sched.c 165.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
L
Linus Torvalds 已提交
64

65
#include <asm/tlb.h>
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
135 136 137
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

138
/*
I
Ingo Molnar 已提交
139
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 141
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
142
static unsigned int static_prio_timeslice(int static_prio)
143
{
I
Ingo Molnar 已提交
144 145 146 147 148 149 150
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
165
/*
I
Ingo Molnar 已提交
166
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
167
 */
I
Ingo Molnar 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
265 266
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
267
	u64 tick_timestamp;
I
Ingo Molnar 已提交
268

L
Linus Torvalds 已提交
269 270 271 272 273 274 275 276
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
277
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
278

279
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
302
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
303 304
};

305
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
306
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
307

I
Ingo Molnar 已提交
308 309 310 311 312
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

313 314 315 316 317 318 319 320 321
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
322
/*
I
Ingo Molnar 已提交
323 324
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
325
 */
I
Ingo Molnar 已提交
326
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
327 328 329 330 331 332
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
333 334 335
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
336 337 338 339 340 341 342 343 344 345
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
346 347 348 349 350
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
351 352 353 354 355 356 357 358 359 360
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
361
}
I
Ingo Molnar 已提交
362

I
Ingo Molnar 已提交
363 364 365 366
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
367 368
}

N
Nick Piggin 已提交
369 370
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
371
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
372 373 374 375
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
376 377
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
378 379 380 381 382 383

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

384 385 386 387 388 389 390 391
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
392
	struct rq *rq;
393

394
	local_irq_save(flags);
I
Ingo Molnar 已提交
395 396 397
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
398
	local_irq_restore(flags);
399 400 401 402

	return now;
}

I
Ingo Molnar 已提交
403 404 405 406 407 408 409 410 411 412 413 414
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
415
#ifndef prepare_arch_switch
416 417 418 419 420 421 422
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
423
static inline int task_running(struct rq *rq, struct task_struct *p)
424 425 426 427
{
	return rq->curr == p;
}

428
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
429 430 431
{
}

432
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
433
{
434 435 436 437
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
438 439 440 441 442 443 444
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

445 446 447 448
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
449
static inline int task_running(struct rq *rq, struct task_struct *p)
450 451 452 453 454 455 456 457
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

458
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

475
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
476 477 478 479 480 481 482 483 484 485 486 487
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
488
#endif
489 490
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
491

492 493 494 495
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
496
static inline struct rq *__task_rq_lock(struct task_struct *p)
497 498
	__acquires(rq->lock)
{
499
	struct rq *rq;
500 501 502 503 504 505 506 507 508 509 510

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
511 512 513 514 515
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
516
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
517 518
	__acquires(rq->lock)
{
519
	struct rq *rq;
L
Linus Torvalds 已提交
520 521 522 523 524 525 526 527 528 529 530 531

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

532
static inline void __task_rq_unlock(struct rq *rq)
533 534 535 536 537
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

538
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
539 540 541 542 543 544
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
545
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
546
 */
547
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
548 549
	__acquires(rq->lock)
{
550
	struct rq *rq;
L
Linus Torvalds 已提交
551 552 553 554 555 556 557 558

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

559
/*
560
 * We are going deep-idle (irqs are disabled):
561
 */
562
void sched_clock_idle_sleep_event(void)
563
{
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
580

581 582 583 584 585 586 587 588 589 590 591
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
592
}
593
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
594

I
Ingo Molnar 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
668 669 670 671 672
/*
 * Shift right and round:
 */
#define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

673
static unsigned long
674 675 676 677 678 679
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
680
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
681 682 683 684 685

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
686 687 688 689 690
	if (unlikely(tmp > WMULT_CONST))
		tmp = RSR(RSR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = RSR(tmp * lw->inv_weight, WMULT_SHIFT);
691

692
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

713 714 715 716 717 718 719 720 721
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
722 723 724 725 726 727 728 729 730 731 732
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
733 734 735
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
736 737
 */
static const int prio_to_weight[40] = {
738 739 740 741 742 743 744 745
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
746 747
};

748 749 750 751 752 753 754
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
755
static const u32 prio_to_wmult[40] = {
756 757 758 759 760 761 762 763
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
764
};
765

I
Ingo Molnar 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
783
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
784 785 786 787 788 789 790 791 792 793 794

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
819
static void update_curr_load(struct rq *rq)
820 821 822 823 824
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
825 826
	ls->load_update_start = rq->clock;
	ls->delta_stat += rq->clock - start;
827 828 829 830 831 832 833 834
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

835
static inline void inc_load(struct rq *rq, const struct task_struct *p)
836
{
837
	update_curr_load(rq);
838 839 840
	update_load_add(&rq->ls.load, p->se.load.weight);
}

