slab.c 115.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
140
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
141 142 143 144 145 146 147 148 149 150 151

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 153 154
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
155
 */
156
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
176
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
177
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178
			 SLAB_CACHE_DMA | \
179
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
180
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
182
#else
183
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
184
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
185
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

208
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
209 210
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
211 212
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
213 214 215 216 217 218 219 220 221

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
222 223 224 225 226 227
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
247
	struct rcu_head head;
248
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
249
	void *addr;
L
Linus Torvalds 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
269
	spinlock_t lock;
270
	void *entry[];	/*
A
Andrew Morton 已提交
271 272 273 274
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306
/*
 * Need this for bootstrapping a per node allocator.
 */
307
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 309
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
310 311
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
312

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
336
#include <linux/kmalloc_sizes.h>
337
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391 392
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
393 394
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
395

396
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
397
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
398
	unsigned int gfporder;
L
Linus Torvalds 已提交
399 400

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
401
	gfp_t gfpflags;
L
Linus Torvalds 已提交
402

A
Andrew Morton 已提交
403
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
404
	unsigned int colour_off;	/* colour offset */
405
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
406
	unsigned int slab_size;
A
Andrew Morton 已提交
407
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
408 409

	/* constructor func */
410
	void (*ctor)(struct kmem_cache *, void *);
L
Linus Torvalds 已提交
411

412
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
413 414
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
415

416
/* 6) statistics */
L
Linus Torvalds 已提交
417
#if STATS
P
Pekka Enberg 已提交
418 419 420 421 422 423 424 425 426
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
427
	unsigned long node_overflow;
P
Pekka Enberg 已提交
428 429 430 431
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
432 433
#endif
#if DEBUG
434 435 436 437 438 439 440 441
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
442
#endif
E
Eric Dumazet 已提交
443 444 445 446 447 448 449 450 451 452 453
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
454 455 456 457 458 459
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
460 461 462
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
463
 *
A
Adrian Bunk 已提交
464
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
465 466 467 468 469 470 471 472 473 474
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
475
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
481 482
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
483
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
484
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
485 486 487 488 489
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
499
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
500 501 502
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
503
#define	STATS_INC_NODEFREES(x)	do { } while (0)
504
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
505
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
506 507 508 509 510 511 512 513
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
514 515
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
516
 * 0		: objp
517
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
518 519
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
520
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
521
 * 		redzone word.
522 523
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
524 525
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
526
 */
527
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
528
{
529
	return cachep->obj_offset;
L
Linus Torvalds 已提交
530 531
}

532
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
533
{
534
	return cachep->obj_size;
L
Linus Torvalds 已提交
535 536
}

537
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 541
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
542 543
}

544
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
545 546 547
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
548 549
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
550
					      REDZONE_ALIGN);
551 552
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
553 554
}

555
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
556 557
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
559 560 561 562
}

#else

563 564
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
565 566
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
567 568 569 570 571 572 573 574 575 576 577
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
578 579 580 581
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
582
 */
583 584 585 586 587 588 589
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
590
	page = compound_head(page);
591
	BUG_ON(!PageSlab(page));
592 593 594 595 596 597 598 599 600 601
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
602
	BUG_ON(!PageSlab(page));
603 604
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
605

606 607
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
608
	struct page *page = virt_to_head_page(obj);
609 610 611 612 613
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
614
	struct page *page = virt_to_head_page(obj);
615 616 617
	return page_get_slab(page);
}

618 619 620 621 622 623
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

624 625 626 627 628 629 630 631
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
632
{
633 634
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
635 636
}

A
Andrew Morton 已提交
637 638 639
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
657
	{NULL,}
L
Linus Torvalds 已提交
658 659 660 661
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
662
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
663
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
664
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
665 666

/* internal cache of cache description objs */
667
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
668 669 670
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
671
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
672
	.name = "kmem_cache",
L
Linus Torvalds 已提交
673 674
};

675 676
#define BAD_ALIEN_MAGIC 0x01020304ul

677 678 679 680 681 682 683 684
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
685 686 687 688
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
689
 */
690 691 692 693
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
694 695 696

{
	int q;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
724 725 726
	}
}
#else
727
static inline void init_lock_keys(void)
728 729 730 731
{
}
#endif

732
/*
733
 * Guard access to the cache-chain.
734
 */
I
Ingo Molnar 已提交
735
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
744 745
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
746 747 748
	FULL
} g_cpucache_up;

749 750 751 752 753 754 755 756
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

757
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
758

759
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
760 761 762 763
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
764 765
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
766 767 768 769 770
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
771 772 773
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
774
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
775
#endif
776 777 778
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
779 780 781 782
	while (size > csizep->cs_size)
		csizep++;

	/*
783
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
784 785 786
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
787
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
788 789
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
790
#endif
L
Linus Torvalds 已提交
791 792 793
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
794
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
795 796 797 798
{
	return __find_general_cachep(size, gfpflags);
}

799
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
800
{
801 802
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
803

A
Andrew Morton 已提交
804 805 806
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
807 808 809 810 811 812 813
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
814

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
863 864 865 866
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
867 868
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
869 870
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
871
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
872 873 874
	dump_stack();
}

875 876 877 878 879 880 881 882 883
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
884
static int numa_platform __read_mostly = 1;
885 886 887 888 889 890 891
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
907
		node = first_node(node_online_map);
908

909
	per_cpu(reap_node, cpu) = node;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
927 928 929 930 931 932 933
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
934
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
935
{
936
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
937 938 939 940 941 942

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
943
	if (keventd_up() && reap_work->work.func == NULL) {
944
		init_reap_node(cpu);
945
		INIT_DELAYED_WORK(reap_work, cache_reap);
946 947
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
948 949 950
	}
}

951
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
952
					    int batchcount)
L
Linus Torvalds 已提交
953
{
P
Pekka Enberg 已提交
954
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
955 956
	struct array_cache *nc = NULL;

