slab.c 99.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts - 
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
104
#include	<linux/string.h>
105
#include	<linux/nodemask.h>
106
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
107
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

203
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268 269 270 271 272 273 274
	spinlock_t lock;
	void *entry[0];		/*
				 * Must have this definition in here for the proper
				 * alignment of array_cache. Also simplifies accessing
				 * the entries.
				 * [0] is for gcc 2.95. It should really be [].
				 */
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
};

/* bootstrap: The caches do not work without cpuarrays anymore,
 * but the cpuarrays are allocated from the generic caches...
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned long next_reap;
	int free_touched;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
313
 * This function must be completely optimized away if
314 315 316 317
 * a constant is passed to it. Mostly the same as
 * what is in linux/slab.h except it returns an
 * index.
 */
318
static __always_inline int index_of(const size_t size)
319
{
320 321
	extern void __bad_size(void);

322 323 324 325 326 327 328 329 330 331
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
332
		__bad_size();
333
	} else
334
		__bad_size();
335 336 337 338 339
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
340

P
Pekka Enberg 已提交
341
static void kmem_list3_init(struct kmem_list3 *parent)
342 343 344 345 346 347
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
348
	parent->colour_next = 0;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)	\
	do {	\
		INIT_LIST_HEAD(listp);		\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
	do {					\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
366 367

/*
368
 * struct kmem_cache
L
Linus Torvalds 已提交
369 370 371
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
372

373
struct kmem_cache {
L
Linus Torvalds 已提交
374
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
375 376 377 378
	struct array_cache *array[NR_CPUS];
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
379
	unsigned int buffer_size;
380
/* 2) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
381 382 383 384
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	unsigned int flags;	/* constant flags */
	unsigned int num;	/* # of objs per slab */
	spinlock_t spinlock;
L
Linus Torvalds 已提交
385 386 387

/* 3) cache_grow/shrink */
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
388
	unsigned int gfporder;
L
Linus Torvalds 已提交
389 390

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
391
	gfp_t gfpflags;
L
Linus Torvalds 已提交
392

P
Pekka Enberg 已提交
393 394
	size_t colour;		/* cache colouring range */
	unsigned int colour_off;	/* colour offset */
395
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
396 397
	unsigned int slab_size;
	unsigned int dflags;	/* dynamic flags */
L
Linus Torvalds 已提交
398 399

	/* constructor func */
400
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
401 402

	/* de-constructor func */
403
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
404 405

/* 4) cache creation/removal */
P
Pekka Enberg 已提交
406 407
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
408 409 410

/* 5) statistics */
#if STATS
P
Pekka Enberg 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
424 425
#endif
#if DEBUG
426 427 428 429 430 431 432 433
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
434 435 436 437 438 439 440 441 442 443
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/* Optimization question: fewer reaps means less 
 * probability for unnessary cpucache drain/refill cycles.
 *
A
Adrian Bunk 已提交
444
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
461
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
#define	STATS_SET_FREEABLE(x, i) \
				do { if ((x)->max_freeable < i) \
					(x)->max_freeable = i; \
				} while (0)

#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
480
#define	STATS_INC_NODEFREES(x)	do { } while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#define	STATS_SET_FREEABLE(x, i) \
				do { } while (0)

#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

/* memory layout of objects:
 * 0		: objp
504
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
505 506
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
507
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
508
 * 		redzone word.
509 510 511
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
L
Linus Torvalds 已提交
512
 */
513
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
514
{
515
	return cachep->obj_offset;
L
Linus Torvalds 已提交
516 517
}

518
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_size;
L
Linus Torvalds 已提交
521 522
}

523
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
524 525
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
527 528
}

529
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
530 531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
533
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
534
					 2 * BYTES_PER_WORD);
535
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
536 537
}

538
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
539 540
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
542 543 544 545
}

#else

546 547
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Maximum size of an obj (in 2^order pages)
 * and absolute limit for the gfp order.
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

576
/* Functions for storing/retrieving the cachep and or slab from the
L
Linus Torvalds 已提交
577 578 579
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
599

600 601 602 603 604 605 606 607 608 609 610 611
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

L
Linus Torvalds 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/* These are the default caches for kmalloc. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
630
	{NULL,}
L
Linus Torvalds 已提交
631 632 633 634
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
635
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
636
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
637
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
638 639

/* internal cache of cache description objs */
640
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
641 642 643
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
644
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
645 646 647
	.flags = SLAB_NO_REAP,
	.spinlock = SPIN_LOCK_UNLOCKED,
	.name = "kmem_cache",
L
Linus Torvalds 已提交
648
#if DEBUG
649
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
650 651 652 653
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
654
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
static struct list_head cache_chain;

/*
 * vm_enough_memory() looks at this to determine how many
 * slab-allocated pages are possibly freeable under pressure
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
671 672
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
673 674 675 676 677
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

678 679
static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
680
static void cache_reap(void *unused);
681
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
682

683
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
684 685 686 687
{
	return cachep->array[smp_processor_id()];
}

688
static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
L
Linus Torvalds 已提交
689 690 691 692 693
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
694 695 696
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
697
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
698 699 700 701 702
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
703
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
704 705 706 707 708 709 710 711
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

712
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
713 714 715 716 717
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

718
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
719
{
720 721
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
722

723 724 725 726 727 728 729 730 731
/* Calculate the number of objects and left-over bytes for a given
   buffer size. */
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
781 782 783 784
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

785
static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
L
Linus Torvalds 已提交
786 787
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
788
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	dump_stack();
}

/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

814
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
815
					    int batchcount)
L
Linus Torvalds 已提交
816
{
P
Pekka Enberg 已提交
817
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
818 819
	struct array_cache *nc = NULL;

820
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
821 822 823 824 825
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
826
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
827 828 829 830
	}
	return nc;
}

831
#ifdef CONFIG_NUMA
832
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
833

P
Pekka Enberg 已提交
834
static struct array_cache **alloc_alien_cache(int node, int limit)
835 836
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
837
	int memsize = sizeof(void *) * MAX_NUMNODES;
838 839 840 841 842 843 844 845 846 847 848 849 850
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
851
				for (i--; i <= 0; i--)
852 853 854 855 856 857 858 859 860
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
861
static void free_alien_cache(struct array_cache **ac_ptr)
862 863 864 865 866 867 868
{
	int i;

	if (!ac_ptr)
		return;

	for_each_node(i)
P
Pekka Enberg 已提交
869
	    kfree(ac_ptr[i]);
870 871 872 873

	kfree(ac_ptr);
}

874
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
875
				struct array_cache *ac, int node)
876 877 878 879 880
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
881
		free_block(cachep, ac->entry, ac->avail, node);
882 883 884 885 886
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