841
static inline void dec_load(struct rq *rq, const struct task_struct *p)
842
{
843
	update_curr_load(rq);
844 845 846
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

847
static void inc_nr_running(struct task_struct *p, struct rq *rq)
848 849
{
	rq->nr_running++;
850
	inc_load(rq, p);
851 852
}

853
static void dec_nr_running(struct task_struct *p, struct rq *rq)
854 855
{
	rq->nr_running--;
856
	dec_load(rq, p);
857 858
}

859 860
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
861 862 863
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

864
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
865 866 867 868
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
869

I
Ingo Molnar 已提交
870 871 872 873 874 875 876 877
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
878

I
Ingo Molnar 已提交
879 880
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
881 882
}

883
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
884
{
I
Ingo Molnar 已提交
885
	sched_info_queued(p);
886
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
887
	p->se.on_rq = 1;
888 889
}

890
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
891
{
892
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
893
	p->se.on_rq = 0;
894 895
}

896
/*
I
Ingo Molnar 已提交
897
 * __normal_prio - return the priority that is based on the static prio
898 899 900
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
901
	return p->static_prio;
902 903
}

904 905 906 907 908 909 910
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
911
static inline int normal_prio(struct task_struct *p)
912 913 914
{
	int prio;

915
	if (task_has_rt_policy(p))
916 917 918 919 920 921 922 923 924 925 926 927 928
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
929
static int effective_prio(struct task_struct *p)
930 931 932 933 934 935 936 937 938 939 940 941
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
942
/*
I
Ingo Molnar 已提交
943
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
944
 */
I
Ingo Molnar 已提交
945
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
946
{
I
Ingo Molnar 已提交
947 948
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
949

950
	enqueue_task(rq, p, wakeup);
951
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
952 953 954
}

/*
I
Ingo Molnar 已提交
955
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
956
 */
I
Ingo Molnar 已提交
957
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
958
{
I
Ingo Molnar 已提交
959
	update_rq_clock(rq);
L
Linus Torvalds 已提交
960

I
Ingo Molnar 已提交
961 962
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
963

964
	enqueue_task(rq, p, 0);
965
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
966 967 968 969 970
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
971
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
972
{
I
Ingo Molnar 已提交
973 974 975
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

976
	dequeue_task(rq, p, sleep);
977
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
978 979 980 981 982 983
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
984
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
985 986 987 988
{
	return cpu_curr(task_cpu(p)) == p;
}

989 990 991
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
992 993 994 995 996 997 998 999 1000
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
1001 1002
}

L
Linus Torvalds 已提交
1003
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1004

I
Ingo Molnar 已提交
1005
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1006
{
I
Ingo Molnar 已提交
1007 1008 1009 1010 1011
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1012 1013
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
1014 1015
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
1016 1017 1018 1019 1020 1021
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1022 1023 1024 1025
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1026
#endif
I
Ingo Molnar 已提交
1027 1028

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1029 1030
}

1031
struct migration_req {
L
Linus Torvalds 已提交
1032 1033
	struct list_head list;

1034
	struct task_struct *task;
L
Linus Torvalds 已提交
1035 1036 1037
	int dest_cpu;

	struct completion done;
1038
};
L
Linus Torvalds 已提交
1039 1040 1041 1042 1043

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1044
static int
1045
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1046
{
1047
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1053
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1054 1055 1056 1057 1058 1059 1060 1061
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1062

L
Linus Torvalds 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1075
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1076 1077
{
	unsigned long flags;
I
Ingo Molnar 已提交
1078
	int running, on_rq;
1079
	struct rq *rq;
L
Linus Torvalds 已提交
1080 1081

repeat:
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1109
	rq = task_rq_lock(p, &flags);
1110
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1111
	on_rq = p->se.on_rq;
1112 1113 1114 1115 1116 1117 1118 1119 1120
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1121 1122 1123
		cpu_relax();
		goto repeat;
	}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1134
	if (unlikely(on_rq)) {
1135 1136 1137 1138 1139 1140 1141 1142 1143
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1159
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1171 1172
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1173 1174 1175 1176
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1177
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1178
{
1179
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1180
	unsigned long total = weighted_cpuload(cpu);
1181

1182
	if (type == 0)
I
Ingo Molnar 已提交
1183
		return total;
1184

I
Ingo Molnar 已提交
1185
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1186 1187 1188
}

/*
1189 1190
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1191
 */
N
Nick Piggin 已提交
1192
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1193
{
1194
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1195
	unsigned long total = weighted_cpuload(cpu);
1196

N
Nick Piggin 已提交
1197
	if (type == 0)
I
Ingo Molnar 已提交
1198
		return total;
1199