957
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
958 959 960 961 962
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
963
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
964 965 966 967
	}
	return nc;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1017
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1018 1019 1020 1021 1022 1023 1024
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1025
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1026
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1027

P
Pekka Enberg 已提交
1028
static struct array_cache **alloc_alien_cache(int node, int limit)
1029 1030
{
	struct array_cache **ac_ptr;
1031
	int memsize = sizeof(void *) * nr_node_ids;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
1045
				for (i--; i >= 0; i--)
1046 1047 1048 1049 1050 1051 1052 1053 1054
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1055
static void free_alien_cache(struct array_cache **ac_ptr)
1056 1057 1058 1059 1060 1061
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1062
	    kfree(ac_ptr[i]);
1063 1064 1065
	kfree(ac_ptr);
}

1066
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1067
				struct array_cache *ac, int node)
1068 1069 1070 1071 1072
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1073 1074 1075 1076 1077
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1078 1079
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1080

1081
		free_block(cachep, ac->entry, ac->avail, node);
1082 1083 1084 1085 1086
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1087 1088 1089 1090 1091 1092 1093 1094 1095
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1096 1097

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1098 1099 1100 1101 1102 1103
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1104 1105
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1106
{
P
Pekka Enberg 已提交
1107
	int i = 0;
1108 1109 1110 1111
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1112
		ac = alien[i];
1113 1114 1115 1116 1117 1118 1119
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1120

1121
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1122 1123 1124 1125 1126
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1127 1128 1129
	int node;

	node = numa_node_id();
1130 1131 1132 1133 1134

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1135
	if (likely(slabp->nodeid == node))
1136 1137
		return 0;

P
Pekka Enberg 已提交
1138
	l3 = cachep->nodelists[node];
1139 1140 1141
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1142
		spin_lock(&alien->lock);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1156 1157
#endif

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;
		cpumask_t mask;

		mask = node_to_cpumask(node);
		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

		if (!cpus_empty(mask)) {
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1225
{
1226
	struct kmem_cache *cachep;
1227 1228
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1229
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1230

1231 1232 1233 1234 1235 1236 1237 1238
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1239
		/*
1240 1241 1242
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1243
		 */
1244 1245 1246 1247 1248 1249 1250
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1251

A
Andrew Morton 已提交
1252
			/*
1253 1254 1255
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1256
			 */
1257
			cachep->nodelists[node] = l3;
1258 1259
		}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
					cachep->batchcount);
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
				0xbaadf00d);
1284 1285
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1286
				goto bad;
1287
			}
1288 1289 1290
		}
		if (use_alien_caches) {
			alien = alloc_alien_cache(node, cachep->limit);
1291 1292 1293
			if (!alien) {
				kfree(shared);
				kfree(nc);
1294
				goto bad;
1295
			}
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1310
#ifdef CONFIG_NUMA
1311 1312 1313
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1314
		}
1315 1316 1317 1318 1319 1320 1321
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1322
	cpuup_canceled(cpu);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1335
		mutex_lock(&cache_chain_mutex);
1336
		err = cpuup_prepare(cpu);
1337
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1338 1339
		break;
	case CPU_ONLINE:
1340
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1341 1342 1343
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1344
  	case CPU_DOWN_PREPARE:
1345
  	case CPU_DOWN_PREPARE_FROZEN:
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1357
  	case CPU_DOWN_FAILED_FROZEN:
1358 1359
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1360
	case CPU_DEAD:
1361
	case CPU_DEAD_FROZEN:
1362 1363 1364 1365 1366 1367 1368 1369
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1370
		/* fall through */
1371
#endif
L
Linus Torvalds 已提交
1372
	case CPU_UP_CANCELED:
1373
	case CPU_UP_CANCELED_FROZEN:
1374
		mutex_lock(&cache_chain_mutex);
1375
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1376
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1377 1378
		break;
	}
1379
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1380 1381
}

1382 1383 1384
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1385

1386 1387 1388
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1389 1390
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1391 1392 1393 1394 1395 1396 1397 1398
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1399 1400 1401 1402 1403
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1404 1405 1406 1407 1408
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1425 1426 1427
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1428 1429 1430 1431 1432 1433
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1434
	int i;
1435
	int order;
P
Pekka Enberg 已提交
1436
	int node;
1437

1438
	if (num_possible_nodes() == 1) {
1439
		use_alien_caches = 0;
1440 1441
		numa_platform = 0;
	}
1442

1443 1444 1445 1446 1447
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1448
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1459 1460 1461
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1462 1463 1464
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1465
	 * 2) Create the first kmalloc cache.
1466
	 *    The struct kmem_cache for the new cache is allocated normally.
1467 1468 1469
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1470 1471
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1472 1473 1474
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1475 1476
	 */

P
Pekka Enberg 已提交
1477 1478
	node = numa_node_id();

L
Linus Torvalds 已提交
1479 1480 1481 1482 1483
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1484
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1485

E
Eric Dumazet 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1495 1496
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1497 1498
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1499

1500 1501 1502 1503 1504 1505
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1506
	BUG_ON(!cache_cache.num);
1507
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1508 1509 1510
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1516 1517 1518 1519
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1520 1521 1522
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1523 1524 1525
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1526
					NULL);
1527

A
Andrew Morton 已提交
1528
	if (INDEX_AC != INDEX_L3) {
1529
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1530 1531 1532 1533
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1534
				NULL);
A
Andrew Morton 已提交
1535
	}
1536

1537 1538
	slab_early_init = 0;

L
Linus Torvalds 已提交
1539
	while (sizes->cs_size != ULONG_MAX) {
1540 1541
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1542 1543 1544
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1545 1546
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1547
		if (!sizes->cs_cachep) {
1548
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1549 1550 1551
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1552
					NULL);
A
Andrew Morton 已提交
1553
		}
1554 1555 1556
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1557 1558 1559 1560
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1561
					NULL);
1562
#endif
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1568
		struct array_cache *ptr;
1569