887
static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
888
{
P
Pekka Enberg 已提交
889
	int i = 0;
890 891 892 893
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
894
		ac = alien[i];
895 896 897 898 899 900 901 902 903
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
#define alloc_alien_cache(node, limit) do { } while (0)
904 905 906 907 908
#define drain_alien_cache(cachep, alien) do { } while (0)

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
909 910
#endif

L
Linus Torvalds 已提交
911
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
912
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
913 914
{
	long cpu = (long)hcpu;
915
	struct kmem_cache *cachep;
916 917 918
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
919 920 921

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
922
		mutex_lock(&cache_chain_mutex);
923 924 925 926 927 928
		/* we need to do this right in the beginning since
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
929
		list_for_each_entry(cachep, &cache_chain, next) {
930 931 932 933 934 935
			/* setup the size64 kmemlist for cpu before we can
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
				if (!(l3 = kmalloc_node(memsize,
P
Pekka Enberg 已提交
936
							GFP_KERNEL, node)))
937 938 939
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
940
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
941

942 943 944 945 946
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
947 948
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
949

950 951
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
P
Pekka Enberg 已提交
952 953
			    (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
954 955 956 957
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

		/* Now we can go ahead with allocating the shared array's
P
Pekka Enberg 已提交
958
		   & array cache's */
959
		list_for_each_entry(cachep, &cache_chain, next) {
960
			struct array_cache *nc;
961 962
			struct array_cache *shared;
			struct array_cache **alien;
963

964
			nc = alloc_arraycache(node, cachep->limit,
965
						cachep->batchcount);
L
Linus Torvalds 已提交
966 967
			if (!nc)
				goto bad;
968 969 970 971 972 973 974 975 976 977
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
#ifdef CONFIG_NUMA
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
#endif
L
Linus Torvalds 已提交
978 979
			cachep->array[cpu] = nc;

980 981 982
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

983 984 985 986 987 988 989 990
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
991
			}
992 993 994 995 996 997 998 999 1000 1001
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1002
		}
I
Ingo Molnar 已提交
1003
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008 1009
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1010 1011 1012 1013 1014 1015 1016 1017
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1018 1019
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1020
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1021 1022 1023

		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1024 1025
			struct array_cache *shared;
			struct array_cache **alien;
1026
			cpumask_t mask;
L
Linus Torvalds 已提交
1027

1028
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1029 1030 1031
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1032 1033 1034
			l3 = cachep->nodelists[node];

			if (!l3)
1035
				goto free_array_cache;
1036

1037
			spin_lock_irq(&l3->list_lock);
1038 1039 1040 1041

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1042
				free_block(cachep, nc->entry, nc->avail, node);
1043 1044

			if (!cpus_empty(mask)) {
1045
				spin_unlock_irq(&l3->list_lock);
1046
				goto free_array_cache;
P
Pekka Enberg 已提交
1047
			}
1048

1049 1050
			shared = l3->shared;
			if (shared) {
1051
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1052
					   l3->shared->avail, node);
1053 1054 1055
				l3->shared = NULL;
			}

1056 1057 1058 1059 1060 1061 1062 1063 1064
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1065
			}
1066
free_array_cache:
L
Linus Torvalds 已提交
1067 1068
			kfree(nc);
		}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
I
Ingo Molnar 已提交
1083
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1084 1085 1086 1087
		break;
#endif
	}
	return NOTIFY_OK;
P
Pekka Enberg 已提交
1088
      bad:
I
Ingo Molnar 已提交
1089
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1090 1091 1092 1093 1094
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1095 1096 1097
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1098
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

L
Linus Torvalds 已提交
1113 1114 1115 1116 1117 1118 1119 1120
/* Initialisation.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1121 1122 1123 1124 1125 1126 1127
	int i;

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1138
	 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
L
Linus Torvalds 已提交
1139 1140
	 *    structures of all caches, except cache_cache itself: cache_cache
	 *    is statically allocated.
1141 1142 1143
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1144
	 * 2) Create the first kmalloc cache.
1145
	 *    The struct kmem_cache for the new cache is allocated normally.
1146 1147 1148
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1149 1150
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1151 1152 1153
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1154 1155 1156 1157 1158 1159 1160
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1161
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1162

1163
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
L
Linus Torvalds 已提交
1164

1165
	cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
P
Pekka Enberg 已提交
1166
		       &left_over, &cache_cache.num);
L
Linus Torvalds 已提交
1167 1168 1169
	if (!cache_cache.num)
		BUG();

P
Pekka Enberg 已提交
1170 1171 1172
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1173 1174 1175 1176 1177

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

1178 1179 1180 1181 1182 1183
	/* Initialize the caches that provide memory for the array cache
	 * and the kmem_list3 structures first.
	 * Without this, further allocations will bug
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
P
Pekka Enberg 已提交
1184 1185 1186 1187
						      sizes[INDEX_AC].cs_size,
						      ARCH_KMALLOC_MINALIGN,
						      (ARCH_KMALLOC_FLAGS |
						       SLAB_PANIC), NULL, NULL);
1188 1189 1190

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
P
Pekka Enberg 已提交
1191 1192 1193 1194 1195
		    kmem_cache_create(names[INDEX_L3].name,
				      sizes[INDEX_L3].cs_size,
				      ARCH_KMALLOC_MINALIGN,
				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
				      NULL);
1196

L
Linus Torvalds 已提交
1197
	while (sizes->cs_size != ULONG_MAX) {
1198 1199
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1200 1201 1202
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1203 1204
		 * allow tighter packing of the smaller caches.
		 */
P
Pekka Enberg 已提交
1205
		if (!sizes->cs_cachep)
1206
			sizes->cs_cachep = kmem_cache_create(names->name,
P
Pekka Enberg 已提交
1207 1208 1209 1210 1211
							     sizes->cs_size,
							     ARCH_KMALLOC_MINALIGN,
							     (ARCH_KMALLOC_FLAGS
							      | SLAB_PANIC),
							     NULL, NULL);
L
Linus Torvalds 已提交
1212 1213 1214

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1215
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1216 1217 1218 1219
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
P
Pekka Enberg 已提交
1220 1221 1222 1223 1224 1225
							sizes->cs_size,
							ARCH_KMALLOC_MINALIGN,
							(ARCH_KMALLOC_FLAGS |
							 SLAB_CACHE_DMA |
							 SLAB_PANIC), NULL,
							NULL);
L
Linus Torvalds 已提交
1226 1227 1228 1229 1230 1231

