slab.c 107.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/nodemask.h>
107
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
108
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
175 176
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
178
#else
179
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
180 181
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

204
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
205 206
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207 208
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
209 210 211 212 213 214 215 216 217

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
218 219 220 221 222 223
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
243
	struct rcu_head head;
244
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
245
	void *addr;
L
Linus Torvalds 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
A
Andrew Morton 已提交
266 267 268 269 270 271
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
272 273
};

A
Andrew Morton 已提交
274 275 276
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
277 278 279 280
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
281
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
282 283 284
};

/*
285
 * The slab lists for all objects.
L
Linus Torvalds 已提交
286 287
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
288 289 290 291 292
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
293
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
294 295 296
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
297 298
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
299 300
};

301 302 303 304 305 306 307 308 309 310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
A
Andrew Morton 已提交
311 312
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
313
 */
314
static __always_inline int index_of(const size_t size)
315
{
316 317
	extern void __bad_size(void);

318 319 320 321 322 323 324 325 326 327
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
328
		__bad_size();
329
	} else
330
		__bad_size();
331 332 333
	return 0;
}

334 335
static int slab_early_init = 1;

336 337
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
338

P
Pekka Enberg 已提交
339
static void kmem_list3_init(struct kmem_list3 *parent)
340 341 342 343 344 345
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
346
	parent->colour_next = 0;
347 348 349 350 351
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
352 353 354 355
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
356 357
	} while (0)

A
Andrew Morton 已提交
358 359
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
360 361 362 363
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
364 365

/*
366
 * struct kmem_cache
L
Linus Torvalds 已提交
367 368 369
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
370

371
struct kmem_cache {
L
Linus Torvalds 已提交
372
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
373
	struct array_cache *array[NR_CPUS];
374
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
375 376 377
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
378

379
	unsigned int buffer_size;
380
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
381
	struct kmem_list3 *nodelists[MAX_NUMNODES];
382

A
Andrew Morton 已提交
383 384
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
385

386
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
387
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
388
	unsigned int gfporder;
L
Linus Torvalds 已提交
389 390

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
391
	gfp_t gfpflags;
L
Linus Torvalds 已提交
392

A
Andrew Morton 已提交
393
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
394
	unsigned int colour_off;	/* colour offset */
395
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
396
	unsigned int slab_size;
A
Andrew Morton 已提交
397
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
398 399

	/* constructor func */
400
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
401 402

	/* de-constructor func */
403
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
404

405
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
406 407
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
408

409
/* 6) statistics */
L
Linus Torvalds 已提交
410
#if STATS
P
Pekka Enberg 已提交
411 412 413 414 415 416 417 418 419
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
420
	unsigned long node_overflow;
P
Pekka Enberg 已提交
421 422 423 424
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
425 426
#endif
#if DEBUG
427 428 429 430 431 432 433 434
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
435 436 437 438 439 440 441
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
442 443 444
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
445
 *
A
Adrian Bunk 已提交
446
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
447 448 449 450 451 452 453 454 455 456 457
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
A
Andrew Morton 已提交
458 459 460 461 462
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
463 464
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
465
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
466
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
467 468 469 470 471
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
485
#define	STATS_INC_NODEFREES(x)	do { } while (0)
486
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
487
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
488 489 490 491 492 493 494
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
A
Andrew Morton 已提交
495 496
/*
 * Magic nums for obj red zoning.
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504 505 506
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

A
Andrew Morton 已提交
507 508
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
509
 * 0		: objp
510
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
511 512
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
513
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
514
 * 		redzone word.
515 516
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
517 518
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
519
 */
520
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
521
{
522
	return cachep->obj_offset;
L
Linus Torvalds 已提交
523 524
}

525
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
526
{
527
	return cachep->obj_size;
L
Linus Torvalds 已提交
528 529
}

530
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
534 535
}

536
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
537 538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
540
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
541
					 2 * BYTES_PER_WORD);
542
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
543 544
}

545
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
546 547
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
549 550 551 552
}

#else

553 554
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
555 556 557 558 559 560 561
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
562 563
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
583 584 585 586
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
587
 */
588 589 590 591 592 593 594
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
595 596
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
597
	BUG_ON(!PageSlab(page));
598 599 600 601 602 603 604 605 606 607
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
608 609
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
610
	BUG_ON(!PageSlab(page));
611 612
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
613

614 615 616 617 618 619 620 621 622 623 624 625
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

626 627 628 629 630 631 632 633 634 635 636 637
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
638 639 640
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
658
	{NULL,}
L
Linus Torvalds 已提交
659 660 661 662
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
665
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
666 667

/* internal cache of cache description objs */
668
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
669 670 671
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
672
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
673
	.name = "kmem_cache",
L
Linus Torvalds 已提交
674
#if DEBUG
675
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
676 677 678 679
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
680
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
681 682 683
static struct list_head cache_chain;

/*
A
Andrew Morton 已提交
684 685
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
L
Linus Torvalds 已提交
686 687 688 689 690 691 692 693 694 695 696
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
697 698
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
699 700 701
	FULL
} g_cpucache_up;

702 703 704 705 706 707 708 709
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

L
Linus Torvalds 已提交
710 711
static DEFINE_PER_CPU(struct work_struct, reap_work);

A
Andrew Morton 已提交
712 713
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
714
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
715
static void cache_reap(void *unused);
716
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
717

718
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
719 720 721 722
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
723 724
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
725 726 727 728 729
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
730 731 732
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
733
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
734 735 736 737 738
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
739
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
740 741 742 743 744 745 746 747
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

748
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
749 750 751 752 753
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

754
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
755
{
756 757
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
758

