slab.c 96.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts - 
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
 *  Several members in kmem_cache_t and struct slab never change, they
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
104
#include	<linux/string.h>
105
#include	<linux/nodemask.h>
106
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
107
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

203
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246 247 248
	struct rcu_head head;
	kmem_cache_t *cachep;
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268 269 270 271 272 273 274
	spinlock_t lock;
	void *entry[0];		/*
				 * Must have this definition in here for the proper
				 * alignment of array_cache. Also simplifies accessing
				 * the entries.
				 * [0] is for gcc 2.95. It should really be [].
				 */
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
};

/* bootstrap: The caches do not work without cpuarrays anymore,
 * but the cpuarrays are allocated from the generic caches...
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294 295 296 297 298 299
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned long next_reap;
	int free_touched;
	unsigned int free_limit;
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
L
Linus Torvalds 已提交
300 301
};

302 303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
312
 * This function must be completely optimized away if
313 314 315 316
 * a constant is passed to it. Mostly the same as
 * what is in linux/slab.h except it returns an
 * index.
 */
317
static __always_inline int index_of(const size_t size)
318
{
319 320
	extern void __bad_size(void);

321 322 323 324 325 326 327 328 329 330
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
331
		__bad_size();
332
	} else
333
		__bad_size();
334 335 336 337 338
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static inline void kmem_list3_init(struct kmem_list3 *parent)
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)	\
	do {	\
		INIT_LIST_HEAD(listp);		\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
	do {					\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
364 365 366 367 368 369

/*
 * kmem_cache_t
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
370

371
struct kmem_cache {
L
Linus Torvalds 已提交
372
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
373 374 375 376
	struct array_cache *array[NR_CPUS];
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
377
	unsigned int buffer_size;
378
/* 2) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
379 380 381 382
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	unsigned int flags;	/* constant flags */
	unsigned int num;	/* # of objs per slab */
	spinlock_t spinlock;
L
Linus Torvalds 已提交
383 384 385

/* 3) cache_grow/shrink */
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
386
	unsigned int gfporder;
L
Linus Torvalds 已提交
387 388

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
389
	gfp_t gfpflags;
L
Linus Torvalds 已提交
390

P
Pekka Enberg 已提交
391 392 393 394 395 396
	size_t colour;		/* cache colouring range */
	unsigned int colour_off;	/* colour offset */
	unsigned int colour_next;	/* cache colouring */
	kmem_cache_t *slabp_cache;
	unsigned int slab_size;
	unsigned int dflags;	/* dynamic flags */
L
Linus Torvalds 已提交
397 398

	/* constructor func */
P
Pekka Enberg 已提交
399
	void (*ctor) (void *, kmem_cache_t *, unsigned long);
L
Linus Torvalds 已提交
400 401

	/* de-constructor func */
P
Pekka Enberg 已提交
402
	void (*dtor) (void *, kmem_cache_t *, unsigned long);
L
Linus Torvalds 已提交
403 404

/* 4) cache creation/removal */
P
Pekka Enberg 已提交
405 406
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
407 408 409

/* 5) statistics */
#if STATS
P
Pekka Enberg 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
423 424
#endif
#if DEBUG
425 426 427 428 429 430 431 432
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
433 434 435 436 437 438 439 440 441 442
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/* Optimization question: fewer reaps means less 
 * probability for unnessary cpucache drain/refill cycles.
 *
A
Adrian Bunk 已提交
443
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
460
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
L
Linus Torvalds 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
#define	STATS_SET_FREEABLE(x, i) \
				do { if ((x)->max_freeable < i) \
					(x)->max_freeable = i; \
				} while (0)

#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
479
#define	STATS_INC_NODEFREES(x)	do { } while (0)
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
#define	STATS_SET_FREEABLE(x, i) \
				do { } while (0)

#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

/* memory layout of objects:
 * 0		: objp
503
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
504 505
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
506
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
507
 * 		redzone word.
508 509 510
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
L
Linus Torvalds 已提交
511
 */
512
static int obj_offset(kmem_cache_t *cachep)
L
Linus Torvalds 已提交
513
{
514
	return cachep->obj_offset;
L
Linus Torvalds 已提交
515 516
}

517
static int obj_size(kmem_cache_t *cachep)
L
Linus Torvalds 已提交
518
{
519
	return cachep->obj_size;
L
Linus Torvalds 已提交
520 521 522 523 524
}

static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
526 527 528 529 530 531
}

static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
532
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
533
					 2 * BYTES_PER_WORD);
534
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
535 536 537 538 539
}

static void **dbg_userword(kmem_cache_t *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
540
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542 543 544
}

#else

545 546
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Maximum size of an obj (in 2^order pages)
 * and absolute limit for the gfp order.
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

575
/* Functions for storing/retrieving the cachep and or slab from the
L
Linus Torvalds 已提交
576 577 578
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

/* These are the default caches for kmalloc. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
617
	{NULL,}
L
Linus Torvalds 已提交
618 619 620 621
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
622
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
623
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
624
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
625 626 627

/* internal cache of cache description objs */
static kmem_cache_t cache_cache = {
P
Pekka Enberg 已提交
628 629 630
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
631
	.buffer_size = sizeof(kmem_cache_t),
P
Pekka Enberg 已提交
632 633 634
	.flags = SLAB_NO_REAP,
	.spinlock = SPIN_LOCK_UNLOCKED,
	.name = "kmem_cache",
L
Linus Torvalds 已提交
635
#if DEBUG
636
	.obj_size = sizeof(kmem_cache_t),
L
Linus Torvalds 已提交
637 638 639 640
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
641
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static struct list_head cache_chain;

/*
 * vm_enough_memory() looks at this to determine how many
 * slab-allocated pages are possibly freeable under pressure
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
658 659
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
660 661 662 663 664
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

P
Pekka Enberg 已提交
665 666 667
static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
static void enable_cpucache(kmem_cache_t *cachep);
static void cache_reap(void *unused);
668
static int __node_shrink(kmem_cache_t *cachep, int node);
L
Linus Torvalds 已提交
669 670 671 672 673 674

static inline struct array_cache *ac_data(kmem_cache_t *cachep)
{
	return cachep->array[smp_processor_id()];
}

A
Al Viro 已提交
675
static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
L
Linus Torvalds 已提交
676 677 678 679 680
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
681 682 683
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
684
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
685 686 687 688 689
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
690
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
691 692 693 694 695 696 697 698
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Al Viro 已提交
699
kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
700 701 702 703 704
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

705
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
706
{
707 708
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
709

710 711 712 713 714 715 716 717 718
/* Calculate the number of objects and left-over bytes for a given
   buffer size. */
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
768 769 770 771 772 773 774
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
775
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	dump_stack();
}

/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

801
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
802
					    int batchcount)
L
Linus Torvalds 已提交
803
{
P
Pekka Enberg 已提交
804
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
805 806
	struct array_cache *nc = NULL;

807
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
808 809 810 811 812
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
813
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
814 815 816 817
	}
	return nc;
}