L
Linus Torvalds 已提交
1570
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1571

L
Linus Torvalds 已提交
1572
		local_irq_disable();
1573 1574
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1575
		       sizeof(struct arraycache_init));
1576 1577 1578 1579 1580
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1581 1582
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1583

L
Linus Torvalds 已提交
1584
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1585

L
Linus Torvalds 已提交
1586
		local_irq_disable();
1587
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1588
		       != &initarray_generic.cache);
1589
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1590
		       sizeof(struct arraycache_init));
1591 1592 1593 1594 1595
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1596
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1597
		    ptr;
L
Linus Torvalds 已提交
1598 1599
		local_irq_enable();
	}
1600 1601
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1602 1603
		int nid;

1604
		for_each_online_node(nid) {
1605 1606
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], nid);

1607
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1608
				  &initkmem_list3[SIZE_AC + nid], nid);
1609 1610 1611

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1612
					  &initkmem_list3[SIZE_L3 + nid], nid);
1613 1614 1615
			}
		}
	}
L
Linus Torvalds 已提交
1616

1617
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1618
	{
1619
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1620
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1621
		list_for_each_entry(cachep, &cache_chain, next)
1622 1623
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1624
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1625 1626
	}

1627 1628 1629 1630
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1631 1632 1633
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1634 1635 1636
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1637 1638 1639
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1640 1641 1642
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1643 1644 1645 1646 1647 1648 1649
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1650 1651
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1652
	 */
1653
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1654
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1666
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1667 1668
{
	struct page *page;
1669
	int nr_pages;
L
Linus Torvalds 已提交
1670 1671
	int i;

1672
#ifndef CONFIG_MMU
1673 1674 1675
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1676
	 */
1677
	flags |= __GFP_COMP;
1678
#endif
1679

1680
	flags |= cachep->gfpflags;
1681 1682
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1683 1684

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1685 1686 1687
	if (!page)
		return NULL;

1688
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1689
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1690 1691 1692 1693 1694
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1695 1696 1697
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1698 1699 1700 1701 1702
}

/*
 * Interface to system's page release.
 */
1703
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1704
{
P
Pekka Enberg 已提交
1705
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1706 1707 1708
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1709 1710 1711 1712 1713 1714
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1715
	while (i--) {
N
Nick Piggin 已提交
1716 1717
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1727
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1728
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1738
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1739
			    unsigned long caller)
L
Linus Torvalds 已提交
1740
{
1741
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1742

1743
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1744

P
Pekka Enberg 已提交
1745
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1746 1747
		return;

P
Pekka Enberg 已提交
1748 1749 1750 1751
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756 1757 1758
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1759
				*addr++ = svalue;
L
Linus Torvalds 已提交
1760 1761 1762 1763 1764 1765 1766
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1767
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1768 1769 1770
}
#endif

1771
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1772
{
1773 1774
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1775 1776

	memset(addr, val, size);
P
Pekka Enberg 已提交
1777
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1783 1784 1785
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1786
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1787 1788 1789 1790 1791
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1792
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1793
	}
L
Linus Torvalds 已提交
1794
	printk("\n");
D
Dave Jones 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813
}
#endif

#if DEBUG

1814
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1820
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1821 1822
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1823 1824 1825 1826
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1827
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1828
		print_symbol("(%s)",
A
Andrew Morton 已提交
1829
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1830 1831
		printk("\n");
	}
1832 1833
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1834
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1835 1836
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1837 1838
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1839 1840 1841 1842
		dump_line(realobj, i, limit);
	}
}

1843
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848
{
	char *realobj;
	int size, i;
	int lines = 0;

1849 1850
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1851

P
Pekka Enberg 已提交
1852
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1853
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1854
		if (i == size - 1)
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859 1860
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1861
				printk(KERN_ERR
1862 1863
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1864 1865 1866
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1867
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1868
			limit = 16;
P
Pekka Enberg 已提交
1869 1870
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1883
		struct slab *slabp = virt_to_slab(objp);
1884
		unsigned int objnr;
L
Linus Torvalds 已提交
1885

1886
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1887
		if (objnr) {
1888
			objp = index_to_obj(cachep, slabp, objnr - 1);
1889
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1890
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1891
			       realobj, size);
L
Linus Torvalds 已提交
1892 1893
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1894
		if (objnr + 1 < cachep->num) {
1895
			objp = index_to_obj(cachep, slabp, objnr + 1);
1896
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1897
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1898
			       realobj, size);
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903 1904
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1905 1906
#if DEBUG
/**
1907 1908 1909 1910 1911 1912
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1913
 */
1914
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1915 1916 1917
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1918
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1919 1920 1921

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1922 1923
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1924
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1925
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1935
					   "was overwritten");
L
Linus Torvalds 已提交
1936 1937
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1938
					   "was overwritten");
L
Linus Torvalds 已提交
1939 1940
		}
	}
1941
}
L
Linus Torvalds 已提交
1942
#else
1943
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1944 1945
{
}
L
Linus Torvalds 已提交
1946 1947
#endif

1948 1949 1950 1951 1952
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1953
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1954 1955
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1956
 */
1957
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1958 1959 1960 1961
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1962 1963 1964
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1965
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1966 1967 1968 1969 1970
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1971 1972
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1973 1974 1975
	}
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1997
/**
1998 1999 2000 2001 2002 2003 2004
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2005 2006 2007 2008 2009
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2010
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2011
			size_t size, size_t align, unsigned long flags)
2012
{
2013
	unsigned long offslab_limit;
2014
	size_t left_over = 0;
2015
	int gfporder;
2016

2017
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2018 2019 2020
		unsigned int num;
		size_t remainder;

2021
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2022 2023
		if (!num)
			continue;
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2037

2038
		/* Found something acceptable - save it away */
2039
		cachep->num = num;
2040
		cachep->gfporder = gfporder;
2041 2042
		left_over = remainder;