		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1232
		void *ptr;
1233

L
Linus Torvalds 已提交
1234
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1235

L
Linus Torvalds 已提交
1236
		local_irq_disable();
1237 1238
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1239
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1240 1241
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1242

L
Linus Torvalds 已提交
1243
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1244

L
Linus Torvalds 已提交
1245
		local_irq_disable();
1246
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1247
		       != &initarray_generic.cache);
1248
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1249
		       sizeof(struct arraycache_init));
1250
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1251
		    ptr;
L
Linus Torvalds 已提交
1252 1253
		local_irq_enable();
	}
1254 1255 1256 1257 1258
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1259
			  numa_node_id());
1260 1261 1262

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1263
				  &initkmem_list3[SIZE_AC + node], node);
1264 1265 1266

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1267 1268
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1269 1270 1271
			}
		}
	}
L
Linus Torvalds 已提交
1272

1273
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1274
	{
1275
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1276
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1277
		list_for_each_entry(cachep, &cache_chain, next)
P
Pekka Enberg 已提交
1278
		    enable_cpucache(cachep);
I
Ingo Molnar 已提交
1279
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285
	}

	/* Done! */
	g_cpucache_up = FULL;

	/* Register a cpu startup notifier callback
1286
	 * that initializes cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	 */
	register_cpu_notifier(&cpucache_notifier);

	/* The reap timers are started later, with a module init call:
	 * That part of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

	/* 
	 * Register the timers that return unneeded
	 * pages to gfp.
	 */
1303
	for_each_online_cpu(cpu)
P
Pekka Enberg 已提交
1304
	    start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	return 0;
}

__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1318
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1325
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
		SetPageSlab(page);
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
1344
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1345
{
P
Pekka Enberg 已提交
1346
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
		if (!TestClearPageSlab(page))
			BUG();
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1359 1360
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1361 1362 1363 1364
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1365
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1366
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1376
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1377
			    unsigned long caller)
L
Linus Torvalds 已提交
1378
{
1379
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1380

1381
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1382

P
Pekka Enberg 已提交
1383
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1384 1385
		return;

P
Pekka Enberg 已提交
1386 1387 1388 1389
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1390 1391 1392 1393 1394 1395 1396
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1397
				*addr++ = svalue;
L
Linus Torvalds 已提交
1398 1399 1400 1401 1402 1403 1404
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1405
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1406 1407 1408
}
#endif

1409
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1410
{
1411 1412
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1413 1414

	memset(addr, val, size);
P
Pekka Enberg 已提交
1415
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1416 1417 1418 1419 1420 1421
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
P
Pekka Enberg 已提交
1422 1423
	for (i = 0; i < limit; i++) {
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1424 1425 1426 1427 1428 1429 1430
	}
	printk("\n");
}
#endif

#if DEBUG

1431
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436 1437
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
P
Pekka Enberg 已提交
1438 1439
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1440 1441 1442 1443
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
P
Pekka Enberg 已提交
1444
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1445
		print_symbol("(%s)",
P
Pekka Enberg 已提交
1446
			     (unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1447 1448
		printk("\n");
	}
1449 1450
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1451
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1452 1453
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1454 1455
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1456 1457 1458 1459
		dump_line(realobj, i, limit);
	}
}

1460
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465
{
	char *realobj;
	int size, i;
	int lines = 0;

1466 1467
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1468

P
Pekka Enberg 已提交
1469
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1470
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1471
		if (i == size - 1)
L
Linus Torvalds 已提交
1472 1473 1474 1475 1476 1477
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1478 1479 1480
				printk(KERN_ERR
				       "Slab corruption: start=%p, len=%d\n",
				       realobj, size);
L
Linus Torvalds 已提交
1481 1482 1483
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1484
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1485
			limit = 16;
P
Pekka Enberg 已提交
1486 1487
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1500
		struct slab *slabp = virt_to_slab(objp);
L
Linus Torvalds 已提交
1501 1502
		int objnr;

1503
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
1504
		if (objnr) {
1505 1506
			objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1507
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1508
			       realobj, size);
L
Linus Torvalds 已提交
1509 1510
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1511
		if (objnr + 1 < cachep->num) {
1512 1513
			objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1514
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1515
			       realobj, size);
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1522 1523 1524 1525
#if DEBUG
/**
 * slab_destroy_objs - call the registered destructor for each object in
 *      a slab that is to be destroyed.
L
Linus Torvalds 已提交
1526
 */
1527
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1528 1529 1530
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1531
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
1532 1533 1534

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1535
			if ((cachep->buffer_size % PAGE_SIZE) == 0
P
Pekka Enberg 已提交
1536 1537
			    && OFF_SLAB(cachep))
				kernel_map_pages(virt_to_page(objp),
1538
						 cachep->buffer_size / PAGE_SIZE,
P
Pekka Enberg 已提交
1539
						 1);
L
Linus Torvalds 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1549
					   "was overwritten");
L
Linus Torvalds 已提交
1550 1551
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1552
					   "was overwritten");
L
Linus Torvalds 已提交
1553 1554
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1555
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1556
	}
1557
}
L
Linus Torvalds 已提交
1558
#else
1559
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1560
{
L
Linus Torvalds 已提交
1561 1562 1563
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1564
			void *objp = slabp->s_mem + cachep->buffer_size * i;
P
Pekka Enberg 已提交
1565
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1566 1567
		}
	}
1568
}
L
Linus Torvalds 已提交
1569 1570
#endif

1571 1572 1573 1574 1575
/**
 * Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
1576
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1577 1578 1579 1580
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1581 1582 1583
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1584
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

1595
/* For setting up all the kmem_list3s for cache whose buffer_size is same
1596
   as size of kmem_list3. */
1597
static void set_up_list3s(struct kmem_cache *cachep, int index)
1598 1599 1600 1601
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1602
		cachep->nodelists[node] = &initkmem_list3[index + node];
1603
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1604 1605
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1606 1607 1608
	}
}

1609
/**
1610 1611 1612 1613 1614 1615 1616
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1617 1618 1619 1620 1621
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
R
Randy Dunlap 已提交
1622 1623
static inline size_t calculate_slab_order(struct kmem_cache *cachep,
			size_t size, size_t align, unsigned long flags)
1624 1625 1626
{
	size_t left_over = 0;