818
#ifdef CONFIG_NUMA
819 820
static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int);

821 822 823
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
824
	int memsize = sizeof(void *) * MAX_NUMNODES;
825 826 827 828 829 830 831 832 833 834 835 836 837
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
838
				for (i--; i <= 0; i--)
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
	int i;

	if (!ac_ptr)
		return;

	for_each_node(i)
P
Pekka Enberg 已提交
856
	    kfree(ac_ptr[i]);
857 858 859 860

	kfree(ac_ptr);
}

P
Pekka Enberg 已提交
861 862
static inline void __drain_alien_cache(kmem_cache_t *cachep,
				       struct array_cache *ac, int node)
863 864 865 866 867
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
868
		free_block(cachep, ac->entry, ac->avail, node);
869 870 871 872 873 874 875
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
{
P
Pekka Enberg 已提交
876
	int i = 0;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
		ac = l3->alien[i];
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
#define alloc_alien_cache(node, limit) do { } while (0)
#define free_alien_cache(ac_ptr) do { } while (0)
#define drain_alien_cache(cachep, l3) do { } while (0)
#endif

L
Linus Torvalds 已提交
895
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
896
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
897 898
{
	long cpu = (long)hcpu;
P
Pekka Enberg 已提交
899
	kmem_cache_t *cachep;
900 901 902
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
903 904 905

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
906
		mutex_lock(&cache_chain_mutex);
907 908 909 910 911 912
		/* we need to do this right in the beginning since
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
913
		list_for_each_entry(cachep, &cache_chain, next) {
914 915 916 917 918 919
			/* setup the size64 kmemlist for cpu before we can
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
				if (!(l3 = kmalloc_node(memsize,
P
Pekka Enberg 已提交
920
							GFP_KERNEL, node)))
921 922 923
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
924
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
925 926 927

				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
928

929 930
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
P
Pekka Enberg 已提交
931 932
			    (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
933 934 935 936
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

		/* Now we can go ahead with allocating the shared array's
P
Pekka Enberg 已提交
937
		   & array cache's */
938
		list_for_each_entry(cachep, &cache_chain, next) {
939 940
			struct array_cache *nc;

941
			nc = alloc_arraycache(node, cachep->limit,
P
Pekka Enberg 已提交
942
					      cachep->batchcount);
L
Linus Torvalds 已提交
943 944 945 946
			if (!nc)
				goto bad;
			cachep->array[cpu] = nc;

947 948 949 950
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);
			if (!l3->shared) {
				if (!(nc = alloc_arraycache(node,
P
Pekka Enberg 已提交
951 952 953 954
							    cachep->shared *
							    cachep->batchcount,
							    0xbaadf00d)))
					goto bad;
955 956

				/* we are serialised from CPU_DEAD or
P
Pekka Enberg 已提交
957
				   CPU_UP_CANCELLED by the cpucontrol lock */
958 959
				l3->shared = nc;
			}
L
Linus Torvalds 已提交
960
		}
I
Ingo Molnar 已提交
961
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
962 963 964 965 966 967 968 969
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
970
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
971 972 973

		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
974
			cpumask_t mask;
L
Linus Torvalds 已提交
975

976
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
977 978 979 980
			spin_lock_irq(&cachep->spinlock);
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
981 982 983 984 985 986 987 988 989 990
			l3 = cachep->nodelists[node];

			if (!l3)
				goto unlock_cache;

			spin_lock(&l3->list_lock);

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
991
				free_block(cachep, nc->entry, nc->avail, node);
992 993

			if (!cpus_empty(mask)) {
P
Pekka Enberg 已提交
994 995 996
				spin_unlock(&l3->list_lock);
				goto unlock_cache;
			}
997 998 999

			if (l3->shared) {
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1000
					   l3->shared->avail, node);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
				kfree(l3->shared);
				l3->shared = NULL;
			}
			if (l3->alien) {
				drain_alien_cache(cachep, l3);
				free_alien_cache(l3->alien);
				l3->alien = NULL;
			}

			/* free slabs belonging to this node */
			if (__node_shrink(cachep, node)) {
				cachep->nodelists[node] = NULL;
				spin_unlock(&l3->list_lock);
				kfree(l3);
			} else {
				spin_unlock(&l3->list_lock);
			}
P
Pekka Enberg 已提交
1018
		      unlock_cache:
L
Linus Torvalds 已提交
1019 1020 1021
			spin_unlock_irq(&cachep->spinlock);
			kfree(nc);
		}
I
Ingo Molnar 已提交
1022
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1023 1024 1025 1026
		break;
#endif
	}
	return NOTIFY_OK;
P
Pekka Enberg 已提交
1027
      bad:
I
Ingo Molnar 已提交
1028
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1029 1030 1031 1032 1033
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1034 1035 1036
/*
 * swap the static kmem_list3 with kmalloced memory
 */
P
Pekka Enberg 已提交
1037
static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

L
Linus Torvalds 已提交
1052 1053 1054 1055 1056 1057 1058 1059
/* Initialisation.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1060 1061 1062 1063 1064 1065 1066
	int i;

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
	 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
	 *    structures of all caches, except cache_cache itself: cache_cache
	 *    is statically allocated.
1080 1081 1082
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1083
	 * 2) Create the first kmalloc cache.
1084 1085 1086 1087
	 *    The kmem_cache_t for the new cache is allocated normally.
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1088 1089
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1090 1091 1092
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097 1098 1099
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1100
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1101

1102
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
L
Linus Torvalds 已提交
1103

1104
	cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
P
Pekka Enberg 已提交
1105
		       &left_over, &cache_cache.num);
L
Linus Torvalds 已提交
1106 1107 1108
	if (!cache_cache.num)
		BUG();

P
Pekka Enberg 已提交
1109
	cache_cache.colour = left_over / cache_cache.colour_off;
L
Linus Torvalds 已提交
1110
	cache_cache.colour_next = 0;
P
Pekka Enberg 已提交
1111 1112
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

1118 1119 1120 1121 1122 1123
	/* Initialize the caches that provide memory for the array cache
	 * and the kmem_list3 structures first.
	 * Without this, further allocations will bug
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
P
Pekka Enberg 已提交
1124 1125 1126 1127
						      sizes[INDEX_AC].cs_size,
						      ARCH_KMALLOC_MINALIGN,
						      (ARCH_KMALLOC_FLAGS |
						       SLAB_PANIC), NULL, NULL);
1128 1129 1130

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
P
Pekka Enberg 已提交
1131 1132 1133 1134 1135
		    kmem_cache_create(names[INDEX_L3].name,
				      sizes[INDEX_L3].cs_size,
				      ARCH_KMALLOC_MINALIGN,
				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
				      NULL);
1136