A
Andrew Morton 已提交
759 760 761
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
762 763 764 765 766 767 768
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
769

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
818 819 820 821
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
822 823
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
824 825
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
826
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
827 828 829
	dump_stack();
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
845
		node = first_node(node_online_map);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
888
		init_reap_node(cpu);
L
Linus Torvalds 已提交
889 890 891 892 893
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

894
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
895
					    int batchcount)
L
Linus Torvalds 已提交
896
{
P
Pekka Enberg 已提交
897
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
898 899
	struct array_cache *nc = NULL;

900
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
901 902 903 904 905
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
906
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
907 908 909 910
	}
	return nc;
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

935
#ifdef CONFIG_NUMA
936
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
937
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
938

P
Pekka Enberg 已提交
939
static struct array_cache **alloc_alien_cache(int node, int limit)
940 941
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
942
	int memsize = sizeof(void *) * MAX_NUMNODES;
943 944 945 946 947 948 949 950 951 952 953 954 955
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
956
				for (i--; i <= 0; i--)
957 958 959 960 961 962 963 964 965
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
966
static void free_alien_cache(struct array_cache **ac_ptr)
967 968 969 970 971 972
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
973
	    kfree(ac_ptr[i]);
974 975 976
	kfree(ac_ptr);
}

977
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
978
				struct array_cache *ac, int node)
979 980 981 982 983
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
984 985 986 987 988
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
989 990
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
991

992
		free_block(cachep, ac->entry, ac->avail, node);
993 994 995 996 997
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

998 999 1000 1001 1002 1003 1004 1005 1006
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1007 1008

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1009 1010 1011 1012 1013 1014
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1015 1016
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1017
{
P
Pekka Enberg 已提交
1018
	int i = 0;
1019 1020 1021 1022
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1023
		ac = alien[i];
1024 1025 1026 1027 1028 1029 1030
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
		spin_lock(&alien->lock);
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1065
#else
1066

1067
#define drain_alien_cache(cachep, alien) do { } while (0)
1068
#define reap_alien(cachep, l3) do { } while (0)
1069

1070 1071 1072 1073 1074
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

1075 1076 1077
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1078

1079 1080 1081 1082 1083
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

1084 1085
#endif

1086
static int cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1087
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1088 1089
{
	long cpu = (long)hcpu;
1090
	struct kmem_cache *cachep;
1091 1092 1093
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1094 1095 1096

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1097
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1098 1099
		/*
		 * We need to do this right in the beginning since
1100 1101 1102 1103 1104
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1105
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1106 1107
			/*
			 * Set up the size64 kmemlist for cpu before we can
1108 1109 1110 1111
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1112 1113
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1114 1115 1116
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1117
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1118

1119 1120 1121 1122 1123
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1124 1125
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1126

1127 1128
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1129 1130
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1131 1132 1133
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1134 1135 1136 1137
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1138
		list_for_each_entry(cachep, &cache_chain, next) {
1139
			struct array_cache *nc;
1140 1141
			struct array_cache *shared;
			struct array_cache **alien;
1142

1143
			nc = alloc_arraycache(node, cachep->limit,
1144
						cachep->batchcount);
L
Linus Torvalds 已提交
1145 1146
			if (!nc)
				goto bad;
1147 1148 1149 1150 1151
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1152

1153 1154 1155
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1156
			cachep->array[cpu] = nc;
1157 1158 1159
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1160 1161 1162 1163 1164 1165 1166 1167
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1168
			}
1169 1170 1171 1172 1173 1174 1175 1176 1177
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1178
		}
I
Ingo Molnar 已提交
1179
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1180 1181 1182 1183 1184 1185
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1186 1187 1188 1189 1190 1191 1192 1193
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1194 1195
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1196
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1197 1198
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1199 1200
			struct array_cache *shared;
			struct array_cache **alien;
1201
			cpumask_t mask;
L
Linus Torvalds 已提交
1202

1203
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1204 1205 1206
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1207 1208 1209
			l3 = cachep->nodelists[node];

			if (!l3)
1210
				goto free_array_cache;
1211

1212
			spin_lock_irq(&l3->list_lock);
1213 1214 1215 1216

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1217
				free_block(cachep, nc->entry, nc->avail, node);
1218 1219

			if (!cpus_empty(mask)) {
1220
				spin_unlock_irq(&l3->list_lock);
1221
				goto free_array_cache;
P
Pekka Enberg 已提交
1222
			}
1223

1224 1225
			shared = l3->shared;
			if (shared) {
1226
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1227
					   l3->shared->avail, node);
1228 1229 1230
				l3->shared = NULL;
			}

1231 1232 1233 1234 1235 1236 1237 1238 1239
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1240
			}
1241
free_array_cache:
L
Linus Torvalds 已提交
1242 1243
			kfree(nc);
		}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
I
Ingo Molnar 已提交
1258
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1259 1260 1261 1262
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1263
bad:
I
Ingo Molnar 已提交
1264
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1265 1266 1267 1268 1269
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1270 1271 1272
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1273 1274
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1289 1290 1291
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1298
	int i;
1299
	int order;
1300 1301 1302 1303 1304 1305

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1316 1317 1318
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1319 1320 1321
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1322
	 * 2) Create the first kmalloc cache.
1323
	 *    The struct kmem_cache for the new cache is allocated normally.
1324 1325 1326
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1327 1328
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1329 1330 1331
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1332 1333 1334 1335 1336 1337 1338
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1339
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1340

A
Andrew Morton 已提交
1341 1342
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1343

1344 1345 1346 1347 1348 1349
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1350
	BUG_ON(!cache_cache.num);
1351
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1352 1353 1354
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1355 1356 1357 1358 1359