P
Pekka Enberg 已提交
1627
	for (;; cachep->gfporder++) {
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		unsigned int num;
		size_t remainder;

		if (cachep->gfporder > MAX_GFP_ORDER) {
			cachep->num = 0;
			break;
		}

		cache_estimate(cachep->gfporder, size, align, flags,
			       &remainder, &num);
		if (!num)
			continue;
		/* More than offslab_limit objects will cause problems */
		if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
			break;

		cachep->num = num;
		left_over = remainder;

		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
		if (cachep->gfporder >= slab_break_gfp_order)
			break;

		if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
			/* Acceptable internal fragmentation */
			break;
	}
	return left_over;
}

L
Linus Torvalds 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting 
 * unloaded.
 * 
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1694
struct kmem_cache *
L
Linus Torvalds 已提交
1695
kmem_cache_create (const char *name, size_t size, size_t align,
1696 1697
	unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1698 1699
{
	size_t left_over, slab_size, ralign;
1700
	struct kmem_cache *cachep = NULL;
1701
	struct list_head *p;
L
Linus Torvalds 已提交
1702 1703 1704 1705 1706

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
P
Pekka Enberg 已提交
1707 1708 1709 1710 1711 1712 1713
	    in_interrupt() ||
	    (size < BYTES_PER_WORD) ||
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
		printk(KERN_ERR "%s: Early error in slab %s\n",
		       __FUNCTION__, name);
		BUG();
	}
L
Linus Torvalds 已提交
1714

I
Ingo Molnar 已提交
1715
	mutex_lock(&cache_chain_mutex);
1716 1717

	list_for_each(p, &cache_chain) {
1718
		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1733
			       pc->buffer_size);
1734 1735 1736
			continue;
		}

P
Pekka Enberg 已提交
1737
		if (!strcmp(pc->name, name)) {
1738 1739 1740 1741 1742 1743
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1744 1745 1746 1747 1748
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1749
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
P
Pekka Enberg 已提交
1759 1760 1761
	if ((size < 4096
	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1782 1783 1784
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	}

	/* calculate out the final buffer alignment: */
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Default alignment: as specified by the arch code.
		 * Except if an object is really small, then squeeze multiple
		 * objects into one cacheline.
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1795
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1796 1797 1798 1799 1800 1801 1802 1803
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1804
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1810
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815 1816 1817
	}
	/* 4) Store it. Note that the debug code below can reduce
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
1818
	cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
1819
	if (!cachep)
1820
		goto oops;
1821
	memset(cachep, 0, sizeof(struct kmem_cache));
L
Linus Torvalds 已提交
1822 1823

#if DEBUG
1824
	cachep->obj_size = size;
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
1831
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
1832
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
1843
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1844 1845
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
1852
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

	if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		cachep->gfporder = 0;
		cache_estimate(cachep->gfporder, size, align, flags,
P
Pekka Enberg 已提交
1869
			       &left_over, &cachep->num);
1870 1871
	} else
		left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
1877
		goto oops;
L
Linus Torvalds 已提交
1878
	}
P
Pekka Enberg 已提交
1879 1880
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
1893 1894
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899 1900
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
1901
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906 1907
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
1908
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
1909 1910

	if (flags & CFLGS_OFF_SLAB)
1911
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
	} else {
		if (g_cpucache_up == NONE) {
			/* Note: the first kmem_cache_create must create
			 * the cache that's used by kmalloc(24), otherwise
			 * the creation of further caches will BUG().
			 */
1927
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1928
			    &initarray_generic.cache;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

			/* If the cache that's used by
			 * kmalloc(sizeof(kmem_list3)) is the first cache,
			 * then we need to set up all its list3s, otherwise
			 * the creation of further caches will BUG().
			 */
			set_up_list3s(cachep, SIZE_AC);
			if (INDEX_AC == INDEX_L3)
				g_cpucache_up = PARTIAL_L3;
			else
				g_cpucache_up = PARTIAL_AC;
L
Linus Torvalds 已提交
1940
		} else {
1941
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1942
			    kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1943 1944 1945 1946 1947 1948 1949 1950 1951

			if (g_cpucache_up == PARTIAL_AC) {
				set_up_list3s(cachep, SIZE_L3);
				g_cpucache_up = PARTIAL_L3;
			} else {
				int node;
				for_each_online_node(node) {

					cachep->nodelists[node] =
P
Pekka Enberg 已提交
1952 1953 1954
					    kmalloc_node(sizeof
							 (struct kmem_list3),
							 GFP_KERNEL, node);
1955
					BUG_ON(!cachep->nodelists[node]);
P
Pekka Enberg 已提交
1956 1957
					kmem_list3_init(cachep->
							nodelists[node]);
1958 1959
				}
			}
L
Linus Torvalds 已提交
1960
		}
1961
		cachep->nodelists[numa_node_id()]->next_reap =
P
Pekka Enberg 已提交
1962 1963
		    jiffies + REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1964

1965 1966 1967 1968 1969
		BUG_ON(!cpu_cache_get(cachep));
		cpu_cache_get(cachep)->avail = 0;
		cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
		cpu_cache_get(cachep)->batchcount = 1;
		cpu_cache_get(cachep)->touched = 0;
L
Linus Torvalds 已提交
1970 1971
		cachep->batchcount = 1;
		cachep->limit = BOOT_CPUCACHE_ENTRIES;
P
Pekka Enberg 已提交
1972
	}
L
Linus Torvalds 已提交
1973 1974 1975 1976

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
	unlock_cpu_hotplug();
P
Pekka Enberg 已提交
1977
      oops:
L
Linus Torvalds 已提交
1978 1979
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
1980
		      name);
I
Ingo Molnar 已提交
1981
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

1997
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
1998 1999 2000
{
#ifdef CONFIG_SMP
	check_irq_off();
2001
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2002 2003
#endif
}
2004

2005
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2006 2007 2008 2009 2010 2011 2012
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2013 2014 2015 2016
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2017
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2018 2019 2020 2021 2022
#endif

/*
 * Waits for all CPUs to execute func().
 */
P
Pekka Enberg 已提交
2023
static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
L
Linus Torvalds 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
{
	check_irq_on();
	preempt_disable();

	local_irq_disable();
	func(arg);
	local_irq_enable();

	if (smp_call_function(func, arg, 1, 1))
		BUG();

	preempt_enable();
}

2038
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
2039
				int force, int node);
L
Linus Torvalds 已提交
2040 2041 2042

static void do_drain(void *arg)
{
2043
	struct kmem_cache *cachep = (struct kmem_cache *) arg;
L
Linus Torvalds 已提交
2044
	struct array_cache *ac;
2045
	int node = numa_node_id();
L
Linus Torvalds 已提交
2046 2047

	check_irq_off();
2048
	ac = cpu_cache_get(cachep);
2049 2050 2051
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2052 2053 2054
	ac->avail = 0;
}

