slab.c 110.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/nodemask.h>
107
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
108
#include	<linux/mutex.h>
I
Ingo Molnar 已提交
109
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
176 177
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
179
#else
180
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
181 182
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

205
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
206 207
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
208 209
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
210 211 212 213 214 215 216 217 218

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
219 220 221 222 223 224
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
244
	struct rcu_head head;
245
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
246
	void *addr;
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
266
	spinlock_t lock;
A
Andrew Morton 已提交
267 268 269 270 271 272
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
273 274
};

A
Andrew Morton 已提交
275 276 277
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
278 279 280 281
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
282
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
283 284 285
};

/*
286
 * The slab lists for all objects.
L
Linus Torvalds 已提交
287 288
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
289 290 291 292 293
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
294
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
295 296 297
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
298 299
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
300 301
};

302 303 304 305 306 307 308 309 310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

311 312 313 314
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
315
static int enable_cpucache(struct kmem_cache *cachep);
316 317
static void cache_reap(void *unused);

318
/*
A
Andrew Morton 已提交
319 320
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
321
 */
322
static __always_inline int index_of(const size_t size)
323
{
324 325
	extern void __bad_size(void);

326 327 328 329 330 331 332 333 334 335
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
336
		__bad_size();
337
	} else
338
		__bad_size();
339 340 341
	return 0;
}

342 343
static int slab_early_init = 1;

344 345
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
346

P
Pekka Enberg 已提交
347
static void kmem_list3_init(struct kmem_list3 *parent)
348 349 350 351 352 353
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
354
	parent->colour_next = 0;
355 356 357 358 359
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
360 361 362 363
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
364 365
	} while (0)

A
Andrew Morton 已提交
366 367
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
368 369 370 371
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
372 373

/*
374
 * struct kmem_cache
L
Linus Torvalds 已提交
375 376 377
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
378

379
struct kmem_cache {
L
Linus Torvalds 已提交
380
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
381
	struct array_cache *array[NR_CPUS];
382
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
383 384 385
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
386

387
	unsigned int buffer_size;
388
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
389
	struct kmem_list3 *nodelists[MAX_NUMNODES];
390

A
Andrew Morton 已提交
391 392
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
393

394
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
395
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
396
	unsigned int gfporder;
L
Linus Torvalds 已提交
397 398

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
399
	gfp_t gfpflags;
L
Linus Torvalds 已提交
400

A
Andrew Morton 已提交
401
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
402
	unsigned int colour_off;	/* colour offset */
403
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
404
	unsigned int slab_size;
A
Andrew Morton 已提交
405
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
406 407

	/* constructor func */
408
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
409 410

	/* de-constructor func */
411
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
412

413
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
414 415
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
416

417
/* 6) statistics */
L
Linus Torvalds 已提交
418
#if STATS
P
Pekka Enberg 已提交
419 420 421 422 423 424 425 426 427
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
428
	unsigned long node_overflow;
P
Pekka Enberg 已提交
429 430 431 432
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
433 434
#endif
#if DEBUG
435 436 437 438 439 440 441 442
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
443 444 445 446 447 448 449
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
450 451 452
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
453
 *
A
Adrian Bunk 已提交
454
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
455 456 457 458 459 460 461 462 463 464
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
465
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
466 467 468 469 470
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
471 472
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
473
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
474
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
475 476 477 478 479
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
489
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
490 491 492
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
493
#define	STATS_INC_NODEFREES(x)	do { } while (0)
494
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
495
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
496 497 498 499 500 501 502 503
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
504 505
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
506
 * 0		: objp
507
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
508 509
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
510
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
511
 * 		redzone word.
512 513
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
514 515
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
516
 */
517
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
518
{
519
	return cachep->obj_offset;
L
Linus Torvalds 已提交
520 521
}

522
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
523
{
524
	return cachep->obj_size;
L
Linus Torvalds 已提交
525 526
}

527
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
528 529
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
531 532
}

533
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
534 535 536
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
537
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
538
					 2 * BYTES_PER_WORD);
539
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
540 541
}

542
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
543 544
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
546 547 548 549
}

#else

550 551
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
552 553 554 555 556 557 558
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
559 560
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
580 581 582 583
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
584
 */
585 586 587 588 589 590 591
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
592 593
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
594
	BUG_ON(!PageSlab(page));
595 596 597 598 599 600 601 602 603 604
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
605 606
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
607
	BUG_ON(!PageSlab(page));
608 609
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
610

611 612 613 614 615 616 617 618 619 620 621 622
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

623 624 625 626 627 628 629 630 631 632 633 634
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
635 636 637
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
655
	{NULL,}
L
Linus Torvalds 已提交
656 657 658 659
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
660
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
661
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
662
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
663 664

/* internal cache of cache description objs */
665
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
666 667 668
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
669
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
670
	.name = "kmem_cache",
L
Linus Torvalds 已提交
671
#if DEBUG
672
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
673 674 675
#endif
};

676 677
#define BAD_ALIEN_MAGIC 0x01020304ul

678 679 680 681 682 683 684 685
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
686 687 688 689
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
690
 */
691 692 693 694
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
695 696 697

{
	int q;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
725 726 727
	}
}
#else
728
static inline void init_lock_keys(void)
729 730 731 732
{
}
#endif

L
Linus Torvalds 已提交
733
/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
734
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
735 736 737 738 739 740 741 742
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
743 744
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
745 746 747
	FULL
} g_cpucache_up;

748 749 750 751 752 753 754 755
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

L
Linus Torvalds 已提交
756 757
static DEFINE_PER_CPU(struct work_struct, reap_work);

758
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
759 760 761 762
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
763 764
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
765 766 767 768 769
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
770 771 772
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
773
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
774 775 776 777 778
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
779
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
780 781 782 783 784 785 786 787
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
788
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
789 790 791 792
{
	return __find_general_cachep(size, gfpflags);
}