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1360 1361 1362 1363
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1364 1365 1366
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1367 1368 1369 1370
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1371

A
Andrew Morton 已提交
1372
	if (INDEX_AC != INDEX_L3) {
1373
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1374 1375 1376 1377 1378 1379
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1380

1381 1382
	slab_early_init = 0;

L
Linus Torvalds 已提交
1383
	while (sizes->cs_size != ULONG_MAX) {
1384 1385
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1386 1387 1388
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1389 1390
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1391
		if (!sizes->cs_cachep) {
1392
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1393 1394 1395 1396 1397
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1398 1399

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1400 1401 1402 1403 1404
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1405 1406 1407 1408 1409
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1410
		void *ptr;
1411

L
Linus Torvalds 已提交
1412
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1413

L
Linus Torvalds 已提交
1414
		local_irq_disable();
1415 1416
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1417
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1418 1419
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1420

L
Linus Torvalds 已提交
1421
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1422

L
Linus Torvalds 已提交
1423
		local_irq_disable();
1424
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1425
		       != &initarray_generic.cache);
1426
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1427
		       sizeof(struct arraycache_init));
1428
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1429
		    ptr;
L
Linus Torvalds 已提交
1430 1431
		local_irq_enable();
	}
1432 1433 1434 1435 1436
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1437
			  numa_node_id());
1438 1439 1440

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1441
				  &initkmem_list3[SIZE_AC + node], node);
1442 1443 1444

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1445 1446
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1447 1448 1449
			}
		}
	}
L
Linus Torvalds 已提交
1450

1451
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1452
	{
1453
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1454
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1455
		list_for_each_entry(cachep, &cache_chain, next)
A
Andrew Morton 已提交
1456
			enable_cpucache(cachep);
I
Ingo Molnar 已提交
1457
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1458 1459 1460 1461 1462
	}

	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1463 1464 1465
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1466 1467 1468
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1469 1470 1471
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1472 1473 1474 1475 1476 1477 1478
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1479 1480
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1481
	 */
1482
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1483
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1495
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1496 1497
{
	struct page *page;
1498
	int nr_pages;
L
Linus Torvalds 已提交
1499 1500
	int i;

1501
#ifndef CONFIG_MMU
1502 1503 1504
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1505
	 */
1506
	flags |= __GFP_COMP;
1507
#endif
1508 1509 1510
	flags |= cachep->gfpflags;

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1511 1512 1513
	if (!page)
		return NULL;

1514
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1515
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1516 1517 1518 1519 1520
		atomic_add(nr_pages, &slab_reclaim_pages);
	add_page_state(nr_slab, nr_pages);
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525
}

/*
 * Interface to system's page release.
 */
1526
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1527
{
P
Pekka Enberg 已提交
1528
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1529 1530 1531 1532
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
N
Nick Piggin 已提交
1533 1534
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539 1540
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1541 1542
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1543 1544 1545 1546
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1547
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1548
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1558
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1559
			    unsigned long caller)
L
Linus Torvalds 已提交
1560
{
1561
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1562

1563
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1564

P
Pekka Enberg 已提交
1565
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1566 1567
		return;

P
Pekka Enberg 已提交
1568 1569 1570 1571
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1572 1573 1574 1575 1576 1577 1578
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1579
				*addr++ = svalue;
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585 1586
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1587
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1588 1589 1590
}
#endif

1591
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1592
{
1593 1594
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1595 1596

	memset(addr, val, size);
P
Pekka Enberg 已提交
1597
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
A
Andrew Morton 已提交
1604
	for (i = 0; i < limit; i++)
P
Pekka Enberg 已提交
1605
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1606 1607 1608 1609 1610 1611
	printk("\n");
}
#endif

#if DEBUG

1612
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1619 1620
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1621 1622 1623 1624
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1625
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1626
		print_symbol("(%s)",
A
Andrew Morton 已提交
1627
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1628 1629
		printk("\n");
	}
1630 1631
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1632
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1633 1634
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1635 1636
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1637 1638 1639 1640
		dump_line(realobj, i, limit);
	}
}

1641
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646
{
	char *realobj;
	int size, i;
	int lines = 0;

1647 1648
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1649

P
Pekka Enberg 已提交
1650
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1651
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1652
		if (i == size - 1)
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1659
				printk(KERN_ERR
A
Andrew Morton 已提交
1660 1661
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1662 1663 1664
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1665
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1666
			limit = 16;
P
Pekka Enberg 已提交
1667 1668
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1681
		struct slab *slabp = virt_to_slab(objp);
1682
		unsigned int objnr;
L
Linus Torvalds 已提交
1683

1684
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1685
		if (objnr) {
1686
			objp = index_to_obj(cachep, slabp, objnr - 1);
1687
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1688
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1689
			       realobj, size);
L
Linus Torvalds 已提交
1690 1691
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1692
		if (objnr + 1 < cachep->num) {
1693
			objp = index_to_obj(cachep, slabp, objnr + 1);
1694
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1695
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1696
			       realobj, size);
L
Linus Torvalds 已提交
1697 1698 1699 1700 1701 1702
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1703 1704
#if DEBUG
/**
1705 1706 1707 1708 1709 1710
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1711
 */
1712
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1713 1714 1715
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1716
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1717 1718 1719

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1720 1721
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1722
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1723
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1733
					   "was overwritten");
L
Linus Torvalds 已提交
1734 1735
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1736
					   "was overwritten");
L
Linus Torvalds 已提交
1737 1738
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1739
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1740
	}
1741
}
L
Linus Torvalds 已提交
1742
#else
1743
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1744
{
L
Linus Torvalds 已提交
1745 1746 1747
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1748
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1749
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1750 1751
		}
	}
1752
}
L
Linus Torvalds 已提交
1753 1754
#endif