2043 2044 2045 2046 2047 2048 2049 2050
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2051 2052 2053 2054
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2055
		if (gfporder >= slab_break_gfp_order)
2056 2057
			break;

2058 2059 2060
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2061
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2062 2063 2064 2065 2066
			break;
	}
	return left_over;
}

2067
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2068
{
2069 2070 2071
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2099
			for_each_online_node(node) {
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2118
	return 0;
2119 2120
}

L
Linus Torvalds 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2131
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2132 2133
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2134 2135
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2148
struct kmem_cache *
L
Linus Torvalds 已提交
2149
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2150
	unsigned long flags,
2151
	void (*ctor)(struct kmem_cache *, void *))
L
Linus Torvalds 已提交
2152 2153
{
	size_t left_over, slab_size, ralign;
2154
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2155 2156 2157 2158

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2159
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2160
	    size > KMALLOC_MAX_SIZE) {
A
Andrew Morton 已提交
2161 2162
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2163 2164
		BUG();
	}
L
Linus Torvalds 已提交
2165

2166
	/*
2167 2168
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2169
	 */
2170
	get_online_cpus();
I
Ingo Molnar 已提交
2171
	mutex_lock(&cache_chain_mutex);
2172

2173
	list_for_each_entry(pc, &cache_chain, next) {
2174 2175 2176 2177 2178 2179 2180 2181
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2182
		res = probe_kernel_address(pc->name, tmp);
2183
		if (res) {
2184 2185
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2186
			       pc->buffer_size);
2187 2188 2189
			continue;
		}

P
Pekka Enberg 已提交
2190
		if (!strcmp(pc->name, name)) {
2191 2192
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2193 2194 2195 2196 2197
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2207 2208
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2209
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215 2216
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2217 2218
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2219
	 */
2220
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2221

A
Andrew Morton 已提交
2222 2223
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2224 2225 2226
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2227 2228 2229
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2230 2231
	}

A
Andrew Morton 已提交
2232 2233
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2234 2235
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2236 2237 2238 2239
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2240 2241
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2242
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2243 2244 2245 2246
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2247 2248

	/*
D
David Woodhouse 已提交
2249 2250 2251
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2252
	 */
D
David Woodhouse 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2263

2264
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2265 2266 2267
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2268
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2269 2270 2271
	if (ralign < align) {
		ralign = align;
	}
2272
	/* disable debug if necessary */
2273
	if (ralign > __alignof__(unsigned long long))
2274
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2275
	/*
2276
	 * 4) Store it.
L
Linus Torvalds 已提交
2277 2278 2279 2280
	 */
	align = ralign;

	/* Get cache's description obj. */
2281
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2282
	if (!cachep)
2283
		goto oops;
L
Linus Torvalds 已提交
2284 2285

#if DEBUG
2286
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2287

2288 2289 2290 2291
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2292 2293
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2294 2295
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2296 2297
	}
	if (flags & SLAB_STORE_USER) {
2298
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2299 2300
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2301
		 */
D
David Woodhouse 已提交
2302 2303 2304 2305
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2306 2307
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2308
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2309 2310
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2311 2312 2313 2314 2315
		size = PAGE_SIZE;
	}
#endif
#endif

2316 2317 2318 2319 2320 2321
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327 2328 2329
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2330
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2331 2332

	if (!cachep->num) {
2333 2334
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2335 2336
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2337
		goto oops;
L
Linus Torvalds 已提交
2338
	}
P
Pekka Enberg 已提交
2339 2340
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2353 2354
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2355 2356 2357 2358 2359 2360
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2361
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2362 2363 2364
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2365
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2366
		cachep->gfpflags |= GFP_DMA;
2367
	cachep->buffer_size = size;
2368
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2369

2370
	if (flags & CFLGS_OFF_SLAB) {
2371
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2372 2373 2374 2375 2376 2377 2378
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2379
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2380
	}
L
Linus Torvalds 已提交
2381 2382 2383
	cachep->ctor = ctor;
	cachep->name = name;

2384 2385 2386 2387 2388
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2389 2390 2391

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2392
oops:
L
Linus Torvalds 已提交
2393 2394
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2395
		      name);
I
Ingo Molnar 已提交
2396
	mutex_unlock(&cache_chain_mutex);
2397
	put_online_cpus();
L
Linus Torvalds 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2413
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2414 2415 2416
{
#ifdef CONFIG_SMP
	check_irq_off();
2417
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2418 2419
#endif
}
2420

2421
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2422 2423 2424 2425 2426 2427 2428
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2429 2430 2431 2432
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2433
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2434 2435
#endif

2436 2437 2438 2439
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2440 2441
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2442
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2443
	struct array_cache *ac;
2444
	int node = numa_node_id();
L
Linus Torvalds 已提交
2445 2446

	check_irq_off();
2447
	ac = cpu_cache_get(cachep);
2448 2449 2450
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2451 2452 2453
	ac->avail = 0;
}

2454
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2455
{
2456 2457 2458
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2459
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2460
	check_irq_on();
P
Pekka Enberg 已提交
2461
	for_each_online_node(node) {
2462
		l3 = cachep->nodelists[node];
2463 2464 2465 2466 2467 2468 2469
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2470
			drain_array(cachep, l3, l3->shared, 1, node);
2471
	}
L
Linus Torvalds 已提交
2472 2473
}

2474 2475 2476 2477 2478 2479 2480 2481
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2482
{
2483 2484
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2485 2486
	struct slab *slabp;

2487 2488
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2489

2490
		spin_lock_irq(&l3->list_lock);
2491
		p = l3->slabs_free.prev;
2492 2493 2494 2495
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2496

2497
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2498
#if DEBUG
2499
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2500 2501
#endif
		list_del(&slabp->list);
2502 2503 2504 2505 2506
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2507
		spin_unlock_irq(&l3->list_lock);
2508 2509
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2510
	}
2511 2512
out:
	return nr_freed;
L
Linus Torvalds 已提交
2513 2514
}