793
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
794
{
795 796
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
797

A
Andrew Morton 已提交
798 799 800
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
801 802 803 804 805 806 807
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
808

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
857 858 859 860
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
861 862
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
863 864
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
865
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
866 867 868
	dump_stack();
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
884
		node = first_node(node_online_map);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
927
		init_reap_node(cpu);
L
Linus Torvalds 已提交
928 929 930 931 932
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

933
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
934
					    int batchcount)
L
Linus Torvalds 已提交
935
{
P
Pekka Enberg 已提交
936
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
937 938
	struct array_cache *nc = NULL;

939
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
940 941 942 943 944
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
945
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
946 947 948 949
	}
	return nc;
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

static inline void *__cache_alloc_node(struct kmem_cache *cachep,
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1007
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
1008
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1009

P
Pekka Enberg 已提交
1010
static struct array_cache **alloc_alien_cache(int node, int limit)
1011 1012
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
1013
	int memsize = sizeof(void *) * MAX_NUMNODES;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1027
				for (i--; i <= 0; i--)
1028 1029 1030 1031 1032 1033 1034 1035 1036
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1037
static void free_alien_cache(struct array_cache **ac_ptr)
1038 1039 1040 1041 1042 1043
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1044
	    kfree(ac_ptr[i]);
1045 1046 1047
	kfree(ac_ptr);
}

1048
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1049
				struct array_cache *ac, int node)
1050 1051 1052 1053 1054
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1055 1056 1057 1058 1059
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1060 1061
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1062

1063
		free_block(cachep, ac->entry, ac->avail, node);
1064 1065 1066 1067 1068
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1069 1070 1071 1072 1073 1074 1075 1076 1077
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1078 1079

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1080 1081 1082 1083 1084 1085
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1086 1087
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1088
{
P
Pekka Enberg 已提交
1089
	int i = 0;
1090 1091 1092 1093
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1094
		ac = alien[i];
1095 1096 1097 1098 1099 1100 1101
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1102

1103
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1121
		spin_lock(&alien->lock);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1135 1136
#endif

1137
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1138
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1139 1140
{
	long cpu = (long)hcpu;
1141
	struct kmem_cache *cachep;
1142 1143 1144
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1145 1146 1147

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1148
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1149 1150
		/*
		 * We need to do this right in the beginning since
1151 1152 1153 1154 1155
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1156
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1157 1158
			/*
			 * Set up the size64 kmemlist for cpu before we can
1159 1160 1161 1162
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1163 1164
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1165 1166 1167
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1168
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1169

1170 1171 1172 1173 1174
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1175 1176
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1177

1178 1179
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1180 1181
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1182 1183 1184
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1185 1186 1187 1188
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1189
		list_for_each_entry(cachep, &cache_chain, next) {
1190
			struct array_cache *nc;
1191 1192
			struct array_cache *shared;
			struct array_cache **alien;
1193

1194
			nc = alloc_arraycache(node, cachep->limit,
1195
						cachep->batchcount);
L
Linus Torvalds 已提交
1196 1197
			if (!nc)
				goto bad;
1198 1199 1200 1201 1202
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1203

1204 1205 1206
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1207
			cachep->array[cpu] = nc;
1208 1209 1210
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1211 1212 1213 1214 1215 1216 1217 1218
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1219
			}
1220 1221 1222 1223 1224 1225 1226 1227 1228
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1229
		}
I
Ingo Molnar 已提交
1230
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1231 1232 1233 1234 1235 1236
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1245 1246
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1247
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1248 1249
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1250 1251
			struct array_cache *shared;
			struct array_cache **alien;
1252
			cpumask_t mask;
L
Linus Torvalds 已提交
1253

1254
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1255 1256 1257
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1258 1259 1260
			l3 = cachep->nodelists[node];

			if (!l3)
1261
				goto free_array_cache;
1262

1263
			spin_lock_irq(&l3->list_lock);
1264 1265 1266 1267

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1268
				free_block(cachep, nc->entry, nc->avail, node);
1269 1270

			if (!cpus_empty(mask)) {
1271
				spin_unlock_irq(&l3->list_lock);
1272
				goto free_array_cache;
P
Pekka Enberg 已提交
1273
			}
1274

1275 1276
			shared = l3->shared;
			if (shared) {
1277
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1278
					   l3->shared->avail, node);
1279 1280 1281
				l3->shared = NULL;
			}

1282 1283 1284 1285 1286 1287 1288 1289 1290
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1291
			}
1292
free_array_cache:
L
Linus Torvalds 已提交
1293 1294
			kfree(nc);
		}
1295 1296 1297 1298 1299 1300 1301 1302 1303
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1304
			drain_freelist(cachep, l3, l3->free_objects);
1305
		}
I
Ingo Molnar 已提交
1306
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1307 1308 1309 1310
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1311
bad:
I
Ingo Molnar 已提交
1312
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1313 1314 1315
	return NOTIFY_BAD;
}

1316 1317 1318
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1319

1320 1321 1322
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1323 1324
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1325 1326 1327 1328 1329 1330 1331 1332 1333
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1334 1335 1336 1337 1338
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1339 1340 1341 1342 1343
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1344 1345 1346
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1347 1348 1349 1350 1351 1352
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1353
	int i;
1354
	int order;
1355 1356 1357 1358 1359 1360

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1371 1372 1373
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1374 1375 1376
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1377
	 * 2) Create the first kmalloc cache.
1378
	 *    The struct kmem_cache for the new cache is allocated normally.
1379 1380 1381
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1382 1383
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1384 1385 1386
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392 1393
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1394
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1395