2055
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2056
{
2057 2058 2059
	struct kmem_list3 *l3;
	int node;

L
Linus Torvalds 已提交
2060 2061
	smp_call_function_all_cpus(do_drain, cachep);
	check_irq_on();
P
Pekka Enberg 已提交
2062
	for_each_online_node(node) {
2063 2064
		l3 = cachep->nodelists[node];
		if (l3) {
2065
			spin_lock_irq(&l3->list_lock);
2066
			drain_array_locked(cachep, l3->shared, 1, node);
2067
			spin_unlock_irq(&l3->list_lock);
2068
			if (l3->alien)
2069
				drain_alien_cache(cachep, l3->alien);
2070 2071
		}
	}
L
Linus Torvalds 已提交
2072 2073
}

2074
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2075 2076
{
	struct slab *slabp;
2077
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2078 2079
	int ret;

2080
	for (;;) {
L
Linus Torvalds 已提交
2081 2082
		struct list_head *p;

2083 2084
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2085 2086
			break;

2087
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093
#if DEBUG
		if (slabp->inuse)
			BUG();
#endif
		list_del(&slabp->list);

2094 2095
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2096
		slab_destroy(cachep, slabp);
2097
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2098
	}
P
Pekka Enberg 已提交
2099
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2100 2101 2102
	return ret;
}

2103
static int __cache_shrink(struct kmem_cache *cachep)
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2122 2123 2124 2125 2126 2127 2128
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2129
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
{
	if (!cachep || in_interrupt())
		BUG();

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2142
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2155
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2156 2157
{
	int i;
2158
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164 2165 2166

	if (!cachep || in_interrupt())
		BUG();

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2167
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2168 2169 2170 2171
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2172
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2173 2174 2175

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2176
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2177
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2178
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2179 2180 2181 2182 2183
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2184
		synchronize_rcu();
L
Linus Torvalds 已提交
2185

2186
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2187
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2188 2189

	/* NUMA: free the list3 structures */
2190 2191 2192 2193 2194 2195 2196
	for_each_online_node(i) {
		if ((l3 = cachep->nodelists[i])) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205
	kmem_cache_free(&cache_cache, cachep);

	unlock_cpu_hotplug();

	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2206
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2207
				   int colour_off, gfp_t local_flags)
L
Linus Torvalds 已提交
2208 2209
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2210

L
Linus Torvalds 已提交
2211 2212 2213 2214 2215 2216
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2217
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2218 2219 2220 2221
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2222
	slabp->s_mem = objp + colour_off;
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228

	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2229
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2230 2231
}

2232
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2233
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2234 2235 2236 2237
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2238
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2256
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2257
				     ctor_flags);
L
Linus Torvalds 已提交
2258 2259 2260 2261

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2262
					   " end of an object");
L
Linus Torvalds 已提交
2263 2264
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2265
					   " start of an object");
L
Linus Torvalds 已提交
2266
		}
2267
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
P
Pekka Enberg 已提交
2268 2269
		    && cachep->flags & SLAB_POISON)
			kernel_map_pages(virt_to_page(objp),
2270
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2271 2272 2273 2274
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2275
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2276
	}
P
Pekka Enberg 已提交
2277
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2278 2279 2280
	slabp->free = 0;
}

2281
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
{
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
}

2292
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
{
	void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

2308
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
			  int nodeid)
{
	unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

	if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
		printk(KERN_ERR "slab: double free detected in cache "
		       "'%s', objp %p\n", cachep->name, objp);
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2328
static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335 2336
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
2337 2338
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2339 2340 2341 2342 2343 2344 2345 2346
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2347
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2348
{
P
Pekka Enberg 已提交
2349 2350 2351 2352 2353
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2354
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2355 2356

	/* Be lazy and only check for valid flags here,
P
Pekka Enberg 已提交
2357
	 * keeping it out of the critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2358
	 */
P
Pekka Enberg 已提交
2359
	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
L
Linus Torvalds 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2373
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2374
	check_irq_off();
2375 2376
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2377 2378

	/* Get colour for the slab, and cal the next value. */
2379 2380 2381 2382 2383
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2384

2385
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

2398 2399 2400
	/* Get mem for the objs.
	 * Attempt to allocate a physical page from 'nodeid',
	 */
L
Linus Torvalds 已提交
2401 2402 2403 2404 2405 2406 2407
	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

2408
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2409 2410 2411 2412 2413 2414 2415
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2416
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2417 2418

	/* Make slab active. */
2419
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2420
	STATS_INC_GROWN(cachep);
2421 2422
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2423
	return 1;
P
Pekka Enberg 已提交
2424
      opps1:
L
Linus Torvalds 已提交
2425
	kmem_freepages(cachep, objp);
P
Pekka Enberg 已提交
2426
      failed:
L
Linus Torvalds 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2446 2447
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2448 2449 2450
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2451 2452
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2453 2454 2455 2456
		BUG();
	}
}

2457
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2458
				   void *caller)
L
Linus Torvalds 已提交
2459 2460 2461 2462 2463
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2464
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2465 2466 2467
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2468
	if (page_get_cache(page) != cachep) {
P
Pekka Enberg 已提交
2469 2470 2471
		printk(KERN_ERR
		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2472
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2473 2474
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2475 2476
		WARN_ON(1);
	}
2477
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2478 2479

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2489 2490 2491 2492 2493 2494 2495
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2496
	objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
2497 2498

	BUG_ON(objnr >= cachep->num);
2499
	BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
2506
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2507
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2513
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2514 2515 2516
	}
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2517
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2518
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2519
			kernel_map_pages(virt_to_page(objp),
2520
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2531
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2532 2533 2534
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2535

L
Linus Torvalds 已提交
2536 2537 2538 2539 2540 2541 2542
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
P
Pekka Enberg 已提交
2543 2544 2545 2546 2547 2548 2549 2550
	      bad:
		printk(KERN_ERR
		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
		       cachep->name, cachep->num, slabp, slabp->inuse);
		for (i = 0;
		     i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
		     i++) {
			if ((i % 16) == 0)
L
Linus Torvalds 已提交
2551
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2552
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2564
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2571
	ac = cpu_cache_get(cachep);
P
Pekka Enberg 已提交
2572
      retry:
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578 2579 2580
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/* if there was little recent activity on this
		 * cache, then perform only a partial refill.
		 * Otherwise we could generate refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2581 2582 2583 2584
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590 2591 2592