2515
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2516
static int __cache_shrink(struct kmem_cache *cachep)
2517 2518 2519 2520 2521 2522 2523 2524 2525
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2526 2527 2528 2529 2530 2531 2532
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2533 2534 2535 2536
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2537 2538 2539 2540 2541 2542 2543
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2544
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2545
{
2546
	int ret;
2547
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2548

2549
	get_online_cpus();
2550 2551 2552
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2553
	put_online_cpus();
2554
	return ret;
L
Linus Torvalds 已提交
2555 2556 2557 2558 2559 2560 2561
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2562
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2574
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2575
{
2576
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2577 2578

	/* Find the cache in the chain of caches. */
2579
	get_online_cpus();
I
Ingo Molnar 已提交
2580
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2581 2582 2583 2584 2585 2586
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2587
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2588
		mutex_unlock(&cache_chain_mutex);
2589
		put_online_cpus();
2590
		return;
L
Linus Torvalds 已提交
2591 2592 2593
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2594
		synchronize_rcu();
L
Linus Torvalds 已提交
2595

2596
	__kmem_cache_destroy(cachep);
2597
	mutex_unlock(&cache_chain_mutex);
2598
	put_online_cpus();
L
Linus Torvalds 已提交
2599 2600 2601
}
EXPORT_SYMBOL(kmem_cache_destroy);

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2613
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2614 2615
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2616 2617
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2618

L
Linus Torvalds 已提交
2619 2620
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2621
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2622
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2623 2624 2625
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2626
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2627 2628 2629 2630
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2631
	slabp->s_mem = objp + colour_off;
2632
	slabp->nodeid = nodeid;
2633
	slabp->free = 0;
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2639
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2640 2641
}

2642
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2643
			    struct slab *slabp)
L
Linus Torvalds 已提交
2644 2645 2646 2647
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2648
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2661 2662 2663
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2664 2665
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2666
			cachep->ctor(cachep, objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2667 2668 2669 2670

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2671
					   " end of an object");
L
Linus Torvalds 已提交
2672 2673
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2674
					   " start of an object");
L
Linus Torvalds 已提交
2675
		}
A
Andrew Morton 已提交
2676 2677
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2678
			kernel_map_pages(virt_to_page(objp),
2679
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2680 2681
#else
		if (cachep->ctor)
2682
			cachep->ctor(cachep, objp);
L
Linus Torvalds 已提交
2683
#endif
P
Pekka Enberg 已提交
2684
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2685
	}
P
Pekka Enberg 已提交
2686
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2687 2688
}

2689
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2690
{
2691 2692 2693 2694 2695 2696
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2697 2698
}

A
Andrew Morton 已提交
2699 2700
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2701
{
2702
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2716 2717
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2718
{
2719
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2720 2721 2722 2723 2724

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2725
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2726
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2727
				"'%s', objp %p\n", cachep->name, objp);
2728 2729 2730 2731 2732 2733 2734 2735
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2736 2737 2738 2739 2740 2741 2742
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2743
{
2744
	int nr_pages;
L
Linus Torvalds 已提交
2745 2746
	struct page *page;

2747
	page = virt_to_page(addr);
2748

2749
	nr_pages = 1;
2750
	if (likely(!PageCompound(page)))
2751 2752
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2753
	do {
2754 2755
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2756
		page++;
2757
	} while (--nr_pages);
L
Linus Torvalds 已提交
2758 2759 2760 2761 2762 2763
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2764 2765
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2766
{
P
Pekka Enberg 已提交
2767 2768 2769
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2770
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2771

A
Andrew Morton 已提交
2772 2773 2774
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2775
	 */
C
Christoph Lameter 已提交
2776 2777
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2778

2779
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2780
	check_irq_off();
2781 2782
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2783 2784

	/* Get colour for the slab, and cal the next value. */
2785 2786 2787 2788 2789
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2790

2791
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2804 2805 2806
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2807
	 */
2808
	if (!objp)
2809
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2810
	if (!objp)
L
Linus Torvalds 已提交
2811 2812 2813
		goto failed;

	/* Get slab management. */
2814
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2815
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2816
	if (!slabp)
L
Linus Torvalds 已提交
2817 2818
		goto opps1;

2819
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2820

C
Christoph Lameter 已提交
2821
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2822 2823 2824 2825

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2826
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2827 2828

	/* Make slab active. */
2829
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2830
	STATS_INC_GROWN(cachep);
2831 2832
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2833
	return 1;
A
Andrew Morton 已提交
2834
opps1:
L
Linus Torvalds 已提交
2835
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2836
failed:
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2853 2854
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2855 2856 2857
	}
}

2858 2859
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2860
	unsigned long long redzone1, redzone2;
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2876
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2877 2878 2879
			obj, redzone1, redzone2);
}

2880
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2881
				   void *caller)
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2887 2888
	BUG_ON(virt_to_cache(objp) != cachep);

2889
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2890
	kfree_debugcheck(objp);
2891
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2892

2893
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2894 2895

	if (cachep->flags & SLAB_RED_ZONE) {
2896
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901 2902
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2903
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2904 2905

	BUG_ON(objnr >= cachep->num);
2906
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2907

2908 2909 2910
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2911 2912
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2913
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2914
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2915
			kernel_map_pages(virt_to_page(objp),
2916
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2927
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2928 2929 2930
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2931

L
Linus Torvalds 已提交
2932 2933 2934 2935 2936 2937 2938
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2939 2940 2941 2942
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2943
		for (i = 0;
2944
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2945
		     i++) {
A
Andrew Morton 已提交
2946
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2947
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2948
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2960
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2961 2962 2963 2964
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2965 2966
	int node;

2967
retry:
L
Linus Torvalds 已提交
2968
	check_irq_off();
2969
	node = numa_node_id();
2970
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2971 2972
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2973 2974 2975 2976
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2977 2978 2979
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2980
	l3 = cachep->nodelists[node];
2981 2982 2983