A
Andrew Morton 已提交
1396 1397
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1398

1399 1400 1401 1402 1403 1404
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1405
	BUG_ON(!cache_cache.num);
1406
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1407 1408 1409
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1415 1416 1417 1418
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1419 1420 1421
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1422 1423 1424 1425
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1426

A
Andrew Morton 已提交
1427
	if (INDEX_AC != INDEX_L3) {
1428
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1429 1430 1431 1432 1433 1434
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1435

1436 1437
	slab_early_init = 0;

L
Linus Torvalds 已提交
1438
	while (sizes->cs_size != ULONG_MAX) {
1439 1440
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1441 1442 1443
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1444 1445
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1446
		if (!sizes->cs_cachep) {
1447
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1448 1449 1450 1451 1452
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1453 1454

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1455 1456 1457 1458 1459
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1460 1461 1462 1463 1464
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1465
		struct array_cache *ptr;
1466

L
Linus Torvalds 已提交
1467
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1468

L
Linus Torvalds 已提交
1469
		local_irq_disable();
1470 1471
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1472
		       sizeof(struct arraycache_init));
1473 1474 1475 1476 1477
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1478 1479
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1480

L
Linus Torvalds 已提交
1481
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1482

L
Linus Torvalds 已提交
1483
		local_irq_disable();
1484
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1485
		       != &initarray_generic.cache);
1486
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1487
		       sizeof(struct arraycache_init));
1488 1489 1490 1491 1492
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1493
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1494
		    ptr;
L
Linus Torvalds 已提交
1495 1496
		local_irq_enable();
	}
1497 1498 1499 1500 1501
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1502
			  numa_node_id());
1503 1504 1505

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1506
				  &initkmem_list3[SIZE_AC + node], node);
1507 1508 1509

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1510 1511
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1512 1513 1514
			}
		}
	}
L
Linus Torvalds 已提交
1515

1516
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1517
	{
1518
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1519
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1520
		list_for_each_entry(cachep, &cache_chain, next)
1521 1522
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1523
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1524 1525
	}

1526 1527 1528 1529
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1530 1531 1532
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1533 1534 1535
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1536 1537 1538
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1539 1540 1541
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547 1548
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1549 1550
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1551
	 */
1552
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1553
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1565
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1566 1567
{
	struct page *page;
1568
	int nr_pages;
L
Linus Torvalds 已提交
1569 1570
	int i;

1571
#ifndef CONFIG_MMU
1572 1573 1574
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1575
	 */
1576
	flags |= __GFP_COMP;
1577
#endif
1578 1579 1580 1581 1582 1583 1584

	/*
	 * Under NUMA we want memory on the indicated node. We will handle
	 * the needed fallback ourselves since we want to serve from our
	 * per node object lists first for other nodes.
	 */
	flags |= cachep->gfpflags | GFP_THISNODE;
1585 1586

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1587 1588 1589
	if (!page)
		return NULL;

1590
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1591
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1592 1593 1594 1595 1596
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1597 1598 1599
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604
}

/*
 * Interface to system's page release.
 */
1605
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1606
{
P
Pekka Enberg 已提交
1607
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1608 1609 1610
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1611 1612 1613 1614 1615 1616
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1617
	while (i--) {
N
Nick Piggin 已提交
1618 1619
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1629
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1630
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1640
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1641
			    unsigned long caller)
L
Linus Torvalds 已提交
1642
{
1643
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1644

1645
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1646

P
Pekka Enberg 已提交
1647
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1648 1649
		return;

P
Pekka Enberg 已提交
1650 1651 1652 1653
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1661
				*addr++ = svalue;
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1669
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1670 1671 1672
}
#endif

1673
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1674
{
1675 1676
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1677 1678

	memset(addr, val, size);
P
Pekka Enberg 已提交
1679
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1680 1681 1682 1683 1684
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1685 1686 1687
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1688
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1689 1690 1691 1692 1693
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1694
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1695
	}
L
Linus Torvalds 已提交
1696
	printk("\n");
D
Dave Jones 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1711 1712 1713 1714 1715
}
#endif

#if DEBUG

1716
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1723 1724
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1725 1726 1727 1728
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1729
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1730
		print_symbol("(%s)",
A
Andrew Morton 已提交
1731
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1732 1733
		printk("\n");
	}
1734 1735
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1736
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1737 1738
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1739 1740
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1741 1742 1743 1744
		dump_line(realobj, i, limit);
	}
}

1745
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1746 1747 1748 1749 1750
{
	char *realobj;
	int size, i;
	int lines = 0;

1751 1752
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1753

P
Pekka Enberg 已提交
1754
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1755
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1756
		if (i == size - 1)
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761 1762
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1763
				printk(KERN_ERR
A
Andrew Morton 已提交
1764 1765
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1766 1767 1768
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1769
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1770
			limit = 16;
P
Pekka Enberg 已提交
1771 1772
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1785
		struct slab *slabp = virt_to_slab(objp);
1786
		unsigned int objnr;
L
Linus Torvalds 已提交
1787

1788
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1789
		if (objnr) {
1790
			objp = index_to_obj(cachep, slabp, objnr - 1);
1791
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1792
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1793
			       realobj, size);
L
Linus Torvalds 已提交
1794 1795
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1796
		if (objnr + 1 < cachep->num) {
1797
			objp = index_to_obj(cachep, slabp, objnr + 1);
1798
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1799
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1800
			       realobj, size);
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805 1806
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1807 1808
#if DEBUG
/**
1809 1810 1811 1812 1813 1814
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1815
 */
1816
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1817 1818 1819
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1820
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1821 1822 1823