I
Ingo Molnar 已提交
1200
	return max(rq->cpu_load[type-1], total);
1201 1202 1203 1204 1205 1206 1207
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1208
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1209
	unsigned long total = weighted_cpuload(cpu);
1210 1211
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1212
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1213 1214
}

N
Nick Piggin 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1232 1233 1234 1235
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1252 1253
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1254 1255 1256 1257 1258 1259 1260 1261

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1262
nextgroup:
N
Nick Piggin 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1272
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1273
 */
I
Ingo Molnar 已提交
1274 1275
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1276
{
1277
	cpumask_t tmp;
N
Nick Piggin 已提交
1278 1279 1280 1281
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1282 1283 1284 1285
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1286
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1312

1313
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1314 1315 1316
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1317 1318
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1319 1320
		if (tmp->flags & flag)
			sd = tmp;
1321
	}
N
Nick Piggin 已提交
1322 1323 1324 1325

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1326 1327 1328 1329 1330 1331
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1332 1333 1334

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1335 1336 1337 1338
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1339

1340
		new_cpu = find_idlest_cpu(group, t, cpu);
1341 1342 1343 1344 1345
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1346

1347
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1374
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1390 1391 1392 1393
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1394
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1395 1396 1397 1398
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1399
		} else {
N
Nick Piggin 已提交
1400
			break;
I
Ingo Molnar 已提交
1401
		}
L
Linus Torvalds 已提交
1402 1403 1404 1405
	}
	return cpu;
}
#else
1406
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1426
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1427 1428 1429 1430
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1431
	struct rq *rq;
L
Linus Torvalds 已提交
1432
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1433
	struct sched_domain *sd, *this_sd = NULL;
1434
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440 1441 1442
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1443
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1453 1454
	new_cpu = cpu;

L
Linus Torvalds 已提交
1455 1456 1457
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1458 1459 1460 1461 1462 1463 1464 1465
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1466 1467 1468
		}
	}

N
Nick Piggin 已提交
1469
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1470 1471 1472
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1473
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1474
	 */
N
Nick Piggin 已提交
1475 1476 1477
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1478

1479 1480
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1481 1482
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1483

N
Nick Piggin 已提交
1484 1485
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1486 1487
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1488 1489 1490
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1491

L
Linus Torvalds 已提交
1492
			/*
1493 1494 1495
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1496
			 */
1497
			if (sync)
I
Ingo Molnar 已提交
1498
				tl -= current->se.load.weight;
1499 1500

			if ((tl <= load &&
1501
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1502
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1536
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543 1544
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1545
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1546
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1555 1556
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1567
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1574
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579 1580 1581
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1594 1595 1596 1597
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1608
#endif
N
Nick Piggin 已提交
1609

I
Ingo Molnar 已提交
1610 1611
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1612

1613 1614 1615 1616
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1639 1640 1641 1642 1643 1644

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1645
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1646
	if (likely(sched_info_on()))
1647
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1648
#endif
1649
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1650 1651
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1652
#ifdef CONFIG_PREEMPT
1653
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1654
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1655
#endif
N
Nick Piggin 已提交
1656
	put_cpu();
L
Linus Torvalds 已提交
1657 1658
}

I
Ingo Molnar 已提交
1659 1660 1661 1662 1663 1664
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670 1671
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1672
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1673 1674
{
	unsigned long flags;
I
Ingo Molnar 已提交
1675 1676
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1677 1678

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1679
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1680
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1681
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1682 1683 1684

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1685 1686 1687 1688
	if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
			(clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
			!current->se.on_rq) {

I
Ingo Molnar 已提交
1689
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1690 1691
	} else {
		/*
I
Ingo Molnar 已提交
1692 1693
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1694
		 */
1695
		p->sched_class->task_new(rq, p);
1696
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1697
	}
I
Ingo Molnar 已提交
1698 1699
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1700 1701
}

1702 1703 1704
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1705 1706
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1707 1708 1709 1710 1711 1712 1713 1714 1715
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1716
 * @notifier: notifier struct to unregister
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1760 1761 1762
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1763
 * @prev: the current task that is being switched out
1764 1765 1766 1767 1768 1769 1770 1771 1772
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1773 1774 1775
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1776
{
1777
	fire_sched_out_preempt_notifiers(prev, next);
1778 1779 1780 1781
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1782 1783
/**
 * finish_task_switch - clean up after a task-switch
1784
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1785 1786
 * @prev: the thread we just switched away from.
 *
1787 1788 1789 1790
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1797
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1798 1799 1800
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1801
	long prev_state;
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1807
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1808 1809
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1810
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1816
	prev_state = prev->state;
1817 1818
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1819
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1820 1821
	if (mm)
		mmdrop(mm);
1822
	if (unlikely(prev_state == TASK_DEAD)) {
1823 1824 1825
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1826
		 */
1827
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1828
		put_task_struct(prev);
1829
	}
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1836
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1837 1838
	__releases(rq->lock)
{
1839 1840
	struct rq *rq = this_rq();