L
Linus Torvalds 已提交
1137
	while (sizes->cs_size != ULONG_MAX) {
1138 1139
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1140 1141 1142
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1143 1144
		 * allow tighter packing of the smaller caches.
		 */
P
Pekka Enberg 已提交
1145
		if (!sizes->cs_cachep)
1146
			sizes->cs_cachep = kmem_cache_create(names->name,
P
Pekka Enberg 已提交
1147 1148 1149 1150 1151
							     sizes->cs_size,
							     ARCH_KMALLOC_MINALIGN,
							     (ARCH_KMALLOC_FLAGS
							      | SLAB_PANIC),
							     NULL, NULL);
L
Linus Torvalds 已提交
1152 1153 1154

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1155
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1156 1157 1158 1159
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
P
Pekka Enberg 已提交
1160 1161 1162 1163 1164 1165
							sizes->cs_size,
							ARCH_KMALLOC_MINALIGN,
							(ARCH_KMALLOC_FLAGS |
							 SLAB_CACHE_DMA |
							 SLAB_PANIC), NULL,
							NULL);
L
Linus Torvalds 已提交
1166 1167 1168 1169 1170 1171

		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1172
		void *ptr;
1173

L
Linus Torvalds 已提交
1174
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1175

L
Linus Torvalds 已提交
1176 1177
		local_irq_disable();
		BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1178
		memcpy(ptr, ac_data(&cache_cache),
P
Pekka Enberg 已提交
1179
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1180 1181
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1182

L
Linus Torvalds 已提交
1183
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1184

L
Linus Torvalds 已提交
1185
		local_irq_disable();
1186
		BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1187
		       != &initarray_generic.cache);
1188
		memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1189
		       sizeof(struct arraycache_init));
1190
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1191
		    ptr;
L
Linus Torvalds 已提交
1192 1193
		local_irq_enable();
	}
1194 1195 1196 1197 1198
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1199
			  numa_node_id());
1200 1201 1202

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1203
				  &initkmem_list3[SIZE_AC + node], node);
1204 1205 1206

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1207 1208
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1209 1210 1211
			}
		}
	}
L
Linus Torvalds 已提交
1212

1213
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1214 1215
	{
		kmem_cache_t *cachep;
I
Ingo Molnar 已提交
1216
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1217
		list_for_each_entry(cachep, &cache_chain, next)
P
Pekka Enberg 已提交
1218
		    enable_cpucache(cachep);
I
Ingo Molnar 已提交
1219
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	}

	/* Done! */
	g_cpucache_up = FULL;

	/* Register a cpu startup notifier callback
	 * that initializes ac_data for all new cpus
	 */
	register_cpu_notifier(&cpucache_notifier);

	/* The reap timers are started later, with a module init call:
	 * That part of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

	/* 
	 * Register the timers that return unneeded
	 * pages to gfp.
	 */
1243
	for_each_online_cpu(cpu)
P
Pekka Enberg 已提交
1244
	    start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	return 0;
}

__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
A
Al Viro 已提交
1258
static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1259 1260 1261 1262 1263 1264
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1265
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
		SetPageSlab(page);
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
static void kmem_freepages(kmem_cache_t *cachep, void *addr)
{
P
Pekka Enberg 已提交
1286
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
		if (!TestClearPageSlab(page))
			BUG();
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1299 1300
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1301 1302 1303 1304
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1305
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	kmem_cache_t *cachep = slab_rcu->cachep;

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1317
			    unsigned long caller)
L
Linus Torvalds 已提交
1318
{
1319
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1320

1321
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1322

P
Pekka Enberg 已提交
1323
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1324 1325
		return;

P
Pekka Enberg 已提交
1326 1327 1328 1329
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1330 1331 1332 1333 1334 1335 1336
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1337
				*addr++ = svalue;
L
Linus Torvalds 已提交
1338 1339 1340 1341 1342 1343 1344
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1345
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350
}
#endif

static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
{
1351 1352
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1353 1354

	memset(addr, val, size);
P
Pekka Enberg 已提交
1355
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1356 1357 1358 1359 1360 1361
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
P
Pekka Enberg 已提交
1362 1363
	for (i = 0; i < limit; i++) {
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	}
	printk("\n");
}
#endif

#if DEBUG

static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
P
Pekka Enberg 已提交
1378 1379
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1380 1381 1382 1383
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
P
Pekka Enberg 已提交
1384
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1385
		print_symbol("(%s)",
P
Pekka Enberg 已提交
1386
			     (unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1387 1388
		printk("\n");
	}
1389 1390
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1391
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1392 1393
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1394 1395
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		dump_line(realobj, i, limit);
	}
}

static void check_poison_obj(kmem_cache_t *cachep, void *objp)
{
	char *realobj;
	int size, i;
	int lines = 0;

1406 1407
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1408

P
Pekka Enberg 已提交
1409
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1410
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1411
		if (i == size - 1)
L
Linus Torvalds 已提交
1412 1413 1414 1415 1416 1417
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1418 1419 1420
				printk(KERN_ERR
				       "Slab corruption: start=%p, len=%d\n",
				       realobj, size);
L
Linus Torvalds 已提交
1421 1422 1423
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1424
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1425
			limit = 16;
P
Pekka Enberg 已提交
1426 1427
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1440
		struct slab *slabp = page_get_slab(virt_to_page(objp));
L
Linus Torvalds 已提交
1441 1442
		int objnr;

1443
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
1444
		if (objnr) {
1445 1446
			objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1447
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1448
			       realobj, size);
L
Linus Torvalds 已提交
1449 1450
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1451
		if (objnr + 1 < cachep->num) {
1452 1453
			objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1454
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1455
			       realobj, size);
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

/* Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
P
Pekka Enberg 已提交
1466
static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1467 1468 1469 1470 1471 1472
{
	void *addr = slabp->s_mem - slabp->colouroff;

#if DEBUG
	int i;
	for (i = 0; i < cachep->num; i++) {
1473
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
1474 1475 1476

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1477
			if ((cachep->buffer_size % PAGE_SIZE) == 0
P
Pekka Enberg 已提交
1478 1479
			    && OFF_SLAB(cachep))
				kernel_map_pages(virt_to_page(objp),
1480
						 cachep->buffer_size / PAGE_SIZE,
P
Pekka Enberg 已提交
1481
						 1);
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1491
					   "was overwritten");
L
Linus Torvalds 已提交
1492 1493
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1494
					   "was overwritten");
L
Linus Torvalds 已提交
1495 1496
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1497
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502
	}
#else
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1503
			void *objp = slabp->s_mem + cachep->buffer_size * i;
P
Pekka Enberg 已提交
1504
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511
		}
	}
#endif

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1512
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

1523
/* For setting up all the kmem_list3s for cache whose buffer_size is same
1524 1525 1526 1527 1528 1529
   as size of kmem_list3. */
static inline void set_up_list3s(kmem_cache_t *cachep, int index)
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1530
		cachep->nodelists[node] = &initkmem_list3[index + node];
1531
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1532 1533
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1534 1535 1536
	}
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * calculate_slab_order - calculate size (page order) of slabs and the number
 *                        of objects per slab.
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
					  size_t align, gfp_t flags)
{
	size_t left_over = 0;