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1824 1825
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1826
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1827
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1837
					   "was overwritten");
L
Linus Torvalds 已提交
1838 1839
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1840
					   "was overwritten");
L
Linus Torvalds 已提交
1841 1842
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1843
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1844
	}
1845
}
L
Linus Torvalds 已提交
1846
#else
1847
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1848
{
L
Linus Torvalds 已提交
1849 1850 1851
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1852
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1853
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1854 1855
		}
	}
1856
}
L
Linus Torvalds 已提交
1857 1858
#endif

1859 1860 1861 1862 1863
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1864
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1865 1866
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1867
 */
1868
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1869 1870 1871 1872
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1873 1874 1875
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1876
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1882 1883
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1884 1885 1886
	}
}

A
Andrew Morton 已提交
1887 1888 1889 1890
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1891
static void set_up_list3s(struct kmem_cache *cachep, int index)
1892 1893 1894 1895
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1896
		cachep->nodelists[node] = &initkmem_list3[index + node];
1897
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1898 1899
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1900 1901 1902
	}
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1924
/**
1925 1926 1927 1928 1929 1930 1931
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1932 1933 1934 1935 1936
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1937
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1938
			size_t size, size_t align, unsigned long flags)
1939
{
1940
	unsigned long offslab_limit;
1941
	size_t left_over = 0;
1942
	int gfporder;
1943

A
Andrew Morton 已提交
1944
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1945 1946 1947
		unsigned int num;
		size_t remainder;

1948
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1949 1950
		if (!num)
			continue;
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1964

1965
		/* Found something acceptable - save it away */
1966
		cachep->num = num;
1967
		cachep->gfporder = gfporder;
1968 1969
		left_over = remainder;

1970 1971 1972 1973 1974 1975 1976 1977
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1978 1979 1980 1981
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1982
		if (gfporder >= slab_break_gfp_order)
1983 1984
			break;

1985 1986 1987
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1988
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1989 1990 1991 1992 1993
			break;
	}
	return left_over;
}

1994
static int setup_cpu_cache(struct kmem_cache *cachep)
1995
{
1996 1997 1998
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2045
	return 0;
2046 2047
}

L
Linus Torvalds 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2063 2064
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2077
struct kmem_cache *
L
Linus Torvalds 已提交
2078
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2079 2080
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2081
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2082 2083
{
	size_t left_over, slab_size, ralign;
2084
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2085 2086 2087 2088

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2089
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2090
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2091 2092
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2093 2094
		BUG();
	}
L
Linus Torvalds 已提交
2095

2096 2097 2098 2099 2100 2101
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
2102
	mutex_lock(&cache_chain_mutex);
2103

2104
	list_for_each_entry(pc, &cache_chain, next) {
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2119
			       pc->buffer_size);
2120 2121 2122
			continue;
		}

P
Pekka Enberg 已提交
2123
		if (!strcmp(pc->name, name)) {
2124 2125 2126 2127 2128 2129
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2130 2131 2132 2133 2134
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2135
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2145
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2146
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2157 2158
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2159
	 */
2160
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2161

A
Andrew Morton 已提交
2162 2163
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2164 2165 2166
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2167 2168 2169
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2170 2171
	}

A
Andrew Morton 已提交
2172 2173
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2174 2175
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2176 2177 2178 2179
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2180 2181
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2182
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2183 2184 2185 2186
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2187 2188 2189 2190 2191 2192 2193 2194 2195

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

L
Linus Torvalds 已提交
2196 2197 2198 2199
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2200
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2206
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2207
	}
A
Andrew Morton 已提交
2208
	/*
2209
	 * 4) Store it.
L
Linus Torvalds 已提交
2210 2211 2212 2213
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2214
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2215
	if (!cachep)
2216
		goto oops;
L
Linus Torvalds 已提交
2217 2218

#if DEBUG
2219
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2220

2221 2222 2223 2224
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2225 2226
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2227
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2228
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2229 2230
	}
	if (flags & SLAB_STORE_USER) {
2231 2232
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2233 2234 2235 2236
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2237
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2238 2239
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2240 2241 2242 2243 2244
		size = PAGE_SIZE;
	}
#endif
#endif

2245 2246 2247 2248 2249 2250
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255 2256 2257 2258
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2259
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2260 2261 2262 2263 2264

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2265
		goto oops;
L
Linus Torvalds 已提交
2266
	}
P
Pekka Enberg 已提交
2267 2268
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2281 2282
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2289
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2295
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2296

2297
	if (flags & CFLGS_OFF_SLAB) {
2298
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2299 2300 2301 2302 2303 2304 2305 2306 2307
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2308 2309 2310 2311
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2312 2313 2314 2315 2316
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2317 2318 2319

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2320
oops:
L
Linus Torvalds 已提交
2321 2322
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2323
		      name);
I
Ingo Molnar 已提交
2324
	mutex_unlock(&cache_chain_mutex);
2325
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2341
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2342 2343 2344
{
#ifdef CONFIG_SMP
	check_irq_off();
2345
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2346 2347
#endif
}
2348

2349
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2350 2351 2352 2353 2354 2355 2356
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2357 2358 2359 2360
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2361
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2362 2363
#endif

2364 2365 2366 2367
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2368 2369
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2370
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2371
	struct array_cache *ac;
2372
	int node = numa_node_id();
L
Linus Torvalds 已提交
2373 2374

	check_irq_off();
2375
	ac = cpu_cache_get(cachep);
2376 2377 2378
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2379 2380 2381
	ac->avail = 0;
}

2382
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2383
{
2384 2385 2386
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2387
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2388
	check_irq_on();
P
Pekka Enberg 已提交
2389
	for_each_online_node(node) {
2390
		l3 = cachep->nodelists[node];
2391 2392 2393 2394 2395 2396 2397
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2398
			drain_array(cachep, l3, l3->shared, 1, node);
2399
	}
L
Linus Torvalds 已提交
2400 2401
}