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2984

2985 2986 2987 2988
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3004 3005 3006 3007 3008 3009 3010 3011

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
3012 3013 3014 3015 3016
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3017
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3018
							    node);
L
Linus Torvalds 已提交
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3030
must_grow:
L
Linus Torvalds 已提交
3031
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3032
alloc_done:
3033
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3034 3035 3036

	if (unlikely(!ac->avail)) {
		int x;
3037
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3038

A
Andrew Morton 已提交
3039
		/* cache_grow can reenable interrupts, then ac could change. */
3040
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3041
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3042 3043
			return NULL;

A
Andrew Morton 已提交
3044
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3045 3046 3047
			goto retry;
	}
	ac->touched = 1;
3048
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3049 3050
}

A
Andrew Morton 已提交
3051 3052
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3053 3054 3055 3056 3057 3058 3059 3060
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3061 3062
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3063
{
P
Pekka Enberg 已提交
3064
	if (!objp)
L
Linus Torvalds 已提交
3065
		return objp;
P
Pekka Enberg 已提交
3066
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3067
#ifdef CONFIG_DEBUG_PAGEALLOC
3068
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3069
			kernel_map_pages(virt_to_page(objp),
3070
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3082 3083 3084 3085
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3086
			printk(KERN_ERR
3087
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3088 3089
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3090 3091 3092 3093
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3094 3095 3096 3097 3098
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3099
		slabp = page_get_slab(virt_to_head_page(objp));
3100 3101 3102 3103
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3104
	objp += obj_offset(cachep);
3105
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3106
		cachep->ctor(cachep, objp);
3107 3108 3109 3110 3111 3112
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3113 3114 3115 3116 3117 3118
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3132
	.ignore_gfp_wait = 1,
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3161
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3192
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3193
{
P
Pekka Enberg 已提交
3194
	void *objp;
L
Linus Torvalds 已提交
3195 3196
	struct array_cache *ac;

3197
	check_irq_off();
3198

3199
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3200 3201 3202
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3203
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3204 3205 3206 3207
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3208 3209 3210
	return objp;
}

3211
#ifdef CONFIG_NUMA
3212
/*
3213
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3214 3215 3216 3217 3218 3219 3220 3221
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3222
	if (in_interrupt() || (flags & __GFP_THISNODE))
3223 3224 3225 3226 3227 3228 3229
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3230
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3231 3232 3233
	return NULL;
}

3234 3235
/*
 * Fallback function if there was no memory available and no objects on a
3236 3237 3238 3239 3240
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3241
 */
3242
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3243
{
3244 3245
	struct zonelist *zonelist;
	gfp_t local_flags;
3246 3247
	struct zone **z;
	void *obj = NULL;
3248
	int nid;
3249 3250 3251 3252 3253 3254

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
C
Christoph Lameter 已提交
3255
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3256

3257 3258 3259 3260 3261
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3262
	for (z = zonelist->zones; *z && !obj; z++) {
3263
		nid = zone_to_nid(*z);
3264

3265
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3266 3267 3268 3269 3270 3271
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3272
	if (!obj) {
3273 3274 3275 3276 3277 3278
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3279 3280 3281
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3282
		obj = kmem_getpages(cache, local_flags, -1);
3283 3284
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3301
				/* cache_grow already freed obj */
3302 3303 3304
				obj = NULL;
			}
		}
3305
	}
3306 3307 3308
	return obj;
}

3309 3310
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3311
 */
3312
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3313
				int nodeid)
3314 3315
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3316 3317 3318 3319 3320 3321 3322 3323
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3324
retry:
3325
	check_irq_off();
P
Pekka Enberg 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3345
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3346 3347 3348 3349 3350
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3351
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3352
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3353
	else
P
Pekka Enberg 已提交
3354
		list_add(&slabp->list, &l3->slabs_partial);
3355

P
Pekka Enberg 已提交
3356 3357
	spin_unlock(&l3->list_lock);
	goto done;
3358

A
Andrew Morton 已提交
3359
must_grow:
P
Pekka Enberg 已提交
3360
	spin_unlock(&l3->list_lock);
3361
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3362 3363
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3364

3365
	return fallback_alloc(cachep, flags);
3366

A
Andrew Morton 已提交
3367
done:
P
Pekka Enberg 已提交
3368
	return obj;
3369
}
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3390 3391 3392
	if (should_failslab(cachep, flags))
		return NULL;

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3422 3423 3424
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3466 3467 3468
	if (should_failslab(cachep, flags))
		return NULL;

3469 3470 3471 3472 3473 3474 3475
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3476 3477 3478
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3479 3480
	return objp;
}
3481 3482 3483 3484

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3485
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3486
		       int node)
L
Linus Torvalds 已提交
3487 3488
{
	int i;
3489
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3490 3491 3492 3493 3494

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3495
		slabp = virt_to_slab(objp);
3496
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3497
		list_del(&slabp->list);
3498
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3499
		check_slabp(cachep, slabp);
3500
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3501
		STATS_DEC_ACTIVE(cachep);
3502
		l3->free_objects++;
L
Linus Torvalds 已提交
3503 3504 3505 3506
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3507 3508
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3509 3510 3511 3512 3513 3514
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3515 3516
				slab_destroy(cachep, slabp);
			} else {
3517
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3518 3519 3520 3521 3522 3523
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3524
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3525 3526 3527 3528
		}
	}
}

3529
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3530 3531
{
	int batchcount;
3532
	struct kmem_list3 *l3;
3533
	int node = numa_node_id();
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3540
	l3 = cachep->nodelists[node];
3541
	spin_lock(&l3->list_lock);
3542 3543
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3544
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3545 3546 3547
		if (max) {
			if (batchcount > max)
				batchcount = max;
3548
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3549
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3550 3551 3552 3553 3554
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3555
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3556
free_done:
L
Linus Torvalds 已提交
3557 3558 3559 3560 3561
#if STATS
	{
		int i = 0;
		struct list_head *p;