1755 1756 1757 1758 1759
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1760
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1761 1762
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1763
 */
1764
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1765 1766 1767 1768
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1769 1770 1771
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1772
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

A
Andrew Morton 已提交
1783 1784 1785 1786
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1787
static void set_up_list3s(struct kmem_cache *cachep, int index)
1788 1789 1790 1791
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1792
		cachep->nodelists[node] = &initkmem_list3[index + node];
1793
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1794 1795
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1796 1797 1798
	}
}

1799
/**
1800 1801 1802 1803 1804 1805 1806
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1807 1808 1809 1810 1811
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1812
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1813
			size_t size, size_t align, unsigned long flags)
1814
{
1815
	unsigned long offslab_limit;
1816
	size_t left_over = 0;
1817
	int gfporder;
1818

A
Andrew Morton 已提交
1819
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1820 1821 1822
		unsigned int num;
		size_t remainder;

1823
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1824 1825
		if (!num)
			continue;
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1839

1840
		/* Found something acceptable - save it away */
1841
		cachep->num = num;
1842
		cachep->gfporder = gfporder;
1843 1844
		left_over = remainder;

1845 1846 1847 1848 1849 1850 1851 1852
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1853 1854 1855 1856
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1857
		if (gfporder >= slab_break_gfp_order)
1858 1859
			break;

1860 1861 1862
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1863
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1864 1865 1866 1867 1868
			break;
	}
	return left_over;
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static void setup_cpu_cache(struct kmem_cache *cachep)
{
	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
		return;
	}
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
}

L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
1938 1939
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1952
struct kmem_cache *
L
Linus Torvalds 已提交
1953
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
1954 1955
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1956
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1957 1958
{
	size_t left_over, slab_size, ralign;
1959
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
1960 1961 1962 1963

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
1964
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
1965
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
1966 1967
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
1968 1969
		BUG();
	}
L
Linus Torvalds 已提交
1970

1971 1972 1973 1974 1975 1976
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
1977
	mutex_lock(&cache_chain_mutex);
1978

1979
	list_for_each_entry(pc, &cache_chain, next) {
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1994
			       pc->buffer_size);
1995 1996 1997
			continue;
		}

P
Pekka Enberg 已提交
1998
		if (!strcmp(pc->name, name)) {
1999 2000 2001 2002 2003 2004
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2005 2006 2007 2008 2009
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2010
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2020
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2021
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2032 2033
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2034
	 */
2035
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2036

A
Andrew Morton 已提交
2037 2038
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2039 2040 2041
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2042 2043 2044
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2045 2046
	}

A
Andrew Morton 已提交
2047 2048
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2049 2050
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2051 2052 2053 2054
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2055 2056
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2057
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063 2064 2065
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2066
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2072
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2073
	}
A
Andrew Morton 已提交
2074 2075
	/*
	 * 4) Store it. Note that the debug code below can reduce
L
Linus Torvalds 已提交
2076 2077 2078 2079 2080
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2081
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2082
	if (!cachep)
2083
		goto oops;
L
Linus Torvalds 已提交
2084 2085

#if DEBUG
2086
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091 2092

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
2093
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2094
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2105
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2106 2107
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112
		size = PAGE_SIZE;
	}
#endif
#endif

2113 2114 2115 2116 2117 2118
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2127
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2133
		goto oops;
L
Linus Torvalds 已提交
2134
	}
P
Pekka Enberg 已提交
2135 2136
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2149 2150
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2157
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2163
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2164 2165

	if (flags & CFLGS_OFF_SLAB)
2166
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


2172
	setup_cpu_cache(cachep);
L
Linus Torvalds 已提交
2173 2174 2175

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2176
oops:
L
Linus Torvalds 已提交
2177 2178
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2179
		      name);
I
Ingo Molnar 已提交
2180
	mutex_unlock(&cache_chain_mutex);
2181
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2197
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2198 2199 2200
{
#ifdef CONFIG_SMP
	check_irq_off();
2201
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2202 2203
#endif
}
2204

2205
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2206 2207 2208 2209 2210 2211 2212
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2213 2214 2215 2216
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2217
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2218 2219
#endif

2220 2221 2222 2223
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2224 2225
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2226
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2227
	struct array_cache *ac;
2228
	int node = numa_node_id();
L
Linus Torvalds 已提交
2229 2230

	check_irq_off();
2231
	ac = cpu_cache_get(cachep);
2232 2233 2234
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2235 2236 2237
	ac->avail = 0;
}

2238
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2239
{
2240 2241 2242
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2243
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2244
	check_irq_on();
P
Pekka Enberg 已提交
2245
	for_each_online_node(node) {
2246
		l3 = cachep->nodelists[node];
2247 2248 2249 2250 2251 2252 2253
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2254
			drain_array(cachep, l3, l3->shared, 1, node);
2255
	}
L
Linus Torvalds 已提交
2256 2257
}

2258
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2259 2260
{
	struct slab *slabp;
2261
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2262 2263
	int ret;

2264
	for (;;) {
L
Linus Torvalds 已提交
2265 2266
		struct list_head *p;

2267 2268
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2269 2270
			break;

2271
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2272
#if DEBUG
2273
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2274 2275 2276
#endif
		list_del(&slabp->list);

2277 2278
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2279
		slab_destroy(cachep, slabp);
2280
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2281
	}
P
Pekka Enberg 已提交
2282
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2283 2284 2285
	return ret;
}