2402 2403 2404 2405 2406 2407 2408 2409
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2410
{
2411 2412
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2413 2414
	struct slab *slabp;

2415 2416
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2417

2418
		spin_lock_irq(&l3->list_lock);
2419
		p = l3->slabs_free.prev;
2420 2421 2422 2423
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2424

2425
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2426
#if DEBUG
2427
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2428 2429
#endif
		list_del(&slabp->list);
2430 2431 2432 2433 2434
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2435
		spin_unlock_irq(&l3->list_lock);
2436 2437
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2438
	}
2439 2440
out:
	return nr_freed;
L
Linus Torvalds 已提交
2441 2442
}

2443
static int __cache_shrink(struct kmem_cache *cachep)
2444 2445 2446 2447 2448 2449 2450 2451 2452
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2453 2454 2455 2456 2457 2458 2459
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2460 2461 2462 2463
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2464 2465 2466 2467 2468 2469 2470
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2471
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2472
{
2473
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2483
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2495
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2496
{
2497
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2498 2499 2500 2501 2502

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2503
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2504 2505 2506 2507
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2508
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2509 2510 2511

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2512
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2513
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2514
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2515
		unlock_cpu_hotplug();
2516
		return;
L
Linus Torvalds 已提交
2517 2518 2519
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2520
		synchronize_rcu();
L
Linus Torvalds 已提交
2521

2522
	__kmem_cache_destroy(cachep);
L
Linus Torvalds 已提交
2523 2524 2525 2526
	unlock_cpu_hotplug();
}
EXPORT_SYMBOL(kmem_cache_destroy);

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2538
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2539 2540
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2541 2542
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2543

L
Linus Torvalds 已提交
2544 2545
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2546 2547
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2548 2549 2550
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2551
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2552 2553 2554 2555
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2556
	slabp->s_mem = objp + colour_off;
2557
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2558 2559 2560 2561 2562
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2563
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2564 2565
}

2566
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2567
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2568 2569 2570 2571
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2572
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2585 2586 2587
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2588 2589
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2590
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2591
				     ctor_flags);
L
Linus Torvalds 已提交
2592 2593 2594 2595

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2596
					   " end of an object");
L
Linus Torvalds 已提交
2597 2598
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2599
					   " start of an object");
L
Linus Torvalds 已提交
2600
		}
A
Andrew Morton 已提交
2601 2602
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2603
			kernel_map_pages(virt_to_page(objp),
2604
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2605 2606 2607 2608
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2609
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2610
	}
P
Pekka Enberg 已提交
2611
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2612 2613 2614
	slabp->free = 0;
}

2615
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2616
{
A
Andrew Morton 已提交
2617 2618 2619 2620
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2621 2622
}

A
Andrew Morton 已提交
2623 2624
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2625
{
2626
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2640 2641
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2642
{
2643
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2644 2645 2646 2647 2648

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2649
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2650
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2651
				"'%s', objp %p\n", cachep->name, objp);
2652 2653 2654 2655 2656 2657 2658 2659
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2660 2661 2662 2663 2664 2665 2666
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2667
{
2668
	int nr_pages;
L
Linus Torvalds 已提交
2669 2670
	struct page *page;

2671
	page = virt_to_page(addr);
2672

2673
	nr_pages = 1;
2674
	if (likely(!PageCompound(page)))
2675 2676
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2677
	do {
2678 2679
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2680
		page++;
2681
	} while (--nr_pages);
L
Linus Torvalds 已提交
2682 2683 2684 2685 2686 2687
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2688
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2689
{
P
Pekka Enberg 已提交
2690 2691 2692 2693 2694
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2695
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2696

A
Andrew Morton 已提交
2697 2698 2699
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2700
	 */
2701
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2714
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2715
	check_irq_off();
2716 2717
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2718 2719

	/* Get colour for the slab, and cal the next value. */
2720 2721 2722 2723 2724
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2725

2726
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2739 2740 2741
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2742
	 */
A
Andrew Morton 已提交
2743 2744
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2745 2746 2747
		goto failed;

	/* Get slab management. */
2748
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2749
	if (!slabp)
L
Linus Torvalds 已提交
2750 2751
		goto opps1;

2752
	slabp->nodeid = nodeid;
2753
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2754 2755 2756 2757 2758 2759

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2760
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2761 2762

	/* Make slab active. */
2763
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2764
	STATS_INC_GROWN(cachep);
2765 2766
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2767
	return 1;
A
Andrew Morton 已提交
2768
opps1:
L
Linus Torvalds 已提交
2769
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2770
failed:
L
Linus Torvalds 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2790 2791
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2792 2793 2794
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2795 2796
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2797 2798 2799 2800
		BUG();
	}
}

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2823
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2824
				   void *caller)
L
Linus Torvalds 已提交
2825 2826 2827 2828 2829
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2830
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2831 2832 2833
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2834
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2835 2836

	if (cachep->flags & SLAB_RED_ZONE) {
2837
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2844
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2845 2846

	BUG_ON(objnr >= cachep->num);
2847
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2848 2849

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2850 2851 2852 2853
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2854
		 */
2855
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2856
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2862
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2863
	}
2864 2865 2866
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2867 2868
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2869
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2870
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2871
			kernel_map_pages(virt_to_page(objp),
2872
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2883
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2884 2885 2886
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2887

L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893 2894
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2895 2896 2897 2898
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2899
		for (i = 0;
2900
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2901
		     i++) {
A
Andrew Morton 已提交
2902
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2903
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2904
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2916
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2917 2918 2919 2920 2921 2922
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2923
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2924
retry:
L
Linus Torvalds 已提交
2925 2926
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2927 2928 2929 2930
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2931 2932 2933
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2934 2935 2936 2937
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2938