P
Pekka Enberg 已提交
1550
	for (;; cachep->gfporder++) {
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		unsigned int num;
		size_t remainder;

		if (cachep->gfporder > MAX_GFP_ORDER) {
			cachep->num = 0;
			break;
		}

		cache_estimate(cachep->gfporder, size, align, flags,
			       &remainder, &num);
		if (!num)
			continue;
		/* More than offslab_limit objects will cause problems */
		if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
			break;

		cachep->num = num;
		left_over = remainder;

		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
		if (cachep->gfporder >= slab_break_gfp_order)
			break;

		if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
			/* Acceptable internal fragmentation */
			break;
	}
	return left_over;
}

L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting 
 * unloaded.
 * 
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
kmem_cache_t *
kmem_cache_create (const char *name, size_t size, size_t align,
	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
	void (*dtor)(void*, kmem_cache_t *, unsigned long))
{
	size_t left_over, slab_size, ralign;
	kmem_cache_t *cachep = NULL;
1624
	struct list_head *p;
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
P
Pekka Enberg 已提交
1630 1631 1632 1633 1634 1635 1636
	    in_interrupt() ||
	    (size < BYTES_PER_WORD) ||
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
		printk(KERN_ERR "%s: Early error in slab %s\n",
		       __FUNCTION__, name);
		BUG();
	}
L
Linus Torvalds 已提交
1637

I
Ingo Molnar 已提交
1638
	mutex_lock(&cache_chain_mutex);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

	list_for_each(p, &cache_chain) {
		kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1656
			       pc->buffer_size);
1657 1658 1659
			continue;
		}

P
Pekka Enberg 已提交
1660
		if (!strcmp(pc->name, name)) {
1661 1662 1663 1664 1665 1666
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1667 1668 1669 1670 1671
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1672
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
P
Pekka Enberg 已提交
1682 1683 1684
	if ((size < 4096
	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1705 1706 1707
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	}

	/* calculate out the final buffer alignment: */
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Default alignment: as specified by the arch code.
		 * Except if an object is really small, then squeeze multiple
		 * objects into one cacheline.
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1718
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1719 1720 1721 1722 1723 1724 1725 1726
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1727
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1728 1729 1730 1731 1732
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1733
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742
	}
	/* 4) Store it. Note that the debug code below can reduce
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
	if (!cachep)
1743
		goto oops;
L
Linus Torvalds 已提交
1744 1745 1746
	memset(cachep, 0, sizeof(kmem_cache_t));

#if DEBUG
1747
	cachep->obj_size = size;
L
Linus Torvalds 已提交
1748 1749 1750 1751 1752 1753

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
1754
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
1755
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
1766
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1767 1768
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
1775
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

	if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		cachep->gfporder = 0;
		cache_estimate(cachep->gfporder, size, align, flags,
P
Pekka Enberg 已提交
1792
			       &left_over, &cachep->num);
1793 1794
	} else
		left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
1795 1796 1797 1798 1799

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
1800
		goto oops;
L
Linus Torvalds 已提交
1801
	}
P
Pekka Enberg 已提交
1802 1803
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
1816 1817
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
1824
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
1831
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
1832 1833

	if (flags & CFLGS_OFF_SLAB)
1834
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
	} else {
		if (g_cpucache_up == NONE) {
			/* Note: the first kmem_cache_create must create
			 * the cache that's used by kmalloc(24), otherwise
			 * the creation of further caches will BUG().
			 */
1850
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1851
			    &initarray_generic.cache;
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

			/* If the cache that's used by
			 * kmalloc(sizeof(kmem_list3)) is the first cache,
			 * then we need to set up all its list3s, otherwise
			 * the creation of further caches will BUG().
			 */
			set_up_list3s(cachep, SIZE_AC);
			if (INDEX_AC == INDEX_L3)
				g_cpucache_up = PARTIAL_L3;
			else
				g_cpucache_up = PARTIAL_AC;
L
Linus Torvalds 已提交
1863
		} else {
1864
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1865
			    kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1866 1867 1868 1869 1870 1871 1872 1873 1874

			if (g_cpucache_up == PARTIAL_AC) {
				set_up_list3s(cachep, SIZE_L3);
				g_cpucache_up = PARTIAL_L3;
			} else {
				int node;
				for_each_online_node(node) {

					cachep->nodelists[node] =
P
Pekka Enberg 已提交
1875 1876 1877
					    kmalloc_node(sizeof
							 (struct kmem_list3),
							 GFP_KERNEL, node);
1878
					BUG_ON(!cachep->nodelists[node]);
P
Pekka Enberg 已提交
1879 1880
					kmem_list3_init(cachep->
							nodelists[node]);
1881 1882
				}
			}
L
Linus Torvalds 已提交
1883
		}
1884
		cachep->nodelists[numa_node_id()]->next_reap =
P
Pekka Enberg 已提交
1885 1886
		    jiffies + REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1887

L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894
		BUG_ON(!ac_data(cachep));
		ac_data(cachep)->avail = 0;
		ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
		ac_data(cachep)->batchcount = 1;
		ac_data(cachep)->touched = 0;
		cachep->batchcount = 1;
		cachep->limit = BOOT_CPUCACHE_ENTRIES;
P
Pekka Enberg 已提交
1895
	}
L
Linus Torvalds 已提交
1896 1897 1898 1899

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
	unlock_cpu_hotplug();
P
Pekka Enberg 已提交
1900
      oops:
L
Linus Torvalds 已提交
1901 1902
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
1903
		      name);
I
Ingo Molnar 已提交
1904
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

static void check_spinlock_acquired(kmem_cache_t *cachep)
{
#ifdef CONFIG_SMP
	check_irq_off();
1924
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
1925 1926
#endif
}
1927 1928 1929 1930 1931 1932 1933 1934 1935

static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
1936 1937 1938 1939
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
1940
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945
#endif

/*
 * Waits for all CPUs to execute func().
 */
P
Pekka Enberg 已提交
1946
static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
{
	check_irq_on();
	preempt_disable();

	local_irq_disable();
	func(arg);
	local_irq_enable();

	if (smp_call_function(func, arg, 1, 1))
		BUG();

	preempt_enable();
}

P
Pekka Enberg 已提交
1961 1962
static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
				int force, int node);
L
Linus Torvalds 已提交
1963 1964 1965

static void do_drain(void *arg)
{
P
Pekka Enberg 已提交
1966
	kmem_cache_t *cachep = (kmem_cache_t *) arg;
L
Linus Torvalds 已提交
1967
	struct array_cache *ac;
1968
	int node = numa_node_id();
L
Linus Torvalds 已提交
1969 1970 1971

	check_irq_off();
	ac = ac_data(cachep);
1972 1973 1974
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
1975 1976 1977 1978 1979
	ac->avail = 0;
}

static void drain_cpu_caches(kmem_cache_t *cachep)
{
1980 1981 1982
	struct kmem_list3 *l3;
	int node;