2286
static int __cache_shrink(struct kmem_cache *cachep)
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2305 2306 2307 2308 2309 2310 2311
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2312
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2313
{
2314
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2324
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2337
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2338 2339
{
	int i;
2340
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2341

2342
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2348
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2349 2350 2351 2352
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2353
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2354 2355 2356

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2357
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2358
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2359
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2360 2361 2362 2363 2364
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2365
		synchronize_rcu();
L
Linus Torvalds 已提交
2366

2367
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2368
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2369 2370

	/* NUMA: free the list3 structures */
2371
	for_each_online_node(i) {
A
Andrew Morton 已提交
2372 2373
		l3 = cachep->nodelists[i];
		if (l3) {
2374 2375 2376 2377 2378
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384 2385
	kmem_cache_free(&cache_cache, cachep);
	unlock_cpu_hotplug();
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2386
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2387 2388
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2389 2390
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2391

L
Linus Torvalds 已提交
2392 2393
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2394 2395
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2396 2397 2398
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2399
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2400 2401 2402 2403
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2404
	slabp->s_mem = objp + colour_off;
2405
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2406 2407 2408 2409 2410
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2411
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2412 2413
}

2414
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2415
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2416 2417 2418 2419
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2420
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2433 2434 2435
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2436 2437
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2438
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2439
				     ctor_flags);
L
Linus Torvalds 已提交
2440 2441 2442 2443

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2444
					   " end of an object");
L
Linus Torvalds 已提交
2445 2446
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2447
					   " start of an object");
L
Linus Torvalds 已提交
2448
		}
A
Andrew Morton 已提交
2449 2450
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2451
			kernel_map_pages(virt_to_page(objp),
2452
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2453 2454 2455 2456
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2457
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2458
	}
P
Pekka Enberg 已提交
2459
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2460 2461 2462
	slabp->free = 0;
}

2463
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2464
{
A
Andrew Morton 已提交
2465 2466 2467 2468
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2469 2470
}

A
Andrew Morton 已提交
2471 2472
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2473
{
2474
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2488 2489
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2490
{
2491
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2492 2493 2494 2495 2496

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2497
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2498
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2499
				"'%s', objp %p\n", cachep->name, objp);
2500 2501 2502 2503 2504 2505 2506 2507
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2508 2509 2510 2511 2512 2513 2514
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2515
{
2516
	int nr_pages;
L
Linus Torvalds 已提交
2517 2518
	struct page *page;

2519
	page = virt_to_page(addr);
2520

2521
	nr_pages = 1;
2522
	if (likely(!PageCompound(page)))
2523 2524
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2525
	do {
2526 2527
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2528
		page++;
2529
	} while (--nr_pages);
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534 2535
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2536
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2537
{
P
Pekka Enberg 已提交
2538 2539 2540 2541 2542
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2543
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2544

A
Andrew Morton 已提交
2545 2546 2547
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2548
	 */
2549
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2562
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2563
	check_irq_off();
2564 2565
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2566 2567

	/* Get colour for the slab, and cal the next value. */
2568 2569 2570 2571 2572
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2573

2574
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2587 2588 2589
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2590
	 */
A
Andrew Morton 已提交
2591 2592
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2593 2594 2595
		goto failed;

	/* Get slab management. */
2596
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2597
	if (!slabp)
L
Linus Torvalds 已提交
2598 2599
		goto opps1;

2600
	slabp->nodeid = nodeid;
2601
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2608
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2609 2610

	/* Make slab active. */
2611
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2612
	STATS_INC_GROWN(cachep);
2613 2614
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2615
	return 1;
A
Andrew Morton 已提交
2616
opps1:
L
Linus Torvalds 已提交
2617
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2618
failed:
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2638 2639
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2640 2641 2642
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2643 2644
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2645 2646 2647 2648
		BUG();
	}
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2671
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2672
				   void *caller)
L
Linus Torvalds 已提交
2673 2674 2675 2676 2677
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2678
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2679 2680 2681
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2682
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2683 2684

	if (cachep->flags & SLAB_RED_ZONE) {
2685
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690 2691
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2692
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2693 2694

	BUG_ON(objnr >= cachep->num);
2695
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2696 2697

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2698 2699 2700 2701
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2702
		 */
2703
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2704
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2705 2706 2707 2708 2709
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2710
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2711
	}
2712 2713 2714
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2715 2716
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2717
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2718
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2719
			kernel_map_pages(virt_to_page(objp),
2720
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2731
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2732 2733 2734
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2735

L
Linus Torvalds 已提交
2736 2737 2738 2739 2740 2741 2742
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2743 2744 2745 2746
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2747
		for (i = 0;
2748
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2749
		     i++) {
A
Andrew Morton 已提交
2750
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2751
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2752
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2764
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769 2770
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2771
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2772
retry:
L
Linus Torvalds 已提交
2773 2774
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2775 2776 2777 2778
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2779 2780 2781
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2782 2783 2784 2785
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2786

2787 2788 2789 2790
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2811 2812
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2824
must_grow:
L
Linus Torvalds 已提交
2825
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2826
alloc_done:
2827
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2828 2829 2830

	if (unlikely(!ac->avail)) {
		int x;
2831 2832
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2833
		/* cache_grow can reenable interrupts, then ac could change. */
2834
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2835
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2836 2837
			return NULL;

A
Andrew Morton 已提交
2838
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2839 2840 2841
			goto retry;
	}
	ac->touched = 1;
2842
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2843 2844
}