	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
		if (shared_array->avail) {
			if (batchcount > shared_array->avail)
				batchcount = shared_array->avail;
			shared_array->avail -= batchcount;
			ac->avail = batchcount;
2593
			memcpy(ac->entry,
P
Pekka Enberg 已提交
2594 2595
			       &(shared_array->entry[shared_array->avail]),
			       sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
			shared_array->touched = 1;
			goto alloc_done;
		}
	}
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2620 2621
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

P
Pekka Enberg 已提交
2633
      must_grow:
L
Linus Torvalds 已提交
2634
	l3->free_objects -= ac->avail;
P
Pekka Enberg 已提交
2635
      alloc_done:
2636
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2637 2638 2639

	if (unlikely(!ac->avail)) {
		int x;
2640 2641
		x = cache_grow(cachep, flags, numa_node_id());

L
Linus Torvalds 已提交
2642
		// cache_grow can reenable interrupts, then ac could change.
2643
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2644 2645 2646
		if (!x && ac->avail == 0)	// no objects in sight? abort
			return NULL;

P
Pekka Enberg 已提交
2647
		if (!ac->avail)	// objects refilled by interrupt?
L
Linus Torvalds 已提交
2648 2649 2650
			goto retry;
	}
	ac->touched = 1;
2651
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2652 2653 2654
}

static inline void
2655
cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2656 2657 2658 2659 2660 2661 2662 2663
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
2664
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
P
Pekka Enberg 已提交
2665
					void *objp, void *caller)
L
Linus Torvalds 已提交
2666
{
P
Pekka Enberg 已提交
2667
	if (!objp)
L
Linus Torvalds 已提交
2668
		return objp;
P
Pekka Enberg 已提交
2669
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2670
#ifdef CONFIG_DEBUG_PAGEALLOC
2671
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2672
			kernel_map_pages(virt_to_page(objp),
2673
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2694 2695 2696 2697
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2698
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2699
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2700
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2701 2702 2703 2704 2705

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2706
	}
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2713
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2714
{
P
Pekka Enberg 已提交
2715
	void *objp;
L
Linus Torvalds 已提交
2716 2717
	struct array_cache *ac;

2718
#ifdef CONFIG_NUMA
2719
	if (unlikely(current->mempolicy && !in_interrupt())) {
2720 2721 2722 2723 2724 2725 2726
		int nid = slab_node(current->mempolicy);

		if (nid != numa_node_id())
			return __cache_alloc_node(cachep, flags, nid);
	}
#endif

2727
	check_irq_off();
2728
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2729 2730 2731
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2732
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2733 2734 2735 2736
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2737 2738 2739
	return objp;
}

2740 2741
static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2742 2743
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2744
	void *objp;
2745 2746 2747 2748 2749

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2750
	local_irq_restore(save_flags);
2751
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2752
					    caller);
2753
	prefetchw(objp);
L
Linus Torvalds 已提交
2754 2755 2756
	return objp;
}

2757 2758 2759
#ifdef CONFIG_NUMA
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2760
 */
2761
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2762 2763
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

      retry:
2773
	check_irq_off();
P
Pekka Enberg 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

2793
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

	if (slabp->free == BUFCTL_END) {
		list_add(&slabp->list, &l3->slabs_full);
	} else {
		list_add(&slabp->list, &l3->slabs_partial);
	}
2804

P
Pekka Enberg 已提交
2805 2806
	spin_unlock(&l3->list_lock);
	goto done;
2807

P
Pekka Enberg 已提交
2808 2809 2810
      must_grow:
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2811

P
Pekka Enberg 已提交
2812 2813
	if (!x)
		return NULL;
2814

P
Pekka Enberg 已提交
2815 2816 2817
	goto retry;
      done:
	return obj;
2818 2819 2820 2821 2822 2823
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
2824
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
2825
		       int node)
L
Linus Torvalds 已提交
2826 2827
{
	int i;
2828
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2829 2830 2831 2832 2833

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

2834
		slabp = virt_to_slab(objp);
2835
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2836
		list_del(&slabp->list);
2837
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2838
		check_slabp(cachep, slabp);
2839
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
2840
		STATS_DEC_ACTIVE(cachep);
2841
		l3->free_objects++;
L
Linus Torvalds 已提交
2842 2843 2844 2845
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2846 2847
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2848 2849
				slab_destroy(cachep, slabp);
			} else {
2850
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
2857
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
2858 2859 2860 2861
		}
	}
}

2862
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
2863 2864
{
	int batchcount;
2865
	struct kmem_list3 *l3;
2866
	int node = numa_node_id();
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
2873
	l3 = cachep->nodelists[node];
2874 2875 2876
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
2877
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
2878 2879 2880
		if (max) {
			if (batchcount > max)
				batchcount = max;
2881
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
2882
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

2888
	free_block(cachep, ac->entry, batchcount, node);
P
Pekka Enberg 已提交
2889
      free_done:
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894
#if STATS
	{
		int i = 0;
		struct list_head *p;

2895 2896
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
2908
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2909
	ac->avail -= batchcount;
2910
	memmove(ac->entry, &(ac->entry[batchcount]),
P
Pekka Enberg 已提交
2911
		sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920
}

/*
 * __cache_free
 * Release an obj back to its cache. If the obj has a constructed
 * state, it must be in this state _before_ it is released.
 *
 * Called with disabled ints.
 */
2921
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2922
{
2923
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2924 2925 2926 2927

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

2928 2929 2930 2931 2932 2933
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
2934
		slabp = virt_to_slab(objp);
2935 2936 2937
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
P
Pekka Enberg 已提交
2938 2939
			struct kmem_list3 *l3 =
			    cachep->nodelists[numa_node_id()];
2940 2941 2942 2943 2944 2945 2946

			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
2947
							    alien, nodeid);
2948 2949 2950 2951
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2952
					  list_lock);
2953
				free_block(cachep, &objp, 1, nodeid);
2954
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2955
					    list_lock);
2956 2957 2958 2959 2960
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
2961 2962
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
2963
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2964 2965 2966 2967
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
2968
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
2980
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2981
{
2982
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3000
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3001
{
P
Pekka Enberg 已提交
3002
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3003
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3004
	unsigned long align_mask = BYTES_PER_WORD - 1;
3005
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3021
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3022 3023
		goto out;
	return 1;
P
Pekka Enberg 已提交
3024
      out:
L
Linus Torvalds 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3038 3039
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3040
 */
3041
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3042
{
3043 3044
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3045