1841 1842 1843 1844 1845
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851 1852 1853
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1854
static inline void
1855
context_switch(struct rq *rq, struct task_struct *prev,
1856
	       struct task_struct *next)
L
Linus Torvalds 已提交
1857
{
I
Ingo Molnar 已提交
1858
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1859

1860
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1861 1862
	mm = next->mm;
	oldmm = prev->active_mm;
1863 1864 1865 1866 1867 1868 1869
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1870
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1877
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1878 1879 1880
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1881 1882 1883 1884 1885 1886 1887
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1888
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1889
#endif
L
Linus Torvalds 已提交
1890 1891 1892 1893

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1894 1895 1896 1897 1898 1899 1900
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1924
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1939 1940
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1941

1942
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1952
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1953 1954 1955 1956 1957
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1973
/*
I
Ingo Molnar 已提交
1974 1975
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1976
 */
I
Ingo Molnar 已提交
1977
static void update_cpu_load(struct rq *this_rq)
1978
{
I
Ingo Molnar 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
1990
	update_curr_load(this_rq);
I
Ingo Molnar 已提交
1991 1992 1993 1994 1995 1996 1997

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

1998 1999
	sample_interval64 = this_rq->clock - ls->load_update_last;
	ls->load_update_last = this_rq->clock;
I
Ingo Molnar 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2027 2028
}

I
Ingo Molnar 已提交
2029 2030
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2031 2032 2033 2034 2035 2036
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2037
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2038 2039 2040
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2041
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2042 2043 2044 2045
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2046
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052 2053
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2054 2055
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061 2062 2063
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2064
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2078
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2079 2080 2081 2082
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2083 2084 2085 2086 2087
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2088
	if (unlikely(!spin_trylock(&busiest->lock))) {
2089
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2104
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2105
{
2106
	struct migration_req req;
L
Linus Torvalds 已提交
2107
	unsigned long flags;
2108
	struct rq *rq;
L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2119

L
Linus Torvalds 已提交
2120 2121 2122 2123 2124
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2125

L
Linus Torvalds 已提交
2126 2127 2128 2129 2130 2131 2132
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2133 2134
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2135 2136 2137 2138
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2139
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2140
	put_cpu();
N
Nick Piggin 已提交
2141 2142
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2149 2150
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2151
{
2152
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2153
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2154
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2155 2156 2157 2158
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2159
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2160 2161 2162 2163 2164
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2165
static
2166
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2167
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2168
		     int *all_pinned)
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2178 2179 2180 2181
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2182 2183 2184 2185

	return 1;
}

I
Ingo Molnar 已提交
2186
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2187
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2188
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2189
		      int *all_pinned, unsigned long *load_moved,
2190
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2191
{
I
Ingo Molnar 已提交
2192 2193 2194
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2195

2196
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2197 2198
		goto out;

2199 2200
	pinned = 1;

L
Linus Torvalds 已提交
2201
	/*
I
Ingo Molnar 已提交
2202
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2203
	 */
I
Ingo Molnar 已提交
2204 2205 2206
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2207
		goto out;
2208 2209 2210 2211 2212
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2213 2214
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2215
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2216 2217 2218
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2219 2220
	}

I
Ingo Molnar 已提交
2221
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2222
	pulled++;
I
Ingo Molnar 已提交
2223
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2224

2225 2226 2227 2228 2229
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2230 2231
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2232 2233
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2234 2235 2236 2237 2238 2239 2240 2241
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2242 2243 2244

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2245
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2246 2247 2248
	return pulled;
}

I
Ingo Molnar 已提交
2249
/*
P
Peter Williams 已提交
2250 2251 2252
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2253 2254 2255 2256
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2257
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2258 2259 2260 2261
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2262
	unsigned long total_load_moved = 0;
2263
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2264 2265

	do {
P
Peter Williams 已提交
2266 2267 2268
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2269
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2270
		class = class->next;
P
Peter Williams 已提交
2271
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2272

P
Peter Williams 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2287
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2288 2289 2290