A
Andrew Morton 已提交
2845 2846
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2847 2848 2849 2850 2851 2852 2853 2854
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2855 2856
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
2857
{
P
Pekka Enberg 已提交
2858
	if (!objp)
L
Linus Torvalds 已提交
2859
		return objp;
P
Pekka Enberg 已提交
2860
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2861
#ifdef CONFIG_DEBUG_PAGEALLOC
2862
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2863
			kernel_map_pages(virt_to_page(objp),
2864
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2876 2877 2878 2879
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2880
			printk(KERN_ERR
A
Andrew Morton 已提交
2881 2882 2883
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2884 2885 2886 2887
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
2898
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2899
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2900
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2901 2902 2903 2904 2905

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2906
	}
L
Linus Torvalds 已提交
2907 2908 2909 2910 2911 2912
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2913
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2914
{
P
Pekka Enberg 已提交
2915
	void *objp;
L
Linus Torvalds 已提交
2916 2917
	struct array_cache *ac;

2918
#ifdef CONFIG_NUMA
2919
	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2920 2921 2922
		objp = alternate_node_alloc(cachep, flags);
		if (objp != NULL)
			return objp;
2923 2924 2925
	}
#endif

2926
	check_irq_off();
2927
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2928 2929 2930
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2931
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2932 2933 2934 2935
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2936 2937 2938
	return objp;
}

A
Andrew Morton 已提交
2939 2940
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
2941 2942
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2943
	void *objp;
2944 2945 2946 2947 2948

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2949
	local_irq_restore(save_flags);
2950
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2951
					    caller);
2952
	prefetchw(objp);
L
Linus Torvalds 已提交
2953 2954 2955
	return objp;
}

2956
#ifdef CONFIG_NUMA
2957
/*
2958
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt())
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

2979 2980
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2981
 */
A
Andrew Morton 已提交
2982 2983
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
2984 2985
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2986 2987 2988 2989 2990 2991 2992 2993
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
2994
retry:
2995
	check_irq_off();
P
Pekka Enberg 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3015
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3016 3017 3018 3019 3020
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3021
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3022
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3023
	else
P
Pekka Enberg 已提交
3024
		list_add(&slabp->list, &l3->slabs_partial);
3025

P
Pekka Enberg 已提交
3026 3027
	spin_unlock(&l3->list_lock);
	goto done;
3028

A
Andrew Morton 已提交
3029
must_grow:
P
Pekka Enberg 已提交
3030 3031
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
3032

P
Pekka Enberg 已提交
3033 3034
	if (!x)
		return NULL;
3035

P
Pekka Enberg 已提交
3036
	goto retry;
A
Andrew Morton 已提交
3037
done:
P
Pekka Enberg 已提交
3038
	return obj;
3039 3040 3041 3042 3043 3044
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3045
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3046
		       int node)
L
Linus Torvalds 已提交
3047 3048
{
	int i;
3049
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3050 3051 3052 3053 3054

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3055
		slabp = virt_to_slab(objp);
3056
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3057
		list_del(&slabp->list);
3058
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3059
		check_slabp(cachep, slabp);
3060
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3061
		STATS_DEC_ACTIVE(cachep);
3062
		l3->free_objects++;
L
Linus Torvalds 已提交
3063 3064 3065 3066
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3067 3068
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
3069 3070
				slab_destroy(cachep, slabp);
			} else {
3071
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3072 3073 3074 3075 3076 3077
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3078
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3079 3080 3081 3082
		}
	}
}

3083
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3084 3085
{
	int batchcount;
3086
	struct kmem_list3 *l3;
3087
	int node = numa_node_id();
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3094
	l3 = cachep->nodelists[node];
3095 3096 3097
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3098
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3099 3100 3101
		if (max) {
			if (batchcount > max)
				batchcount = max;
3102
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3103
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3109
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3110
free_done:
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115
#if STATS
	{
		int i = 0;
		struct list_head *p;

3116 3117
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3129
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3130
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3131
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3132 3133 3134
}

/*
A
Andrew Morton 已提交
3135 3136
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3137
 */
3138
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3139
{
3140
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3141 3142 3143 3144

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3145 3146 3147
	if (cache_free_alien(cachep, objp))
		return;

L
Linus Torvalds 已提交
3148 3149
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3150
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3151 3152 3153 3154
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3155
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3167
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3168
{
3169
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3170 3171 3172
}
EXPORT_SYMBOL(kmem_cache_alloc);

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
/**
 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3204
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3205
{
P
Pekka Enberg 已提交
3206
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3207
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3208
	unsigned long align_mask = BYTES_PER_WORD - 1;
3209
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3225
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3226 3227
		goto out;
	return 1;
A
Andrew Morton 已提交
3228
out:
L
Linus Torvalds 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3242 3243
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3244
 */
3245
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3246
{
3247 3248
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3249

3250 3251
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3252 3253

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3254
			!cachep->nodelists[nodeid])
3255 3256 3257
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3258
	local_irq_restore(save_flags);
3259 3260 3261

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3262

3263
	return ptr;
L
Linus Torvalds 已提交
3264 3265 3266
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3267
void *kmalloc_node(size_t size, gfp_t flags, int node)
3268
{
3269
	struct kmem_cache *cachep;
3270 3271 3272 3273 3274 3275 3276

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3277 3278 3279 3280 3281 3282
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
3283
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3301 3302
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3303
{
3304
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3305

3306 3307 3308 3309 3310 3311
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3312 3313
	if (unlikely(cachep == NULL))
		return NULL;
3314 3315 3316 3317 3318 3319
	return __cache_alloc(cachep, flags, caller);
}


void *__kmalloc(size_t size, gfp_t flags)
{
3320
#ifndef CONFIG_DEBUG_SLAB
3321
	return __do_kmalloc(size, flags, NULL);
3322 3323 3324
#else
	return __do_kmalloc(size, flags, __builtin_return_address(0));
#endif
L
Linus Torvalds 已提交
3325 3326 3327
}
EXPORT_SYMBOL(__kmalloc);