3046 3047
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3048 3049 3050

	if (nodeid == -1 || nodeid == numa_node_id() ||
	    !cachep->nodelists[nodeid])
3051 3052 3053
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3054
	local_irq_restore(save_flags);
3055 3056 3057

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3058

3059
	return ptr;
L
Linus Torvalds 已提交
3060 3061 3062
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3063
void *kmalloc_node(size_t size, gfp_t flags, int node)
3064
{
3065
	struct kmem_cache *cachep;
3066 3067 3068 3069 3070 3071 3072

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3096 3097
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3098
{
3099
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3100

3101 3102 3103 3104 3105 3106
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3107 3108
	if (unlikely(cachep == NULL))
		return NULL;
3109 3110 3111 3112 3113 3114 3115 3116
	return __cache_alloc(cachep, flags, caller);
}

#ifndef CONFIG_DEBUG_SLAB

void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
L
Linus Torvalds 已提交
3117 3118 3119
}
EXPORT_SYMBOL(__kmalloc);

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
#else

void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);

#endif

L
Linus Torvalds 已提交
3130 3131 3132 3133 3134 3135 3136 3137
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3138
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3139 3140
{
	int i;
P
Pekka Enberg 已提交
3141
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3142 3143 3144 3145

	if (!pdata)
		return NULL;

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
	for_each_cpu(i) {
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163 3164

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3165
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3166

P
Pekka Enberg 已提交
3167
      unwind_oom:
L
Linus Torvalds 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3187
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3201 3202
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3208
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3209 3210 3211 3212 3213 3214
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3215
	c = virt_to_cache(objp);
3216
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3217
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3230
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3231 3232
{
	int i;
P
Pekka Enberg 已提交
3233
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3234

3235 3236 3237 3238
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
	for_each_cpu(i)
P
Pekka Enberg 已提交
3239
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3240 3241 3242 3243 3244
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3245
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3246
{
3247
	return obj_size(cachep);
L
Linus Torvalds 已提交
3248 3249 3250
}
EXPORT_SYMBOL(kmem_cache_size);

3251
const char *kmem_cache_name(struct kmem_cache *cachep)
3252 3253 3254 3255 3256
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3257 3258 3259
/*
 * This initializes kmem_list3 for all nodes.
 */
3260
static int alloc_kmemlist(struct kmem_cache *cachep)
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
{
	int node;
	struct kmem_list3 *l3;
	int err = 0;

	for_each_online_node(node) {
		struct array_cache *nc = NULL, *new;
		struct array_cache **new_alien = NULL;
#ifdef CONFIG_NUMA
		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
			goto fail;
#endif
P
Pekka Enberg 已提交
3273 3274 3275
		if (!(new = alloc_arraycache(node, (cachep->shared *
						    cachep->batchcount),
					     0xbaadf00d)))
3276 3277 3278 3279 3280 3281
			goto fail;
		if ((l3 = cachep->nodelists[node])) {

			spin_lock_irq(&l3->list_lock);

			if ((nc = cachep->nodelists[node]->shared))
P
Pekka Enberg 已提交
3282
				free_block(cachep, nc->entry, nc->avail, node);
3283 3284 3285 3286 3287 3288

			l3->shared = new;
			if (!cachep->nodelists[node]->alien) {
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3289 3290
			l3->free_limit = (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
3291 3292 3293 3294 3295 3296
			spin_unlock_irq(&l3->list_lock);
			kfree(nc);
			free_alien_cache(new_alien);
			continue;
		}
		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
P
Pekka Enberg 已提交
3297
					GFP_KERNEL, node)))
3298 3299 3300 3301
			goto fail;

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
3302
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3303 3304
		l3->shared = new;
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3305 3306
		l3->free_limit = (1 + nr_cpus_node(node)) *
		    cachep->batchcount + cachep->num;
3307 3308 3309
		cachep->nodelists[node] = l3;
	}
	return err;
P
Pekka Enberg 已提交
3310
      fail:
3311 3312 3313 3314
	err = -ENOMEM;
	return err;
}

L
Linus Torvalds 已提交
3315
struct ccupdate_struct {
3316
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
	struct array_cache *old;

	check_irq_off();
3326
	old = cpu_cache_get(new->cachep);
3327

L
Linus Torvalds 已提交
3328 3329 3330 3331
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3332
static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
P
Pekka Enberg 已提交
3333
			    int shared)
L
Linus Torvalds 已提交
3334 3335
{
	struct ccupdate_struct new;
3336
	int i, err;
L
Linus Torvalds 已提交
3337

P
Pekka Enberg 已提交
3338
	memset(&new.new, 0, sizeof(new.new));
3339
	for_each_online_cpu(i) {
P
Pekka Enberg 已提交
3340 3341
		new.new[i] =
		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3342
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3343 3344
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3345
			return -ENOMEM;
L
Linus Torvalds 已提交
3346 3347 3348 3349 3350
		}
	}
	new.cachep = cachep;

	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3351

L
Linus Torvalds 已提交
3352
	check_irq_on();
3353
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3354 3355
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3356
	cachep->shared = shared;
3357
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3358

3359
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3360 3361 3362
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3363
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3364
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3365
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3366 3367 3368
		kfree(ccold);
	}

3369 3370 3371
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3372
		       cachep->name, -err);
3373
		BUG();
L
Linus Torvalds 已提交
3374 3375 3376 3377
	}
	return 0;
}

3378
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
{
	int err;
	int limit, shared;

	/* The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and 
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3391
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3392
		limit = 1;
3393
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3394
		limit = 8;
3395
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3396
		limit = 24;
3397
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
		limit = 54;
	else
		limit = 120;

	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3412
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		shared = 8;
#endif

#if DEBUG
	/* With debugging enabled, large batchcount lead to excessively
	 * long periods with disabled local interrupts. Limit the 
	 * batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3424
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3425 3426
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3427
		       cachep->name, -err);
L
Linus Torvalds 已提交
3428 3429
}

3430
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
3431
				int force, int node)
L
Linus Torvalds 已提交
3432 3433 3434
{
	int tofree;