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2291 2292
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2293 2294 2295
			return 1;

	return 0;
I
Ingo Molnar 已提交
2296 2297
}

L
Linus Torvalds 已提交
2298 2299
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2300 2301
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2302 2303 2304
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2305 2306
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2307 2308 2309
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2310
	unsigned long max_pull;
2311 2312
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2313
	int load_idx;
2314 2315 2316 2317 2318 2319
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2320 2321

	max_load = this_load = total_load = total_pwr = 0;
2322 2323
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2324
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2325
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2326
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2327 2328 2329
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2330 2331

	do {
2332
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2333 2334
		int local_group;
		int i;
2335
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2336
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2337 2338 2339

		local_group = cpu_isset(this_cpu, group->cpumask);

2340 2341 2342
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2343
		/* Tally up the load of all CPUs in the group */
2344
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2345 2346

		for_each_cpu_mask(i, group->cpumask) {
2347 2348 2349 2350 2351 2352
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2353

2354
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2355 2356
				*sd_idle = 0;

L
Linus Torvalds 已提交
2357
			/* Bias balancing toward cpus of our domain */
2358 2359 2360 2361 2362 2363
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2364
				load = target_load(i, load_idx);
2365
			} else
N
Nick Piggin 已提交
2366
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2367 2368

			avg_load += load;
2369
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2370
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2371 2372
		}

2373 2374 2375
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2376 2377
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2378
		 */
2379 2380
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2381 2382 2383 2384
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2385
		total_load += avg_load;
2386
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2387 2388

		/* Adjust by relative CPU power of the group */
2389 2390
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2391

2392
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2393

L
Linus Torvalds 已提交
2394 2395 2396
		if (local_group) {
			this_load = avg_load;
			this = group;
2397 2398 2399
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2400
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2401 2402
			max_load = avg_load;
			busiest = group;
2403 2404
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2405
		}
2406 2407 2408 2409 2410 2411

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2412 2413 2414
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2415 2416 2417 2418 2419 2420 2421 2422 2423

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2424
		/*
2425 2426
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2427 2428
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2429
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2430
			goto group_next;
2431

I
Ingo Molnar 已提交
2432
		/*
2433
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2434 2435 2436 2437 2438
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2439 2440
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2441 2442
			group_min = group;
			min_nr_running = sum_nr_running;
2443 2444
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2445
		}
2446

I
Ingo Molnar 已提交
2447
		/*
2448
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2460
		}
2461 2462
group_next:
#endif
L
Linus Torvalds 已提交
2463 2464 2465
		group = group->next;
	} while (group != sd->groups);

2466
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2467 2468 2469 2470 2471 2472 2473 2474
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2475
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2499 2500

	/* Don't want to pull so many tasks that a group would go idle */
2501
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2502

L
Linus Torvalds 已提交
2503
	/* How much load to actually move to equalise the imbalance */
2504 2505
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2506 2507
			/ SCHED_LOAD_SCALE;

2508 2509 2510 2511 2512 2513
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2514
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task) {
2515
		unsigned long tmp, pwr_now, pwr_move;
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2527

I
Ingo Molnar 已提交
2528 2529
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2530
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2540 2541 2542 2543
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2544 2545 2546
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2547 2548
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2549
		if (max_load > tmp)
2550
			pwr_move += busiest->__cpu_power *
2551
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2552 2553

		/* Amount of load we'd add */
2554
		if (max_load * busiest->__cpu_power <
2555
				busiest_load_per_task * SCHED_LOAD_SCALE)
2556 2557
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2558
		else
2559 2560 2561 2562
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2569
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574
	}

	return busiest;

out_balanced:
2575
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2576
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2577
		goto ret;
L
Linus Torvalds 已提交
2578

2579 2580 2581 2582 2583
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2584
ret:
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590 2591
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2592
static struct rq *
I
Ingo Molnar 已提交
2593
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2594
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2595
{
2596
	struct rq *busiest = NULL, *rq;
2597
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2598 2599 2600
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2601
		unsigned long wl;
2602 2603 2604 2605

		if (!cpu_isset(i, *cpus))
			continue;

2606
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2607
		wl = weighted_cpuload(i);
2608

I
Ingo Molnar 已提交
2609
		if (rq->nr_running == 1 && wl > imbalance)
2610
			continue;
L
Linus Torvalds 已提交
2611

I
Ingo Molnar 已提交
2612 2613
		if (wl > max_load) {
			max_load = wl;
2614
			busiest = rq;
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620
		}
	}

	return busiest;
}

2621 2622 2623 2624 2625 2626
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2627 2628 2629 2630
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2631
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2632
			struct sched_domain *sd, enum cpu_idle_type idle,
2633
			int *balance)
L
Linus Torvalds 已提交
2634
{
P
Peter Williams 已提交
2635
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2636 2637
	struct sched_group *group;
	unsigned long imbalance;
2638
	struct rq *busiest;
2639
	cpumask_t cpus = CPU_MASK_ALL;
2640
	unsigned long flags;
N
Nick Piggin 已提交
2641