L
Linus Torvalds 已提交
1983 1984 1985
	smp_call_function_all_cpus(do_drain, cachep);
	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
P
Pekka Enberg 已提交
1986
	for_each_online_node(node) {
1987 1988 1989 1990 1991 1992 1993 1994 1995
		l3 = cachep->nodelists[node];
		if (l3) {
			spin_lock(&l3->list_lock);
			drain_array_locked(cachep, l3->shared, 1, node);
			spin_unlock(&l3->list_lock);
			if (l3->alien)
				drain_alien_cache(cachep, l3);
		}
	}
L
Linus Torvalds 已提交
1996 1997 1998
	spin_unlock_irq(&cachep->spinlock);
}

1999
static int __node_shrink(kmem_cache_t *cachep, int node)
L
Linus Torvalds 已提交
2000 2001
{
	struct slab *slabp;
2002
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2003 2004
	int ret;

2005
	for (;;) {
L
Linus Torvalds 已提交
2006 2007
		struct list_head *p;

2008 2009
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2010 2011
			break;

2012
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018
#if DEBUG
		if (slabp->inuse)
			BUG();
#endif
		list_del(&slabp->list);

2019 2020
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2021
		slab_destroy(cachep, slabp);
2022
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2023
	}
P
Pekka Enberg 已提交
2024
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2025 2026 2027
	return ret;
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static int __cache_shrink(kmem_cache_t *cachep)
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(kmem_cache_t *cachep)
{
	if (!cachep || in_interrupt())
		BUG();

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
 * Remove a kmem_cache_t object from the slab cache.
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
P
Pekka Enberg 已提交
2080
int kmem_cache_destroy(kmem_cache_t *cachep)
L
Linus Torvalds 已提交
2081 2082
{
	int i;
2083
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089 2090 2091

	if (!cachep || in_interrupt())
		BUG();

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2092
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2093 2094 2095 2096
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2097
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2098 2099 2100

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2101
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2102
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2103
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2104 2105 2106 2107 2108
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2109
		synchronize_rcu();
L
Linus Torvalds 已提交
2110

2111
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2112
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2113 2114

	/* NUMA: free the list3 structures */
2115 2116 2117 2118 2119 2120 2121
	for_each_online_node(i) {
		if ((l3 = cachep->nodelists[i])) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130
	kmem_cache_free(&cache_cache, cachep);

	unlock_cpu_hotplug();

	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
P
Pekka Enberg 已提交
2131 2132
static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
				   int colour_off, gfp_t local_flags)
L
Linus Torvalds 已提交
2133 2134
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2135

L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2142
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2143 2144 2145 2146
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2147
	slabp->s_mem = objp + colour_off;
L
Linus Torvalds 已提交
2148 2149 2150 2151 2152 2153

	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2154
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2155 2156 2157
}

static void cache_init_objs(kmem_cache_t *cachep,
P
Pekka Enberg 已提交
2158
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2159 2160 2161 2162
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2163
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2181
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2182
				     ctor_flags);
L
Linus Torvalds 已提交
2183 2184 2185 2186

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2187
					   " end of an object");
L
Linus Torvalds 已提交
2188 2189
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2190
					   " start of an object");
L
Linus Torvalds 已提交
2191
		}
2192
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
P
Pekka Enberg 已提交
2193 2194
		    && cachep->flags & SLAB_POISON)
			kernel_map_pages(virt_to_page(objp),
2195
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2196 2197 2198 2199
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2200
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2201
	}
P
Pekka Enberg 已提交
2202
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2203 2204 2205
	slabp->free = 0;
}

A
Al Viro 已提交
2206
static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
{
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
}

static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
2226 2227
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2228 2229 2230 2231 2232 2233 2234 2235
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
A
Al Viro 已提交
2236
static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2237
{
P
Pekka Enberg 已提交
2238 2239 2240 2241 2242
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2243
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2244 2245

	/* Be lazy and only check for valid flags here,
P
Pekka Enberg 已提交
2246
	 * keeping it out of the critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2247
	 */
P
Pekka Enberg 已提交
2248
	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

	/* About to mess with non-constant members - lock. */
	check_irq_off();
	spin_lock(&cachep->spinlock);

	/* Get colour for the slab, and cal the next value. */
	offset = cachep->colour_next;
	cachep->colour_next++;
	if (cachep->colour_next >= cachep->colour)
		cachep->colour_next = 0;
	offset *= cachep->colour_off;

	spin_unlock(&cachep->spinlock);

2275
	check_irq_off();
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

2287 2288 2289
	/* Get mem for the objs.
	 * Attempt to allocate a physical page from 'nodeid',
	 */
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294 2295 2296
	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

2297
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302 2303 2304
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2305 2306
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2307 2308

	/* Make slab active. */
2309
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2310
	STATS_INC_GROWN(cachep);
2311 2312
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2313
	return 1;
P
Pekka Enberg 已提交
2314
      opps1:
L
Linus Torvalds 已提交
2315
	kmem_freepages(cachep, objp);
P
Pekka Enberg 已提交
2316
      failed:
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2336 2337
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2338 2339 2340
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2341 2342
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347
		BUG();
	}
}

static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
P
Pekka Enberg 已提交
2348
				   void *caller)
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2354
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2355 2356 2357
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2358
	if (page_get_cache(page) != cachep) {
P
Pekka Enberg 已提交
2359 2360 2361
		printk(KERN_ERR
		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2362
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2363 2364
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2365 2366
		WARN_ON(1);
	}
2367
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2368 2369

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384 2385
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2386
	objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
2387 2388

	BUG_ON(objnr >= cachep->num);
2389
	BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394 2395

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
2396
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2397
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2398 2399 2400 2401 2402
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2403
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2404 2405 2406
	}
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2407
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2408
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2409
			kernel_map_pages(virt_to_page(objp),
2410
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2425

L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431 2432
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
P
Pekka Enberg 已提交
2433 2434 2435 2436 2437 2438 2439 2440
	      bad:
		printk(KERN_ERR
		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
		       cachep->name, cachep->num, slabp, slabp->inuse);
		for (i = 0;
		     i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
		     i++) {
			if ((i % 16) == 0)
L
Linus Torvalds 已提交
2441
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2442
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

A
Al Viro 已提交
2454
static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460 2461
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
	ac = ac_data(cachep);
P
Pekka Enberg 已提交
2462
      retry:
L
Linus Torvalds 已提交
2463 2464 2465 2466 2467 2468 2469 2470
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/* if there was little recent activity on this
		 * cache, then perform only a partial refill.
		 * Otherwise we could generate refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2471 2472 2473 2474
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2475 2476 2477 2478 2479 2480 2481 2482

	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
		if (shared_array->avail) {
			if (batchcount > shared_array->avail)
				batchcount = shared_array->avail;
			shared_array->avail -= batchcount;
			ac->avail = batchcount;
2483
			memcpy(ac->entry,
P
Pekka Enberg 已提交
2484 2485
			       &(shared_array->entry[shared_array->avail]),
			       sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
			shared_array->touched = 1;
			goto alloc_done;
		}
	}
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			kmem_bufctl_t next;
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

