings: &[ConvertedBinding<'tcx>])
{
    for binding in bindings.iter().take(1) {
B
Brian Anderson 已提交
1971
        span_err!(tcx.sess, binding.span, E0229,
1972 1973 1974
            "associated type bindings are not allowed here");
    }
}
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

fn check_type_argument_count(tcx: &ty::ctxt, span: Span, supplied: usize,
                             required: usize, accepted: usize) {
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0243,
                  "wrong number of type arguments: {} {}, found {}",
                  expected, required, supplied);
    } else if supplied > accepted {
        let expected = if required < accepted {
            "expected at most"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0244,
                  "wrong number of type arguments: {} {}, found {}",
                  expected,
                  accepted,
                  supplied);
    }
}

fn report_lifetime_number_error(tcx: &ty::ctxt, span: Span, number: usize, expected: usize) {
    span_err!(tcx.sess, span, E0107,
              "wrong number of lifetime parameters: expected {}, found {}",
              expected, number);
}