2642 2643 2644
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2645
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2646
	 * portraying it as CPU_NOT_IDLE.
2647
	 */
I
Ingo Molnar 已提交
2648
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2649
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2650
		sd_idle = 1;
L
Linus Torvalds 已提交
2651 2652 2653

	schedstat_inc(sd, lb_cnt[idle]);

2654 2655
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2656 2657
				   &cpus, balance);

2658
	if (*balance == 0)
2659 2660
		goto out_balanced;

L
Linus Torvalds 已提交
2661 2662 2663 2664 2665
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2666
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2667 2668 2669 2670 2671
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2672
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2673 2674 2675

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2676
	ld_moved = 0;
L
Linus Torvalds 已提交
2677 2678 2679 2680
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2681
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2682 2683
		 * correctly treated as an imbalance.
		 */
2684
		local_irq_save(flags);
N
Nick Piggin 已提交
2685
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2686
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2687
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2688
		double_rq_unlock(this_rq, busiest);
2689
		local_irq_restore(flags);
2690

2691 2692 2693
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2694
		if (ld_moved && this_cpu != smp_processor_id())
2695 2696
			resched_cpu(this_cpu);

2697
		/* All tasks on this runqueue were pinned by CPU affinity */
2698 2699 2700 2701
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2702
			goto out_balanced;
2703
		}
L
Linus Torvalds 已提交
2704
	}
2705

P
Peter Williams 已提交
2706
	if (!ld_moved) {
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2712
			spin_lock_irqsave(&busiest->lock, flags);
2713 2714 2715 2716 2717

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2718
				spin_unlock_irqrestore(&busiest->lock, flags);
2719 2720 2721 2722
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2723 2724 2725
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2726
				active_balance = 1;
L
Linus Torvalds 已提交
2727
			}
2728
			spin_unlock_irqrestore(&busiest->lock, flags);
2729
			if (active_balance)
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2736
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2737
		}
2738
	} else
L
Linus Torvalds 已提交
2739 2740
		sd->nr_balance_failed = 0;

2741
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2742 2743
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2744 2745 2746 2747 2748 2749 2750 2751 2752
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2753 2754
	}

P
Peter Williams 已提交
2755
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2756
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2757
		return -1;
P
Peter Williams 已提交
2758
	return ld_moved;
L
Linus Torvalds 已提交
2759 2760 2761 2762

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2763
	sd->nr_balance_failed = 0;
2764 2765

out_one_pinned:
L
Linus Torvalds 已提交
2766
	/* tune up the balancing interval */
2767 2768
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2769 2770
		sd->balance_interval *= 2;

2771
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2772
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2773
		return -1;
L
Linus Torvalds 已提交
2774 2775 2776 2777 2778 2779 2780
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2781
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2782 2783
 * this_rq is locked.
 */
2784
static int
2785
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2786 2787
{
	struct sched_group *group;
2788
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2789
	unsigned long imbalance;
P
Peter Williams 已提交
2790
	int ld_moved = 0;
N
Nick Piggin 已提交
2791
	int sd_idle = 0;
2792
	int all_pinned = 0;
2793
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2794

2795 2796 2797 2798
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2799
	 * portraying it as CPU_NOT_IDLE.
2800 2801 2802
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2803
		sd_idle = 1;
L
Linus Torvalds 已提交
2804

I
Ingo Molnar 已提交
2805
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2806
redo:
I
Ingo Molnar 已提交
2807
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2808
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2809
	if (!group) {
I
Ingo Molnar 已提交
2810
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2811
		goto out_balanced;
L
Linus Torvalds 已提交
2812 2813
	}

I
Ingo Molnar 已提交
2814
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2815
				&cpus);
N
Nick Piggin 已提交
2816
	if (!busiest) {
I
Ingo Molnar 已提交
2817
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2818
		goto out_balanced;
L
Linus Torvalds 已提交
2819 2820
	}

N
Nick Piggin 已提交
2821 2822
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2823
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2824

P
Peter Williams 已提交
2825
	ld_moved = 0;
2826 2827 2828
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2829 2830
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2831
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2832 2833
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2834
		spin_unlock(&busiest->lock);
2835

2836
		if (unlikely(all_pinned)) {
2837 2838 2839 2840
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2841 2842
	}

P
Peter Williams 已提交
2843
	if (!ld_moved) {
I
Ingo Molnar 已提交
2844
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2845 2846
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2847 2848
			return -1;
	} else
2849
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2850