3328
#ifdef CONFIG_DEBUG_SLAB
3329 3330 3331 3332 3333 3334 3335
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#endif

L
Linus Torvalds 已提交
3336 3337 3338 3339 3340 3341 3342 3343
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3344
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3345 3346
{
	int i;
P
Pekka Enberg 已提交
3347
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3348 3349 3350 3351

	if (!pdata)
		return NULL;

3352 3353 3354 3355 3356
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
3357
	for_each_possible_cpu(i) {
3358 3359 3360 3361 3362 3363
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3364 3365 3366 3367 3368 3369 3370

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3371
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3372

A
Andrew Morton 已提交
3373
unwind_oom:
L
Linus Torvalds 已提交
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3393
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3394 3395 3396
{
	unsigned long flags;

3397 3398
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3409 3410
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3416
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421 3422
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3423
	c = virt_to_cache(objp);
3424
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3425
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3438
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3439 3440
{
	int i;
P
Pekka Enberg 已提交
3441
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3442

3443 3444 3445
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
3446
	for_each_possible_cpu(i)
P
Pekka Enberg 已提交
3447
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3448 3449 3450 3451 3452
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3453
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3454
{
3455
	return obj_size(cachep);
L
Linus Torvalds 已提交
3456 3457 3458
}
EXPORT_SYMBOL(kmem_cache_size);

3459
const char *kmem_cache_name(struct kmem_cache *cachep)
3460 3461 3462 3463 3464
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3465
/*
3466
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3467
 */
3468
static int alloc_kmemlist(struct kmem_cache *cachep)
3469 3470 3471
{
	int node;
	struct kmem_list3 *l3;
3472 3473
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3474 3475

	for_each_online_node(node) {
3476

A
Andrew Morton 已提交
3477 3478
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3479
			goto fail;
3480

3481 3482
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3483
					0xbaadf00d);
3484 3485
		if (!new_shared) {
			free_alien_cache(new_alien);
3486
			goto fail;
3487
		}
3488

A
Andrew Morton 已提交
3489 3490
		l3 = cachep->nodelists[node];
		if (l3) {
3491 3492
			struct array_cache *shared = l3->shared;

3493 3494
			spin_lock_irq(&l3->list_lock);

3495
			if (shared)
3496 3497
				free_block(cachep, shared->entry,
						shared->avail, node);
3498

3499 3500
			l3->shared = new_shared;
			if (!l3->alien) {
3501 3502 3503
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3504
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3505
					cachep->batchcount + cachep->num;
3506
			spin_unlock_irq(&l3->list_lock);
3507
			kfree(shared);
3508 3509 3510
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3511
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3512 3513 3514
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3515
			goto fail;
3516
		}
3517 3518 3519

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3520
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3521
		l3->shared = new_shared;
3522
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3523
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3524
					cachep->batchcount + cachep->num;
3525 3526
		cachep->nodelists[node] = l3;
	}
3527
	return 0;
3528

A
Andrew Morton 已提交
3529
fail:
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3545
	return -ENOMEM;
3546 3547
}

L
Linus Torvalds 已提交
3548
struct ccupdate_struct {
3549
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3550 3551 3552 3553 3554
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3555
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3556 3557 3558
	struct array_cache *old;

	check_irq_off();
3559
	old = cpu_cache_get(new->cachep);
3560

L
Linus Torvalds 已提交
3561 3562 3563 3564
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3565
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3566 3567
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3568 3569
{
	struct ccupdate_struct new;
3570
	int i, err;
L
Linus Torvalds 已提交
3571

P
Pekka Enberg 已提交
3572
	memset(&new.new, 0, sizeof(new.new));
3573
	for_each_online_cpu(i) {
A
Andrew Morton 已提交
3574 3575
		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
						batchcount);
3576
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3577 3578
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3579
			return -ENOMEM;
L
Linus Torvalds 已提交
3580 3581 3582 3583
		}
	}
	new.cachep = cachep;

A
Andrew Morton 已提交
3584
	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3585

L
Linus Torvalds 已提交
3586 3587 3588
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3589
	cachep->shared = shared;
L
Linus Torvalds 已提交
3590

3591
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3592 3593 3594
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3595
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3596
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3597
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3598 3599 3600
		kfree(ccold);
	}

3601 3602 3603
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3604
		       cachep->name, -err);
3605
		BUG();
L
Linus Torvalds 已提交
3606 3607 3608 3609
	}
	return 0;
}

3610
/* Called with cache_chain_mutex held always */
3611
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3612 3613 3614 3615
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3616 3617
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3618 3619
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3620
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3621 3622 3623 3624
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3625
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3626
		limit = 1;
3627
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3628
		limit = 8;
3629
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3630
		limit = 24;
3631
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3632 3633 3634 3635
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3636 3637
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3647
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3648 3649 3650 3651
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3652 3653 3654
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3655 3656 3657 3658
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3659
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3660 3661
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3662
		       cachep->name, -err);
L
Linus Torvalds 已提交
3663 3664
}

3665 3666
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3667 3668
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3669 3670 3671
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3672 3673 3674
{
	int tofree;

3675 3676
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3677 3678
	if (ac->touched && !force) {
		ac->touched = 0;
3679
	} else {
3680
		spin_lock_irq(&l3->list_lock);
3681 3682 3683 3684 3685 3686 3687 3688 3689
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3690
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3691 3692 3693 3694 3695
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3696
 * @unused: unused parameter
L
Linus Torvalds 已提交
3697 3698 3699 3700 3701 3702
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3703 3704
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3705 3706 3707
 */
static void cache_reap(void *unused)
{
3708
	struct kmem_cache *searchp;
3709
	struct kmem_list3 *l3;
3710
	int node = numa_node_id();
L
Linus Torvalds 已提交
3711