3562 3563
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3575
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3576
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3577
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3578 3579 3580
}

/*
A
Andrew Morton 已提交
3581 3582
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3583
 */
3584
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3585
{
3586
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3587 3588 3589 3590

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3591 3592 3593 3594 3595 3596 3597 3598
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
	if (numa_platform && cache_free_alien(cachep, objp))
3599 3600
		return;

L
Linus Torvalds 已提交
3601 3602
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3603
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3604 3605 3606 3607
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3608
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3620
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3621
{
3622
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3623 3624 3625 3626
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
3627
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3628 3629 3630
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3631
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3632 3633 3634 3635 3636 3637 3638
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3639
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3640
{
P
Pekka Enberg 已提交
3641
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3642
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3643
	unsigned long align_mask = BYTES_PER_WORD - 1;
3644
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3660
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3661 3662
		goto out;
	return 1;
A
Andrew Morton 已提交
3663
out:
L
Linus Torvalds 已提交
3664 3665 3666 3667
	return 0;
}

#ifdef CONFIG_NUMA
3668 3669 3670 3671 3672
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3673 3674
EXPORT_SYMBOL(kmem_cache_alloc_node);

3675 3676
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3677
{
3678
	struct kmem_cache *cachep;
3679 3680

	cachep = kmem_find_general_cachep(size, flags);
3681 3682
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3683 3684
	return kmem_cache_alloc_node(cachep, flags, node);
}
3685 3686 3687 3688 3689 3690 3691

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3692
EXPORT_SYMBOL(__kmalloc_node);
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3708 3709

/**
3710
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3711
 * @size: how many bytes of memory are required.
3712
 * @flags: the type of memory to allocate (see kmalloc).
3713
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3714
 */
3715 3716
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3717
{
3718
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3719

3720 3721 3722 3723 3724 3725
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3726 3727
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3728 3729 3730 3731
	return __cache_alloc(cachep, flags, caller);
}


3732
#ifdef CONFIG_DEBUG_SLAB
3733 3734
void *__kmalloc(size_t size, gfp_t flags)
{
3735
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3736 3737 3738
}
EXPORT_SYMBOL(__kmalloc);

3739 3740 3741 3742 3743
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3744 3745 3746 3747 3748 3749 3750

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3751 3752
#endif

L
Linus Torvalds 已提交
3753 3754 3755 3756 3757 3758 3759 3760
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3761
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3762 3763 3764 3765
{
	unsigned long flags;

	local_irq_save(flags);
3766
	debug_check_no_locks_freed(objp, obj_size(cachep));
3767
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772 3773 3774 3775
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3776 3777
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3783
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3784 3785
	unsigned long flags;

3786
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3787 3788 3789
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3790
	c = virt_to_cache(objp);
3791
	debug_check_no_locks_freed(objp, obj_size(c));
3792
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3793 3794 3795 3796
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3797
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3798
{
3799
	return obj_size(cachep);
L
Linus Torvalds 已提交
3800 3801 3802
}
EXPORT_SYMBOL(kmem_cache_size);

3803
const char *kmem_cache_name(struct kmem_cache *cachep)
3804 3805 3806 3807 3808
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3809
/*
S
Simon Arlott 已提交
3810
 * This initializes kmem_list3 or resizes various caches for all nodes.
3811
 */
3812
static int alloc_kmemlist(struct kmem_cache *cachep)
3813 3814 3815
{
	int node;
	struct kmem_list3 *l3;
3816
	struct array_cache *new_shared;
3817
	struct array_cache **new_alien = NULL;
3818

3819
	for_each_online_node(node) {
3820

3821 3822 3823 3824 3825
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3826

3827 3828 3829
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3830
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3831
					0xbaadf00d);
3832 3833 3834 3835
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3836
		}
3837

A
Andrew Morton 已提交
3838 3839
		l3 = cachep->nodelists[node];
		if (l3) {
3840 3841
			struct array_cache *shared = l3->shared;

3842 3843
			spin_lock_irq(&l3->list_lock);

3844
			if (shared)
3845 3846
				free_block(cachep, shared->entry,
						shared->avail, node);
3847

3848 3849
			l3->shared = new_shared;
			if (!l3->alien) {
3850 3851 3852
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3853
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3854
					cachep->batchcount + cachep->num;
3855
			spin_unlock_irq(&l3->list_lock);
3856
			kfree(shared);
3857 3858 3859
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3860
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3861 3862 3863
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3864
			goto fail;
3865
		}
3866 3867 3868

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3869
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3870
		l3->shared = new_shared;
3871
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3872
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3873
					cachep->batchcount + cachep->num;
3874 3875
		cachep->nodelists[node] = l3;
	}
3876
	return 0;
3877

A
Andrew Morton 已提交
3878
fail:
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3894
	return -ENOMEM;
3895 3896
}

L
Linus Torvalds 已提交
3897
struct ccupdate_struct {
3898
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3904
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3905 3906 3907
	struct array_cache *old;

	check_irq_off();
3908
	old = cpu_cache_get(new->cachep);
3909

L
Linus Torvalds 已提交
3910 3911 3912 3913
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3914
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3915 3916
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3917
{
3918
	struct ccupdate_struct *new;
3919
	int i;
L
Linus Torvalds 已提交
3920

3921 3922 3923 3924
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3925
	for_each_online_cpu(i) {
3926
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3927
						batchcount);
3928
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3929
			for (i--; i >= 0; i--)
3930 3931
				kfree(new->new[i]);
			kfree(new);
3932
			return -ENOMEM;
L
Linus Torvalds 已提交
3933 3934
		}
	}
3935
	new->cachep = cachep;
L
Linus Torvalds 已提交
3936

3937
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3938

L
Linus Torvalds 已提交
3939 3940 3941
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3942
	cachep->shared = shared;
L
Linus Torvalds 已提交
3943