P
Peter Williams 已提交
2851
	return ld_moved;
2852 2853

out_balanced:
I
Ingo Molnar 已提交
2854
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2855
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2856
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2857
		return -1;
2858
	sd->nr_balance_failed = 0;
2859

2860
	return 0;
L
Linus Torvalds 已提交
2861 2862 2863 2864 2865 2866
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2867
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2868 2869
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2870 2871
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2872 2873

	for_each_domain(this_cpu, sd) {
2874 2875 2876 2877 2878 2879
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2880
			/* If we've pulled tasks over stop searching: */
2881
			pulled_task = load_balance_newidle(this_cpu,
2882 2883 2884 2885 2886 2887 2888
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2889
	}
I
Ingo Molnar 已提交
2890
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2891 2892 2893 2894 2895
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2896
	}
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2907
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2908
{
2909
	int target_cpu = busiest_rq->push_cpu;
2910 2911
	struct sched_domain *sd;
	struct rq *target_rq;
2912

2913
	/* Is there any task to move? */
2914 2915 2916 2917
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2918 2919

	/*
2920 2921 2922
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2923
	 */
2924
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2925

2926 2927
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2928 2929
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2930 2931

	/* Search for an sd spanning us and the target CPU. */
2932
	for_each_domain(target_cpu, sd) {
2933
		if ((sd->flags & SD_LOAD_BALANCE) &&
2934
		    cpu_isset(busiest_cpu, sd->span))
2935
				break;
2936
	}
2937

2938 2939
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2940

P
Peter Williams 已提交
2941 2942
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2943 2944 2945 2946
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2947
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2948 2949
}

2950 2951 2952 2953 2954 2955 2956 2957 2958
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2959
/*
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2970
 *
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3027 3028 3029 3030 3031
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3032
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3033
{
3034 3035
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3036 3037
	unsigned long interval;
	struct sched_domain *sd;
3038
	/* Earliest time when we have to do rebalance again */
3039
	unsigned long next_balance = jiffies + 60*HZ;
3040
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3041

3042
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3043 3044 3045 3046
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3047
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052 3053
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3054 3055 3056
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3057

3058 3059 3060 3061 3062
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3063
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3064
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3065 3066
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3067 3068 3069
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3070
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3071
			}
3072
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3073
		}
3074 3075 3076
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3077
		if (time_after(next_balance, sd->last_balance + interval)) {
3078
			next_balance = sd->last_balance + interval;
3079 3080
			update_next_balance = 1;
		}
3081 3082 3083 3084 3085 3086 3087 3088

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3089
	}
3090 3091 3092 3093 3094 3095 3096 3097

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3098 3099 3100 3101 3102 3103 3104 3105 3106
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3107 3108 3109 3110
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3111

I
Ingo Molnar 已提交
3112
	rebalance_domains(this_cpu, idle);
3113 3114 3115 3116 3117 3118 3119

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3120 3121
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3122 3123 3124 3125
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3126
		cpu_clear(this_cpu, cpus);
3127 3128 3129 3130 3131 3132 3133 3134 3135
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3136
			rebalance_domains(balance_cpu, CPU_IDLE);
3137 3138

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3139 3140
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3153
static inline void trigger_load_balance(struct rq *rq, int cpu)
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3205
}
I
Ingo Molnar 已提交
3206 3207 3208

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3209 3210 3211
/*
 * on UP we do not need to balance between CPUs:
 */
3212
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3213 3214
{
}
I
Ingo Molnar 已提交
3215 3216 3217 3218 3219 3220

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3221
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3222 3223 3224 3225 3226 3227
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3228 3229 3230 3231 3232 3233 3234
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3235 3236
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3237
 */
3238
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3239 3240
{
	unsigned long flags;
3241 3242
	u64 ns, delta_exec;
	struct rq *rq;
3243

3244 3245 3246
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3247 3248
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3249 3250 3251 3252
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3253

L
Linus Torvalds 已提交
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3288
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3318
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3341
	struct task_struct *curr = rq->curr;
3342
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3343 3344

	spin_lock(&rq->lock);
3345
	__update_rq_clock(rq);
3346 3347 3348 3349 3350 3351
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3352
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3353 3354 3355
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3356

3357
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3358 3359
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3360
#endif
L
Linus Torvalds 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3370 3371
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3372 3373 3374 3375
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3376 3377
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3378 3379 3380 3381 3382 3383 3384 3385
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3386 3387
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3388 3389 3390
	/*
	 * Is the spinlock portion underflowing?
	 */
3391 3392 3393 3394
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3395 3396 3397 3398 3399 3400 3401
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3402
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3403
 */
I
Ingo Molnar 已提交
3404
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3405
{
I
Ingo Molnar 已提交
3406 3407 3408 3409 3410 3411 3412
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3413