3435
	check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3436 3437 3438
	if (ac->touched && !force) {
		ac->touched = 0;
	} else if (ac->avail) {
P
Pekka Enberg 已提交
3439
		tofree = force ? ac->avail : (ac->limit + 4) / 5;
L
Linus Torvalds 已提交
3440
		if (tofree > ac->avail) {
P
Pekka Enberg 已提交
3441
			tofree = (ac->avail + 1) / 2;
L
Linus Torvalds 已提交
3442
		}
3443
		free_block(cachep, ac->entry, tofree, node);
L
Linus Torvalds 已提交
3444
		ac->avail -= tofree;
3445
		memmove(ac->entry, &(ac->entry[tofree]),
P
Pekka Enberg 已提交
3446
			sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
3447 3448 3449 3450 3451
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3452
 * @unused: unused parameter
L
Linus Torvalds 已提交
3453 3454 3455 3456 3457 3458
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
I
Ingo Molnar 已提交
3459
 * If we cannot acquire the cache chain mutex then just give up - we'll
L
Linus Torvalds 已提交
3460 3461 3462 3463 3464
 * try again on the next iteration.
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3465
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3466

I
Ingo Molnar 已提交
3467
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3468
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3469 3470
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3471 3472 3473 3474
		return;
	}

	list_for_each(walk, &cache_chain) {
3475
		struct kmem_cache *searchp;
P
Pekka Enberg 已提交
3476
		struct list_head *p;
L
Linus Torvalds 已提交
3477 3478 3479
		int tofree;
		struct slab *slabp;

3480
		searchp = list_entry(walk, struct kmem_cache, next);
L
Linus Torvalds 已提交
3481 3482 3483 3484 3485 3486

		if (searchp->flags & SLAB_NO_REAP)
			goto next;

		check_irq_on();

3487 3488
		l3 = searchp->nodelists[numa_node_id()];
		if (l3->alien)
3489
			drain_alien_cache(searchp, l3->alien);
3490
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3491

3492
		drain_array_locked(searchp, cpu_cache_get(searchp), 0,
P
Pekka Enberg 已提交
3493
				   numa_node_id());
L
Linus Torvalds 已提交
3494

3495
		if (time_after(l3->next_reap, jiffies))
L
Linus Torvalds 已提交
3496 3497
			goto next_unlock;

3498
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3499

3500 3501
		if (l3->shared)
			drain_array_locked(searchp, l3->shared, 0,
P
Pekka Enberg 已提交
3502
					   numa_node_id());
L
Linus Torvalds 已提交
3503

3504 3505
		if (l3->free_touched) {
			l3->free_touched = 0;
L
Linus Torvalds 已提交
3506 3507 3508
			goto next_unlock;
		}

P
Pekka Enberg 已提交
3509 3510 3511
		tofree =
		    (l3->free_limit + 5 * searchp->num -
		     1) / (5 * searchp->num);
L
Linus Torvalds 已提交
3512
		do {
3513 3514
			p = l3->slabs_free.next;
			if (p == &(l3->slabs_free))
L
Linus Torvalds 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
				break;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

			/* Safe to drop the lock. The slab is no longer
			 * linked to the cache.
			 * searchp cannot disappear, we hold
			 * cache_chain_lock
			 */
3527 3528
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3529
			slab_destroy(searchp, slabp);
3530
			spin_lock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3531 3532
		} while (--tofree > 0);
	      next_unlock:
3533
		spin_unlock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3534
	      next:
L
Linus Torvalds 已提交
3535 3536 3537
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3538
	mutex_unlock(&cache_chain_mutex);
3539
	drain_remote_pages();
L
Linus Torvalds 已提交
3540
	/* Setup the next iteration */
3541
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3542 3543 3544 3545
}

#ifdef CONFIG_PROC_FS

3546
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3547
{
3548 3549 3550 3551
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3552
#if STATS
3553
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3554
#else
3555
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3556
#endif
3557 3558 3559 3560
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3561
#if STATS
3562 3563 3564
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3565
#endif
3566 3567 3568 3569 3570 3571 3572 3573
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3574
	mutex_lock(&cache_chain_mutex);
3575 3576
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3577 3578 3579 3580 3581 3582
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3583
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3584 3585 3586 3587
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3588
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3589 3590
	++*pos;
	return cachep->next.next == &cache_chain ? NULL
3591
	    : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3592 3593 3594 3595
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3596
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3597 3598 3599 3600
}

static int s_show(struct seq_file *m, void *p)
{
3601
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3602
	struct list_head *q;
P
Pekka Enberg 已提交
3603 3604 3605 3606 3607
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3608
	const char *name;
L
Linus Torvalds 已提交
3609
	char *error = NULL;
3610 3611
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3612

3613
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3614 3615
	active_objs = 0;
	num_slabs = 0;
3616 3617 3618 3619 3620
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3621 3622
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3623

P
Pekka Enberg 已提交
3624
		list_for_each(q, &l3->slabs_full) {
3625 3626 3627 3628 3629 3630
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3631
		list_for_each(q, &l3->slabs_partial) {
3632 3633 3634 3635 3636 3637 3638 3639
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3640
		list_for_each(q, &l3->slabs_free) {
3641 3642 3643 3644 3645 3646
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3647 3648
		if (l3->shared)
			shared_avail += l3->shared->avail;
3649

3650
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3651
	}
P
Pekka Enberg 已提交
3652 3653
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3654
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3655 3656
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3657
	name = cachep->name;
L
Linus Torvalds 已提交
3658 3659 3660 3661
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3662
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3663
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3664
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3665
		   cachep->limit, cachep->batchcount, cachep->shared);
3666
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3667
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3668
#if STATS
P
Pekka Enberg 已提交
3669
	{			/* list3 stats */
L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3677
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3678

3679
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
P
Pekka Enberg 已提交
3680
				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
L
Linus Torvalds 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3690
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3691 3692 3693
	}
#endif
	seq_putc(m, '\n');
3694
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3713 3714 3715 3716
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3727 3728
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3729
{
P
Pekka Enberg 已提交
3730
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3731 3732
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3733

L
Linus Torvalds 已提交
3734 3735 3736 3737
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3738
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3749
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3750
	res = -EINVAL;
P
Pekka Enberg 已提交
3751
	list_for_each(p, &cache_chain) {
3752 3753
		struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
						       next);
L
Linus Torvalds 已提交
3754 3755 3756 3757

		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 ||
			    batchcount < 1 ||
P
Pekka Enberg 已提交
3758
			    batchcount > limit || shared < 0) {
3759
				res = 0;
L
Linus Torvalds 已提交
3760
			} else {
3761
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3762
						       batchcount, shared);
L
Linus Torvalds 已提交
3763 3764 3765 3766
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3767
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772 3773
	if (res >= 0)
		res = count;
	return res;
}
#endif

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
3786 3787
unsigned int ksize(const void *objp)
{
3788 3789
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
3790

3791
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
3792
}