			/* get obj pointer */
2512
			ac->entry[ac->avail++] = slabp->s_mem +
2513
			    slabp->free * cachep->buffer_size;
L
Linus Torvalds 已提交
2514 2515 2516 2517 2518

			slabp->inuse++;
			next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
			slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2519
			WARN_ON(numa_node_id() != slabp->nodeid);
L
Linus Torvalds 已提交
2520
#endif
P
Pekka Enberg 已提交
2521
			slabp->free = next;
L
Linus Torvalds 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

P
Pekka Enberg 已提交
2533
      must_grow:
L
Linus Torvalds 已提交
2534
	l3->free_objects -= ac->avail;
P
Pekka Enberg 已提交
2535
      alloc_done:
2536
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2537 2538 2539

	if (unlikely(!ac->avail)) {
		int x;
2540 2541
		x = cache_grow(cachep, flags, numa_node_id());

L
Linus Torvalds 已提交
2542 2543 2544 2545 2546
		// cache_grow can reenable interrupts, then ac could change.
		ac = ac_data(cachep);
		if (!x && ac->avail == 0)	// no objects in sight? abort
			return NULL;

P
Pekka Enberg 已提交
2547
		if (!ac->avail)	// objects refilled by interrupt?
L
Linus Torvalds 已提交
2548 2549 2550
			goto retry;
	}
	ac->touched = 1;
2551
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2552 2553 2554
}

static inline void
A
Al Viro 已提交
2555
cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2556 2557 2558 2559 2560 2561 2562 2563
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
P
Pekka Enberg 已提交
2564 2565
static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
					void *objp, void *caller)
L
Linus Torvalds 已提交
2566
{
P
Pekka Enberg 已提交
2567
	if (!objp)
L
Linus Torvalds 已提交
2568
		return objp;
P
Pekka Enberg 已提交
2569
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2570
#ifdef CONFIG_DEBUG_PAGEALLOC
2571
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2572
			kernel_map_pages(virt_to_page(objp),
2573
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2594 2595 2596 2597
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2598
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2599
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2600
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2601 2602 2603 2604 2605

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2606
	}
L
Linus Torvalds 已提交
2607 2608 2609 2610 2611 2612
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Al Viro 已提交
2613
static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2614
{
P
Pekka Enberg 已提交
2615
	void *objp;
L
Linus Torvalds 已提交
2616 2617
	struct array_cache *ac;

2618
#ifdef CONFIG_NUMA
2619
	if (unlikely(current->mempolicy && !in_interrupt())) {
2620 2621 2622 2623 2624 2625 2626
		int nid = slab_node(current->mempolicy);

		if (nid != numa_node_id())
			return __cache_alloc_node(cachep, flags, nid);
	}
#endif

2627
	check_irq_off();
L
Linus Torvalds 已提交
2628 2629 2630 2631
	ac = ac_data(cachep);
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2632
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2633 2634 2635 2636
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2637 2638 2639
	return objp;
}

A
Al Viro 已提交
2640
static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2641 2642
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2643
	void *objp;
2644 2645 2646 2647 2648

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2649
	local_irq_restore(save_flags);
2650
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
P
Pekka Enberg 已提交
2651
					    __builtin_return_address(0));
2652
	prefetchw(objp);
L
Linus Torvalds 已提交
2653 2654 2655
	return objp;
}

2656 2657 2658
#ifdef CONFIG_NUMA
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2659
 */
A
Al Viro 已提交
2660
static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2661 2662
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	kmem_bufctl_t next;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

      retry:
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

	/* get obj pointer */
2693
	obj = slabp->s_mem + slabp->free * cachep->buffer_size;
P
Pekka Enberg 已提交
2694 2695
	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
2696
#if DEBUG
P
Pekka Enberg 已提交
2697
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2698
#endif
P
Pekka Enberg 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	slabp->free = next;
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

	if (slabp->free == BUFCTL_END) {
		list_add(&slabp->list, &l3->slabs_full);
	} else {
		list_add(&slabp->list, &l3->slabs_partial);
	}
2710

P
Pekka Enberg 已提交
2711 2712
	spin_unlock(&l3->list_lock);
	goto done;
2713

P
Pekka Enberg 已提交
2714 2715 2716
      must_grow:
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2717

P
Pekka Enberg 已提交
2718 2719
	if (!x)
		return NULL;
2720

P
Pekka Enberg 已提交
2721 2722 2723
	goto retry;
      done:
	return obj;
2724 2725 2726 2727 2728 2729
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
P
Pekka Enberg 已提交
2730 2731
static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
		       int node)
L
Linus Torvalds 已提交
2732 2733
{
	int i;
2734
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;
		unsigned int objnr;

2741
		slabp = page_get_slab(virt_to_page(objp));
2742
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2743
		list_del(&slabp->list);
2744
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2745
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2746
		check_slabp(cachep, slabp);
2747

L
Linus Torvalds 已提交
2748
#if DEBUG
2749 2750 2751
		/* Verify that the slab belongs to the intended node */
		WARN_ON(slabp->nodeid != node);

L
Linus Torvalds 已提交
2752
		if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2753
			printk(KERN_ERR "slab: double free detected in cache "
P
Pekka Enberg 已提交
2754
			       "'%s', objp %p\n", cachep->name, objp);
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759 2760 2761
			BUG();
		}
#endif
		slab_bufctl(slabp)[objnr] = slabp->free;
		slabp->free = objnr;
		STATS_DEC_ACTIVE(cachep);
		slabp->inuse--;
2762
		l3->free_objects++;
L
Linus Torvalds 已提交
2763 2764 2765 2766
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2767 2768
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2769 2770
				slab_destroy(cachep, slabp);
			} else {
2771
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
2778
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783 2784 2785
		}
	}
}

static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
{
	int batchcount;
2786
	struct kmem_list3 *l3;
2787
	int node = numa_node_id();
L
Linus Torvalds 已提交
2788 2789 2790 2791 2792 2793

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
2794
	l3 = cachep->nodelists[node];
2795 2796 2797
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
2798
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
2799 2800 2801
		if (max) {
			if (batchcount > max)
				batchcount = max;
2802
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
2803
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

2809
	free_block(cachep, ac->entry, batchcount, node);
P
Pekka Enberg 已提交
2810
      free_done:
L
Linus Torvalds 已提交
2811 2812 2813 2814 2815
#if STATS
	{
		int i = 0;
		struct list_head *p;

2816 2817
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
2829
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2830
	ac->avail -= batchcount;
2831
	memmove(ac->entry, &(ac->entry[batchcount]),
P
Pekka Enberg 已提交
2832
		sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
}

/*
 * __cache_free
 * Release an obj back to its cache. If the obj has a constructed
 * state, it must be in this state _before_ it is released.
 *
 * Called with disabled ints.
 */
static inline void __cache_free(kmem_cache_t *cachep, void *objp)
{
	struct array_cache *ac = ac_data(cachep);

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

2849 2850 2851 2852 2853 2854
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
2855
		slabp = page_get_slab(virt_to_page(objp));
2856 2857 2858
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
P
Pekka Enberg 已提交
2859 2860
			struct kmem_list3 *l3 =
			    cachep->nodelists[numa_node_id()];
2861 2862 2863 2864 2865 2866 2867