2939 2940 2941 2942
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2963 2964
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2976
must_grow:
L
Linus Torvalds 已提交
2977
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2978
alloc_done:
2979
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2980 2981 2982

	if (unlikely(!ac->avail)) {
		int x;
2983 2984
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2985
		/* cache_grow can reenable interrupts, then ac could change. */
2986
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2987
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2988 2989
			return NULL;

A
Andrew Morton 已提交
2990
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2991 2992 2993
			goto retry;
	}
	ac->touched = 1;
2994
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2995 2996
}

A
Andrew Morton 已提交
2997 2998
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2999 3000 3001 3002 3003 3004 3005 3006
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3007 3008
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3009
{
P
Pekka Enberg 已提交
3010
	if (!objp)
L
Linus Torvalds 已提交
3011
		return objp;
P
Pekka Enberg 已提交
3012
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3013
#ifdef CONFIG_DEBUG_PAGEALLOC
3014
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3015
			kernel_map_pages(virt_to_page(objp),
3016
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3028 3029 3030 3031
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3032
			printk(KERN_ERR
A
Andrew Morton 已提交
3033 3034 3035
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3036 3037 3038 3039
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3050
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3051
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3052
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3053 3054 3055 3056 3057

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3058
	}
L
Linus Torvalds 已提交
3059 3060 3061 3062 3063 3064
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3065
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3066
{
P
Pekka Enberg 已提交
3067
	void *objp;
L
Linus Torvalds 已提交
3068 3069
	struct array_cache *ac;

3070
	check_irq_off();
3071
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3072 3073 3074
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3075
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3076 3077 3078 3079
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3080 3081 3082
	return objp;
}

A
Andrew Morton 已提交
3083 3084
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
3085 3086
{
	unsigned long save_flags;
3087
	void *objp = NULL;
3088 3089 3090 3091

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
3092

3093 3094
	if (unlikely(NUMA_BUILD &&
			current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3095 3096 3097 3098
		objp = alternate_node_alloc(cachep, flags);

	if (!objp)
		objp = ____cache_alloc(cachep, flags);
3099 3100 3101 3102 3103 3104
	/*
	 * We may just have run out of memory on the local node.
	 * __cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (NUMA_BUILD && !objp)
 		objp = __cache_alloc_node(cachep, flags, numa_node_id());
L
Linus Torvalds 已提交
3105
	local_irq_restore(save_flags);
3106
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3107
					    caller);
3108
	prefetchw(objp);
L
Linus Torvalds 已提交
3109 3110 3111
	return objp;
}

3112
#ifdef CONFIG_NUMA
3113
/*
3114
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3115 3116 3117 3118 3119 3120 3121 3122
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3123
	if (in_interrupt() || (flags & __GFP_THISNODE))
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
/*
 * Fallback function if there was no memory available and no objects on a
 * certain node and we are allowed to fall back. We mimick the behavior of
 * the page allocator. We fall back according to a zonelist determined by
 * the policy layer while obeying cpuset constraints.
 */
void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
{
	struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	struct zone **z;
	void *obj = NULL;

	for (z = zonelist->zones; *z && !obj; z++)
		if (zone_idx(*z) <= ZONE_NORMAL &&
				cpuset_zone_allowed(*z, flags))
			obj = __cache_alloc_node(cache,
					flags | __GFP_THISNODE,
					zone_to_nid(*z));
	return obj;
}

3157 3158
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3159
 */
A
Andrew Morton 已提交
3160 3161
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
3162 3163
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3164 3165 3166 3167 3168 3169 3170 3171
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3172
retry:
3173
	check_irq_off();
P
Pekka Enberg 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3193
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3194 3195 3196 3197 3198
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3199
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3200
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3201
	else
P
Pekka Enberg 已提交
3202
		list_add(&slabp->list, &l3->slabs_partial);
3203

P
Pekka Enberg 已提交
3204 3205
	spin_unlock(&l3->list_lock);
	goto done;
3206

A
Andrew Morton 已提交
3207
must_grow:
P
Pekka Enberg 已提交
3208 3209
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
3210 3211
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3212

3213 3214 3215 3216 3217
	if (!(flags & __GFP_THISNODE))
		/* Unable to grow the cache. Fall back to other nodes. */
		return fallback_alloc(cachep, flags);

	return NULL;
3218

A
Andrew Morton 已提交
3219
done:
P
Pekka Enberg 已提交
3220
	return obj;
3221 3222 3223 3224 3225 3226
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3227
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3228
		       int node)
L
Linus Torvalds 已提交
3229 3230
{
	int i;
3231
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3232 3233 3234 3235 3236

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3237
		slabp = virt_to_slab(objp);
3238
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3239
		list_del(&slabp->list);
3240
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3241
		check_slabp(cachep, slabp);
3242
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3243
		STATS_DEC_ACTIVE(cachep);
3244
		l3->free_objects++;
L
Linus Torvalds 已提交
3245 3246 3247 3248
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3249 3250
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3251 3252 3253 3254 3255 3256
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3257 3258
				slab_destroy(cachep, slabp);
			} else {
3259
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3260 3261 3262 3263 3264 3265
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3266
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3267 3268 3269 3270
		}
	}
}

3271
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3272 3273
{
	int batchcount;
3274
	struct kmem_list3 *l3;
3275
	int node = numa_node_id();
L
Linus Torvalds 已提交
3276 3277 3278 3279 3280 3281

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3282
	l3 = cachep->nodelists[node];
3283
	spin_lock(&l3->list_lock);
3284 3285
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3286
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3287 3288 3289
		if (max) {
			if (batchcount > max)
				batchcount = max;
3290
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3291
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3292 3293 3294 3295 3296
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3297
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3298
free_done:
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303
#if STATS
	{
		int i = 0;
		struct list_head *p;