3944
	for_each_online_cpu(i) {
3945
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3946 3947
		if (!ccold)
			continue;
3948
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3949
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3950
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3951 3952
		kfree(ccold);
	}
3953
	kfree(new);
3954
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3955 3956
}

3957
/* Called with cache_chain_mutex held always */
3958
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3959 3960 3961 3962
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3963 3964
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3965 3966
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3967
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3968 3969 3970 3971
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3972
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3973
		limit = 1;
3974
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3975
		limit = 8;
3976
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3977
		limit = 24;
3978
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3979 3980 3981 3982
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3983 3984
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989 3990 3991 3992
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3993
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3994 3995 3996
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3997 3998 3999
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4000 4001 4002 4003
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4004
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4005 4006
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4007
		       cachep->name, -err);
4008
	return err;
L
Linus Torvalds 已提交
4009 4010
}

4011 4012
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4013 4014
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4015 4016 4017
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4018 4019 4020
{
	int tofree;

4021 4022
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4023 4024
	if (ac->touched && !force) {
		ac->touched = 0;
4025
	} else {
4026
		spin_lock_irq(&l3->list_lock);
4027 4028 4029 4030 4031 4032 4033 4034 4035
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4036
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4042
 * @w: work descriptor
L
Linus Torvalds 已提交
4043 4044 4045 4046 4047 4048
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4049 4050
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4051
 */
4052
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4053
{
4054
	struct kmem_cache *searchp;
4055
	struct kmem_list3 *l3;
4056
	int node = numa_node_id();
4057 4058
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4059

4060
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4061
		/* Give up. Setup the next iteration. */
4062
		goto out;
L
Linus Torvalds 已提交
4063

4064
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4065 4066
		check_irq_on();

4067 4068 4069 4070 4071
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4072
		l3 = searchp->nodelists[node];
4073

4074
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4075

4076
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4077

4078 4079 4080 4081
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4082
		if (time_after(l3->next_reap, jiffies))
4083
			goto next;
L
Linus Torvalds 已提交
4084

4085
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4086

4087
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4088

4089
		if (l3->free_touched)
4090
			l3->free_touched = 0;
4091 4092
		else {
			int freed;
L
Linus Torvalds 已提交
4093

4094 4095 4096 4097
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4098
next:
L
Linus Torvalds 已提交
4099 4100 4101
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4102
	mutex_unlock(&cache_chain_mutex);
4103
	next_reap_node();
4104
out:
A
Andrew Morton 已提交
4105
	/* Set up the next iteration */
4106
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4107 4108
}

4109
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4110

4111
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4112
{
4113 4114 4115 4116
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4117
#if STATS
4118
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4119
#else
4120
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4121
#endif
4122 4123 4124 4125
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4126
#if STATS
4127
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4128
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4129
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4130
#endif
4131 4132 4133 4134 4135 4136 4137
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4138
	mutex_lock(&cache_chain_mutex);
4139 4140
	if (!n)
		print_slabinfo_header(m);
4141 4142

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4143 4144 4145 4146
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4147
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4148 4149 4150 4151
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4152
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4153 4154 4155 4156
}

static int s_show(struct seq_file *m, void *p)
{
4157
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4158 4159 4160 4161 4162
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4163
	const char *name;
L
Linus Torvalds 已提交
4164
	char *error = NULL;
4165 4166
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4167 4168 4169

	active_objs = 0;
	num_slabs = 0;
4170 4171 4172 4173 4174
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4175 4176
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4177

4178
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4179 4180 4181 4182 4183
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4184
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4185 4186 4187 4188 4189 4190 4191
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4192
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4193 4194 4195 4196 4197
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4198 4199
		if (l3->shared)
			shared_avail += l3->shared->avail;
4200

4201
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4202
	}
P
Pekka Enberg 已提交
4203 4204
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4205
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4206 4207
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4208
	name = cachep->name;
L
Linus Torvalds 已提交
4209 4210 4211 4212
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4213
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4214
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4215
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4216
		   cachep->limit, cachep->batchcount, cachep->shared);
4217
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4218
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4219
#if STATS
P
Pekka Enberg 已提交
4220
	{			/* list3 stats */
L
Linus Torvalds 已提交
4221 4222 4223 4224 4225 4226 4227
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4228
		unsigned long node_frees = cachep->node_frees;
4229
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4230

4231
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4232
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4233
				reaped, errors, max_freeable, node_allocs,
4234
				node_frees, overflows);
L
Linus Torvalds 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4244
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4265
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4266 4267 4268 4269
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4280 4281
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4282
{
P
Pekka Enberg 已提交
4283
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4284
	int limit, batchcount, shared, res;
4285
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4286

L
Linus Torvalds 已提交
4287 4288 4289 4290
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4291
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4302
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4303
	res = -EINVAL;
4304
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4305
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4306 4307
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4308
				res = 0;
L
Linus Torvalds 已提交
4309
			} else {
4310
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4311
						       batchcount, shared);
L
Linus Torvalds 已提交
4312 4313 4314 4315
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4316
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4317 4318 4319 4320
	if (res >= 0)
		res = count;
	return res;
}
4321 4322 4323 4324 4325 4326

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4327
	return seq_list_start(&cache_chain, *pos);
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4378
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4379

4380
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4381
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4382
		if (modname[0])
4383 4384 4385 4386 4387 4388 4389 4390 4391
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4392
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4417
		list_for_each_entry(slabp, &l3->slabs_full, list)
4418
			handle_slab(n, cachep, slabp);
4419
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4446

4447 4448 4449
	return 0;
}

4450
const struct seq_operations slabstats_op = {
4451 4452 4453 4454 4455 4456
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4457 4458
#endif

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4471
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4472
{
4473 4474
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4475
		return 0;
L
Linus Torvalds 已提交
4476

4477
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4478
}
T
Tetsuo Handa 已提交
4479
EXPORT_SYMBOL(ksize);