			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
2868
							    alien, nodeid);
2869 2870 2871 2872
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2873
					  list_lock);
2874
				free_block(cachep, &objp, 1, nodeid);
2875
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2876
					    list_lock);
2877 2878 2879 2880 2881
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
2882 2883
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
2884
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2885 2886 2887 2888
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
2889
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
A
Al Viro 已提交
2901
void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
{
	return __cache_alloc(cachep, flags);
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
{
P
Pekka Enberg 已提交
2923
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
2924
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
2925
	unsigned long align_mask = BYTES_PER_WORD - 1;
2926
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
2942
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
2943 2944
		goto out;
	return 1;
P
Pekka Enberg 已提交
2945
      out:
L
Linus Torvalds 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
2959 2960
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
2961
 */
A
Al Viro 已提交
2962
void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2963
{
2964 2965
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
2966

2967 2968
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
2969 2970 2971

	if (nodeid == -1 || nodeid == numa_node_id() ||
	    !cachep->nodelists[nodeid])
2972 2973 2974
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
2975
	local_irq_restore(save_flags);
2976 2977 2978

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
2979

2980
	return ptr;
L
Linus Torvalds 已提交
2981 2982 2983
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
2984
void *kmalloc_node(size_t size, gfp_t flags, int node)
2985 2986 2987 2988 2989 2990 2991 2992 2993
{
	kmem_cache_t *cachep;

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
A
Al Viro 已提交
3017
void *__kmalloc(size_t size, gfp_t flags)
L
Linus Torvalds 已提交
3018 3019 3020
{
	kmem_cache_t *cachep;

3021 3022 3023 3024 3025 3026
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3027 3028
	if (unlikely(cachep == NULL))
		return NULL;
L
Linus Torvalds 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	return __cache_alloc(cachep, flags);
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3041
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3042 3043
{
	int i;
P
Pekka Enberg 已提交
3044
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3045 3046 3047 3048

	if (!pdata)
		return NULL;

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
	for_each_cpu(i) {
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3068
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3069

P
Pekka Enberg 已提交
3070
      unwind_oom:
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
void kmem_cache_free(kmem_cache_t *cachep, void *objp)
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3104 3105
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
	kmem_cache_t *c;
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3118
	c = page_get_cache(virt_to_page(objp));
3119
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3120
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3133
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3134 3135
{
	int i;
P
Pekka Enberg 已提交
3136
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3137

3138 3139 3140 3141
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
	for_each_cpu(i)
P
Pekka Enberg 已提交
3142
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3143 3144 3145 3146 3147 3148 3149
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

unsigned int kmem_cache_size(kmem_cache_t *cachep)
{
3150
	return obj_size(cachep);
L
Linus Torvalds 已提交
3151 3152 3153
}
EXPORT_SYMBOL(kmem_cache_size);

3154 3155 3156 3157 3158 3159
const char *kmem_cache_name(kmem_cache_t *cachep)
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
/*
 * This initializes kmem_list3 for all nodes.
 */
static int alloc_kmemlist(kmem_cache_t *cachep)
{
	int node;
	struct kmem_list3 *l3;
	int err = 0;

	for_each_online_node(node) {
		struct array_cache *nc = NULL, *new;
		struct array_cache **new_alien = NULL;
#ifdef CONFIG_NUMA
		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
			goto fail;
#endif
P
Pekka Enberg 已提交
3176 3177 3178
		if (!(new = alloc_arraycache(node, (cachep->shared *
						    cachep->batchcount),
					     0xbaadf00d)))
3179 3180 3181 3182 3183 3184
			goto fail;
		if ((l3 = cachep->nodelists[node])) {

			spin_lock_irq(&l3->list_lock);

			if ((nc = cachep->nodelists[node]->shared))
P
Pekka Enberg 已提交
3185
				free_block(cachep, nc->entry, nc->avail, node);
3186 3187 3188 3189 3190 3191

			l3->shared = new;
			if (!cachep->nodelists[node]->alien) {
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3192 3193
			l3->free_limit = (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
3194 3195 3196 3197 3198 3199
			spin_unlock_irq(&l3->list_lock);
			kfree(nc);
			free_alien_cache(new_alien);
			continue;
		}
		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
P
Pekka Enberg 已提交
3200
					GFP_KERNEL, node)))
3201 3202 3203 3204
			goto fail;

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
3205
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3206 3207
		l3->shared = new;
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3208 3209
		l3->free_limit = (1 + nr_cpus_node(node)) *
		    cachep->batchcount + cachep->num;
3210 3211 3212
		cachep->nodelists[node] = l3;
	}
	return err;
P
Pekka Enberg 已提交
3213
      fail:
3214 3215 3216 3217
	err = -ENOMEM;
	return err;
}

L
Linus Torvalds 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
struct ccupdate_struct {
	kmem_cache_t *cachep;
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
	struct array_cache *old;

	check_irq_off();
	old = ac_data(new->cachep);
3230

L
Linus Torvalds 已提交
3231 3232 3233 3234 3235
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
P
Pekka Enberg 已提交
3236
			    int shared)
L
Linus Torvalds 已提交
3237 3238
{
	struct ccupdate_struct new;
3239
	int i, err;
L
Linus Torvalds 已提交
3240

P
Pekka Enberg 已提交
3241
	memset(&new.new, 0, sizeof(new.new));
3242
	for_each_online_cpu(i) {
P
Pekka Enberg 已提交
3243 3244
		new.new[i] =
		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3245
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3246 3247
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3248
			return -ENOMEM;
L
Linus Torvalds 已提交
3249 3250 3251 3252 3253
		}
	}
	new.cachep = cachep;

	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3254

L
Linus Torvalds 已提交
3255 3256 3257 3258
	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3259
	cachep->shared = shared;
L
Linus Torvalds 已提交
3260 3261
	spin_unlock_irq(&cachep->spinlock);

3262
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3263 3264 3265
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3266
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3267
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3268
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3269 3270 3271
		kfree(ccold);
	}

3272 3273 3274
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3275
		       cachep->name, -err);
3276
		BUG();
L
Linus Torvalds 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	}
	return 0;
}

static void enable_cpucache(kmem_cache_t *cachep)
{
	int err;
	int limit, shared;

	/* The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and 
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3294
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3295
		limit = 1;
3296
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3297
		limit = 8;
3298
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3299
		limit = 24;
3300
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
		limit = 54;
	else
		limit = 120;

	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3315
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		shared = 8;
#endif

#if DEBUG
	/* With debugging enabled, large batchcount lead to excessively
	 * long periods with disabled local interrupts. Limit the 
	 * batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3327
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3328 3329
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3330
		       cachep->name, -err);
L
Linus Torvalds 已提交
3331 3332
}

P
Pekka Enberg 已提交
3333 3334
static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
				int force, int node)
L
Linus Torvalds 已提交
3335 3336 3337
{
	int tofree;