3304 3305
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3317
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3318
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3319
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3320 3321 3322
}

/*
A
Andrew Morton 已提交
3323 3324
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3325
 */
3326
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3327
{
3328
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3329 3330 3331 3332

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3333
	if (cache_free_alien(cachep, objp))
3334 3335
		return;

L
Linus Torvalds 已提交
3336 3337
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3338
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3339 3340 3341 3342
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3343
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3355
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3356
{
3357
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3358 3359 3360
}
EXPORT_SYMBOL(kmem_cache_alloc);

3361
/**
3362
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3392
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3393
{
P
Pekka Enberg 已提交
3394
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3395
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3396
	unsigned long align_mask = BYTES_PER_WORD - 1;
3397
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3413
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3414 3415
		goto out;
	return 1;
A
Andrew Morton 已提交
3416
out:
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3430 3431
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3432
 */
3433
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3434
{
3435 3436
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3437

3438 3439
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3440 3441

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3442
			!cachep->nodelists[nodeid])
3443 3444 3445
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3446
	local_irq_restore(save_flags);
3447 3448 3449

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3450

3451
	return ptr;
L
Linus Torvalds 已提交
3452 3453 3454
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

3455
void *__kmalloc_node(size_t size, gfp_t flags, int node)
3456
{
3457
	struct kmem_cache *cachep;
3458 3459 3460 3461 3462 3463

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3464
EXPORT_SYMBOL(__kmalloc_node);
L
Linus Torvalds 已提交
3465 3466 3467
#endif

/**
3468
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3469
 * @size: how many bytes of memory are required.
3470
 * @flags: the type of memory to allocate (see kmalloc).
3471
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3472
 */
3473 3474
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3475
{
3476
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3477

3478 3479 3480 3481 3482 3483
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3484 3485
	if (unlikely(cachep == NULL))
		return NULL;
3486 3487 3488 3489
	return __cache_alloc(cachep, flags, caller);
}


3490
#ifdef CONFIG_DEBUG_SLAB
3491 3492
void *__kmalloc(size_t size, gfp_t flags)
{
3493
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3494 3495 3496
}
EXPORT_SYMBOL(__kmalloc);

3497 3498 3499 3500 3501
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3502 3503 3504 3505 3506 3507 3508

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3509 3510
#endif

L
Linus Torvalds 已提交
3511 3512 3513 3514 3515 3516 3517 3518
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3519
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3520 3521 3522
{
	unsigned long flags;

3523 3524
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3525
	local_irq_save(flags);
3526
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531 3532 3533 3534
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3535 3536
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3542
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547 3548
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3549
	c = virt_to_cache(objp);
3550
	debug_check_no_locks_freed(objp, obj_size(c));
3551
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3552 3553 3554 3555
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3556
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3557
{
3558
	return obj_size(cachep);
L
Linus Torvalds 已提交
3559 3560 3561
}
EXPORT_SYMBOL(kmem_cache_size);

3562
const char *kmem_cache_name(struct kmem_cache *cachep)
3563 3564 3565 3566 3567
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3568
/*
3569
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3570
 */
3571
static int alloc_kmemlist(struct kmem_cache *cachep)
3572 3573 3574
{
	int node;
	struct kmem_list3 *l3;
3575 3576
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3577 3578

	for_each_online_node(node) {
3579

A
Andrew Morton 已提交
3580 3581
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3582
			goto fail;
3583

3584 3585
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3586
					0xbaadf00d);
3587 3588
		if (!new_shared) {
			free_alien_cache(new_alien);
3589
			goto fail;
3590
		}
3591

A
Andrew Morton 已提交
3592 3593
		l3 = cachep->nodelists[node];
		if (l3) {
3594 3595
			struct array_cache *shared = l3->shared;

3596 3597
			spin_lock_irq(&l3->list_lock);

3598
			if (shared)
3599 3600
				free_block(cachep, shared->entry,
						shared->avail, node);
3601

3602 3603
			l3->shared = new_shared;
			if (!l3->alien) {
3604 3605 3606
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3607
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3608
					cachep->batchcount + cachep->num;
3609
			spin_unlock_irq(&l3->list_lock);
3610
			kfree(shared);
3611 3612 3613
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3614
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3615 3616 3617
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3618
			goto fail;
3619
		}
3620 3621 3622

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3623
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3624
		l3->shared = new_shared;
3625
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3626
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3627
					cachep->batchcount + cachep->num;
3628 3629
		cachep->nodelists[node] = l3;
	}
3630
	return 0;
3631

A
Andrew Morton 已提交
3632
fail:
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3648
	return -ENOMEM;
3649 3650
}

L
Linus Torvalds 已提交
3651
struct ccupdate_struct {
3652
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3653 3654 3655 3656 3657
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3658
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3659 3660 3661
	struct array_cache *old;

	check_irq_off();
3662
	old = cpu_cache_get(new->cachep);
3663

L
Linus Torvalds 已提交
3664 3665 3666 3667
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3668
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3669 3670
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3671
{
3672
	struct ccupdate_struct *new;
3673
	int i;
L
Linus Torvalds 已提交
3674

3675 3676 3677 3678
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3679
	for_each_online_cpu(i) {
3680
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3681
						batchcount);
3682
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3683
			for (i--; i >= 0; i--)
3684 3685
				kfree(new->new[i]);
			kfree(new);
3686
			return -ENOMEM;
L
Linus Torvalds 已提交
3687 3688
		}
	}
3689
	new->cachep = cachep;
L
Linus Torvalds 已提交
3690

3691
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3692

L
Linus Torvalds 已提交
3693 3694 3695
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3696
	cachep->shared = shared;
L
Linus Torvalds 已提交
3697