I
Ingo Molnar 已提交
3712
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3713
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3714 3715
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3716 3717 3718
		return;
	}

3719
	list_for_each_entry(searchp, &cache_chain, next) {
P
Pekka Enberg 已提交
3720
		struct list_head *p;
L
Linus Torvalds 已提交
3721 3722 3723 3724 3725
		int tofree;
		struct slab *slabp;

		check_irq_on();

3726 3727 3728 3729 3730
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3731
		l3 = searchp->nodelists[node];
3732

3733
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3734

3735
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3736

3737 3738 3739 3740
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3741
		if (time_after(l3->next_reap, jiffies))
3742
			goto next;
L
Linus Torvalds 已提交
3743

3744
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3745

3746
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3747

3748 3749
		if (l3->free_touched) {
			l3->free_touched = 0;
3750
			goto next;
L
Linus Torvalds 已提交
3751 3752
		}

A
Andrew Morton 已提交
3753 3754
		tofree = (l3->free_limit + 5 * searchp->num - 1) /
				(5 * searchp->num);
L
Linus Torvalds 已提交
3755
		do {
3756 3757 3758 3759 3760 3761 3762
			/*
			 * Do not lock if there are no free blocks.
			 */
			if (list_empty(&l3->slabs_free))
				break;

			spin_lock_irq(&l3->list_lock);
3763
			p = l3->slabs_free.next;
3764 3765
			if (p == &(l3->slabs_free)) {
				spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3766
				break;
3767
			}
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772 3773

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

A
Andrew Morton 已提交
3774 3775 3776
			/*
			 * Safe to drop the lock. The slab is no longer linked
			 * to the cache. searchp cannot disappear, we hold
L
Linus Torvalds 已提交
3777 3778
			 * cache_chain_lock
			 */
3779 3780
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3781
			slab_destroy(searchp, slabp);
P
Pekka Enberg 已提交
3782
		} while (--tofree > 0);
3783
next:
L
Linus Torvalds 已提交
3784 3785 3786
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3787
	mutex_unlock(&cache_chain_mutex);
3788
	next_reap_node();
A
Andrew Morton 已提交
3789
	/* Set up the next iteration */
3790
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3791 3792 3793 3794
}

#ifdef CONFIG_PROC_FS

3795
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3796
{
3797 3798 3799 3800
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3801
#if STATS
3802
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3803
#else
3804
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3805
#endif
3806 3807 3808 3809
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3810
#if STATS
3811
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3812
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3813
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3814
#endif
3815 3816 3817 3818 3819 3820 3821 3822
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3823
	mutex_lock(&cache_chain_mutex);
3824 3825
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3826 3827 3828 3829 3830 3831
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3832
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3833 3834 3835 3836
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3837
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3838
	++*pos;
A
Andrew Morton 已提交
3839 3840
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3841 3842 3843 3844
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3845
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3846 3847 3848 3849
}

static int s_show(struct seq_file *m, void *p)
{
3850
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
3851 3852 3853 3854 3855
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3856
	const char *name;
L
Linus Torvalds 已提交
3857
	char *error = NULL;
3858 3859
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3860 3861 3862

	active_objs = 0;
	num_slabs = 0;
3863 3864 3865 3866 3867
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3868 3869
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3870

3871
		list_for_each_entry(slabp, &l3->slabs_full, list) {
3872 3873 3874 3875 3876
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3877
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3878 3879 3880 3881 3882 3883 3884
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
3885
		list_for_each_entry(slabp, &l3->slabs_free, list) {
3886 3887 3888 3889 3890
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3891 3892
		if (l3->shared)
			shared_avail += l3->shared->avail;
3893

3894
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3895
	}
P
Pekka Enberg 已提交
3896 3897
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3898
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3899 3900
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3901
	name = cachep->name;
L
Linus Torvalds 已提交
3902 3903 3904 3905
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3906
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3907
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3908
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3909
		   cachep->limit, cachep->batchcount, cachep->shared);
3910
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3911
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3912
#if STATS
P
Pekka Enberg 已提交
3913
	{			/* list3 stats */
L
Linus Torvalds 已提交
3914 3915 3916 3917 3918 3919 3920
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3921
		unsigned long node_frees = cachep->node_frees;
3922
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
3923

3924
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3925
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
3926
				reaped, errors, max_freeable, node_allocs,
3927
				node_frees, overflows);
L
Linus Torvalds 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3937
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3959 3960 3961 3962
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3973 3974
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3975
{
P
Pekka Enberg 已提交
3976
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3977
	int limit, batchcount, shared, res;
3978
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
3979

L
Linus Torvalds 已提交
3980 3981 3982 3983
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3984
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3995
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3996
	res = -EINVAL;
3997
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
3998
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
3999 4000
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4001
				res = 0;
L
Linus Torvalds 已提交
4002
			} else {
4003
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4004
						       batchcount, shared);
L
Linus Torvalds 已提交
4005 4006 4007 4008
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4009
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4010 4011 4012 4013
	if (res >= 0)
		res = count;
	return res;
}
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4123
		list_for_each_entry(slabp, &l3->slabs_full, list)
4124
			handle_slab(n, cachep, slabp);
4125
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4162 4163
#endif

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4176 4177
unsigned int ksize(const void *objp)
{
4178 4179
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4180

4181
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4182
}