3338
	check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3339 3340 3341
	if (ac->touched && !force) {
		ac->touched = 0;
	} else if (ac->avail) {
P
Pekka Enberg 已提交
3342
		tofree = force ? ac->avail : (ac->limit + 4) / 5;
L
Linus Torvalds 已提交
3343
		if (tofree > ac->avail) {
P
Pekka Enberg 已提交
3344
			tofree = (ac->avail + 1) / 2;
L
Linus Torvalds 已提交
3345
		}
3346
		free_block(cachep, ac->entry, tofree, node);
L
Linus Torvalds 已提交
3347
		ac->avail -= tofree;
3348
		memmove(ac->entry, &(ac->entry[tofree]),
P
Pekka Enberg 已提交
3349
			sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3355
 * @unused: unused parameter
L
Linus Torvalds 已提交
3356 3357 3358 3359 3360 3361
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
I
Ingo Molnar 已提交
3362
 * If we cannot acquire the cache chain mutex then just give up - we'll
L
Linus Torvalds 已提交
3363 3364 3365 3366 3367
 * try again on the next iteration.
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3368
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3369

I
Ingo Molnar 已提交
3370
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3371
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3372 3373
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3374 3375 3376 3377 3378
		return;
	}

	list_for_each(walk, &cache_chain) {
		kmem_cache_t *searchp;
P
Pekka Enberg 已提交
3379
		struct list_head *p;
L
Linus Torvalds 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
		int tofree;
		struct slab *slabp;

		searchp = list_entry(walk, kmem_cache_t, next);

		if (searchp->flags & SLAB_NO_REAP)
			goto next;

		check_irq_on();

3390 3391 3392 3393
		l3 = searchp->nodelists[numa_node_id()];
		if (l3->alien)
			drain_alien_cache(searchp, l3);
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3394

3395
		drain_array_locked(searchp, ac_data(searchp), 0,
P
Pekka Enberg 已提交
3396
				   numa_node_id());
L
Linus Torvalds 已提交
3397

3398
		if (time_after(l3->next_reap, jiffies))
L
Linus Torvalds 已提交
3399 3400
			goto next_unlock;

3401
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3402

3403 3404
		if (l3->shared)
			drain_array_locked(searchp, l3->shared, 0,
P
Pekka Enberg 已提交
3405
					   numa_node_id());
L
Linus Torvalds 已提交
3406

3407 3408
		if (l3->free_touched) {
			l3->free_touched = 0;
L
Linus Torvalds 已提交
3409 3410 3411
			goto next_unlock;
		}

P
Pekka Enberg 已提交
3412 3413 3414
		tofree =
		    (l3->free_limit + 5 * searchp->num -
		     1) / (5 * searchp->num);
L
Linus Torvalds 已提交
3415
		do {
3416 3417
			p = l3->slabs_free.next;
			if (p == &(l3->slabs_free))
L
Linus Torvalds 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
				break;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

			/* Safe to drop the lock. The slab is no longer
			 * linked to the cache.
			 * searchp cannot disappear, we hold
			 * cache_chain_lock
			 */
3430 3431
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3432
			slab_destroy(searchp, slabp);
3433
			spin_lock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3434 3435
		} while (--tofree > 0);
	      next_unlock:
3436
		spin_unlock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3437
	      next:
L
Linus Torvalds 已提交
3438 3439 3440
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3441
	mutex_unlock(&cache_chain_mutex);
3442
	drain_remote_pages();
L
Linus Torvalds 已提交
3443
	/* Setup the next iteration */
3444
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3445 3446 3447 3448
}

#ifdef CONFIG_PROC_FS

3449
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3450
{
3451 3452 3453 3454
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3455
#if STATS
3456
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3457
#else
3458
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3459
#endif
3460 3461 3462 3463
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3464
#if STATS
3465 3466 3467
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3468
#endif
3469 3470 3471 3472 3473 3474 3475 3476
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3477
	mutex_lock(&cache_chain_mutex);
3478 3479
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, kmem_cache_t, next);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	kmem_cache_t *cachep = p;
	++*pos;
	return cachep->next.next == &cache_chain ? NULL
P
Pekka Enberg 已提交
3494
	    : list_entry(cachep->next.next, kmem_cache_t, next);
L
Linus Torvalds 已提交
3495 3496 3497 3498
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3499
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3500 3501 3502 3503 3504 3505
}

static int s_show(struct seq_file *m, void *p)
{
	kmem_cache_t *cachep = p;
	struct list_head *q;
P
Pekka Enberg 已提交
3506 3507 3508 3509 3510
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3511
	const char *name;
L
Linus Torvalds 已提交
3512
	char *error = NULL;
3513 3514
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3515 3516 3517 3518 3519

	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
	active_objs = 0;
	num_slabs = 0;
3520 3521 3522 3523 3524 3525 3526
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock(&l3->list_lock);

P
Pekka Enberg 已提交
3527
		list_for_each(q, &l3->slabs_full) {
3528 3529 3530 3531 3532 3533
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3534
		list_for_each(q, &l3->slabs_partial) {
3535 3536 3537 3538 3539 3540 3541 3542
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3543
		list_for_each(q, &l3->slabs_free) {
3544 3545 3546 3547 3548 3549 3550 3551 3552
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
		shared_avail += l3->shared->avail;

		spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3553
	}
P
Pekka Enberg 已提交
3554 3555
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3556
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3557 3558
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3559
	name = cachep->name;
L
Linus Torvalds 已提交
3560 3561 3562 3563
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3564
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3565
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3566
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3567
		   cachep->limit, cachep->batchcount, cachep->shared);
3568
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3569
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3570
#if STATS
P
Pekka Enberg 已提交
3571
	{			/* list3 stats */
L
Linus Torvalds 已提交
3572 3573 3574 3575 3576 3577 3578
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3579
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3580

3581
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
P
Pekka Enberg 已提交
3582
				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
L
Linus Torvalds 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3592
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	}
#endif
	seq_putc(m, '\n');
	spin_unlock_irq(&cachep->spinlock);
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3615 3616 3617 3618
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3629 3630
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3631
{
P
Pekka Enberg 已提交
3632
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3633 3634
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3635

L
Linus Torvalds 已提交
3636 3637 3638 3639
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3640
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3651
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3652
	res = -EINVAL;
P
Pekka Enberg 已提交
3653
	list_for_each(p, &cache_chain) {
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658
		kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);

		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 ||
			    batchcount < 1 ||
P
Pekka Enberg 已提交
3659
			    batchcount > limit || shared < 0) {
3660
				res = 0;
L
Linus Torvalds 已提交
3661
			} else {
3662
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3663
						       batchcount, shared);
L
Linus Torvalds 已提交
3664 3665 3666 3667
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3668
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3669 3670 3671 3672 3673 3674
	if (res >= 0)
		res = count;
	return res;
}
#endif

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
3687 3688
unsigned int ksize(const void *objp)
{
3689 3690
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
3691

3692
	return obj_size(page_get_cache(virt_to_page(objp)));
L
Linus Torvalds 已提交
3693
}