3698
	for_each_online_cpu(i) {
3699
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3700 3701
		if (!ccold)
			continue;
3702
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3703
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3704
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3705 3706
		kfree(ccold);
	}
3707
	kfree(new);
3708
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3709 3710
}

3711
/* Called with cache_chain_mutex held always */
3712
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3713 3714 3715 3716
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3717 3718
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3719 3720
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3721
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3722 3723 3724 3725
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3726
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3727
		limit = 1;
3728
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3729
		limit = 8;
3730
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3731
		limit = 24;
3732
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3733 3734 3735 3736
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3737 3738
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3748
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3749 3750 3751 3752
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3753 3754 3755
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3756 3757 3758 3759
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3760
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3761 3762
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3763
		       cachep->name, -err);
3764
	return err;
L
Linus Torvalds 已提交
3765 3766
}

3767 3768
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3769 3770
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3771 3772 3773
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3774 3775 3776
{
	int tofree;

3777 3778
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3779 3780
	if (ac->touched && !force) {
		ac->touched = 0;
3781
	} else {
3782
		spin_lock_irq(&l3->list_lock);
3783 3784 3785 3786 3787 3788 3789 3790 3791
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3792
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3793 3794 3795 3796 3797
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3798
 * @unused: unused parameter
L
Linus Torvalds 已提交
3799 3800 3801 3802 3803 3804
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3805 3806
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3807 3808 3809
 */
static void cache_reap(void *unused)
{
3810
	struct kmem_cache *searchp;
3811
	struct kmem_list3 *l3;
3812
	int node = numa_node_id();
L
Linus Torvalds 已提交
3813

I
Ingo Molnar 已提交
3814
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3815
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3816 3817
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3818 3819 3820
		return;
	}

3821
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
3822 3823
		check_irq_on();

3824 3825 3826 3827 3828
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3829
		l3 = searchp->nodelists[node];
3830

3831
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3832

3833
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3834

3835 3836 3837 3838
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3839
		if (time_after(l3->next_reap, jiffies))
3840
			goto next;
L
Linus Torvalds 已提交
3841

3842
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3843

3844
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3845

3846
		if (l3->free_touched)
3847
			l3->free_touched = 0;
3848 3849
		else {
			int freed;
L
Linus Torvalds 已提交
3850

3851 3852 3853 3854
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3855
next:
L
Linus Torvalds 已提交
3856 3857 3858
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3859
	mutex_unlock(&cache_chain_mutex);
3860
	next_reap_node();
3861
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
3862
	/* Set up the next iteration */
3863
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3864 3865 3866 3867
}

#ifdef CONFIG_PROC_FS

3868
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3869
{
3870 3871 3872 3873
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3874
#if STATS
3875
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3876
#else
3877
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3878
#endif
3879 3880 3881 3882
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3883
#if STATS
3884
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3885
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3886
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3887
#endif
3888 3889 3890 3891 3892 3893 3894 3895
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3896
	mutex_lock(&cache_chain_mutex);
3897 3898
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903 3904
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3905
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3906 3907 3908 3909
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3910
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3911
	++*pos;
A
Andrew Morton 已提交
3912 3913
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3914 3915 3916 3917
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3918
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3919 3920 3921 3922
}

static int s_show(struct seq_file *m, void *p)
{
3923
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
3924 3925 3926 3927 3928
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3929
	const char *name;
L
Linus Torvalds 已提交
3930
	char *error = NULL;
3931 3932
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3933 3934 3935

	active_objs = 0;
	num_slabs = 0;
3936 3937 3938 3939 3940
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3941 3942
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3943

3944
		list_for_each_entry(slabp, &l3->slabs_full, list) {
3945 3946 3947 3948 3949
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3950
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3951 3952 3953 3954 3955 3956 3957
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
3958
		list_for_each_entry(slabp, &l3->slabs_free, list) {
3959 3960 3961 3962 3963
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3964 3965
		if (l3->shared)
			shared_avail += l3->shared->avail;
3966

3967
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3968
	}
P
Pekka Enberg 已提交
3969 3970
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3971
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3972 3973
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3974
	name = cachep->name;
L
Linus Torvalds 已提交
3975 3976 3977 3978
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3979
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3980
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3981
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3982
		   cachep->limit, cachep->batchcount, cachep->shared);
3983
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3984
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3985
#if STATS
P
Pekka Enberg 已提交
3986
	{			/* list3 stats */
L
Linus Torvalds 已提交
3987 3988 3989 3990 3991 3992 3993
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3994
		unsigned long node_frees = cachep->node_frees;
3995
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
3996

3997
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3998
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
3999
				reaped, errors, max_freeable, node_allocs,
4000
				node_frees, overflows);
L
Linus Torvalds 已提交
4001 4002 4003 4004 4005 4006 4007 4008 4009
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4010
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4032 4033 4034 4035
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4046 4047
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4048
{
P
Pekka Enberg 已提交
4049
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4050
	int limit, batchcount, shared, res;
4051
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4052

L
Linus Torvalds 已提交
4053 4054 4055 4056
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4057
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4068
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4069
	res = -EINVAL;
4070
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4071
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4072 4073
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4074
				res = 0;
L
Linus Torvalds 已提交
4075
			} else {
4076
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4077
						       batchcount, shared);
L
Linus Torvalds 已提交
4078 4079 4080 4081
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4082
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4083 4084 4085 4086
	if (res >= 0)
		res = count;
	return res;
}
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4196
		list_for_each_entry(slabp, &l3->slabs_full, list)
4197
			handle_slab(n, cachep, slabp);
4198
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4225

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4236 4237
#endif

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4250 4251
unsigned int ksize(const void *objp)
{
4252 4253
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4254

4255
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4256
}