I
Ingo Molnar 已提交
3414 3415 3416 3417 3418
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3419 3420 3421 3422 3423
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3424 3425 3426
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3427 3428
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3429 3430 3431 3432 3433 3434 3435
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3436
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3437 3438 3439
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3440 3441

	/*
I
Ingo Molnar 已提交
3442 3443
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3444
	 */
I
Ingo Molnar 已提交
3445
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3446
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3447 3448
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3449 3450
	}

I
Ingo Molnar 已提交
3451 3452
	class = sched_class_highest;
	for ( ; ; ) {
3453
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3463

I
Ingo Molnar 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3486 3487

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3488
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3489
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3490 3491 3492

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3493
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3494
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3495
		} else {
3496
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3497
		}
I
Ingo Molnar 已提交
3498
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3499 3500
	}

I
Ingo Molnar 已提交
3501
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3502 3503
		idle_balance(cpu, rq);

3504
	prev->sched_class->put_prev_task(rq, prev);
3505
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3506 3507

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3508

L
Linus Torvalds 已提交
3509 3510 3511 3512 3513
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3514
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3515 3516 3517
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3518 3519 3520
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3521
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3522
	}
L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528 3529 3530
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3531
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3546
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3574
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3586
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3616 3617
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3618
{
3619
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3638 3639 3640
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3641
		if (curr->func(curr, mode, sync, key) &&
3642
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3652
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3653 3654
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3655
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3674
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3686 3687
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3731

L
Linus Torvalds 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3850 3851 3852 3853 3854
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3855
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3856
}
L
Linus Torvalds 已提交
3857

I
Ingo Molnar 已提交
3858 3859 3860 3861 3862 3863 3864
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3865

I
Ingo Molnar 已提交
3866
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3867
{
I
Ingo Molnar 已提交
3868 3869 3870 3871
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3872 3873 3874

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3875
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3876
	schedule();
I
Ingo Molnar 已提交
3877
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3878 3879 3880
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3881
long __sched
I
Ingo Molnar 已提交
3882
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3883
{
I
Ingo Molnar 已提交
3884 3885 3886 3887
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3888 3889 3890

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3891
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3892
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3893
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3894 3895 3896 3897 3898

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3899
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3900
{
I
Ingo Molnar 已提交
3901 3902 3903 3904
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3905 3906 3907

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3908
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3909
	schedule();
I
Ingo Molnar 已提交
3910
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3911 3912 3913
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3914
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3915
{
I
Ingo Molnar 已提交
3916 3917 3918 3919
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3920 3921 3922

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3923
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3924
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3925
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3943
void rt_mutex_setprio(struct task_struct *p, int prio)
3944 3945
{
	unsigned long flags;
I
Ingo Molnar 已提交
3946
	int oldprio, on_rq;
3947
	struct rq *rq;
3948 3949 3950 3951

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3952
	update_rq_clock(rq);
3953

3954
	oldprio = p->prio;
I
Ingo Molnar 已提交
3955 3956
	on_rq = p->se.on_rq;
	if (on_rq)
3957
		dequeue_task(rq, p, 0);
I
Ingo Molnar 已提交
3958 3959 3960 3961 3962 3963

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3964 3965
	p->prio = prio;

I
Ingo Molnar 已提交
3966
	if (on_rq) {
3967
		enqueue_task(rq, p, 0);
3968 3969
		/*
		 * Reschedule if we are currently running on this runqueue and
3970 3971
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3972
		 */
3973 3974 3975
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3976 3977 3978
		} else {
			check_preempt_curr(rq, p);
		}
3979 3980 3981 3982 3983 3984
	}
	task_rq_unlock(rq, &flags);
}

#endif

3985
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3986
{
I
Ingo Molnar 已提交
3987
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3988
	unsigned long flags;
3989
	struct rq *rq;
L
Linus Torvalds 已提交
3990 3991 3992 3993 3994 3995 3996 3997

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3998
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3999 4000 4001 4002
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4003
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4004
	 */
4005
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4006 4007 4008
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4009 4010
	on_rq = p->se.on_rq;
	if (on_rq) {
4011
		dequeue_task(rq, p, 0);
4012
		dec_load(rq, p);
4013
	}
L
Linus Torvalds 已提交
4014 4015

	p->static_prio = NICE_TO_PRIO(nice);
4016
	set_load_weight(p);
4017 4018 4019
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4020

I
Ingo Molnar 已提交
4021
	if (on_rq) {
4022
		enqueue_task(rq, p, 0);
4023
		inc_load(rq, p);
L
Linus Torvalds 已提交
4024
		/*
4025 4026
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4027
		 */
4028
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4036 4037 4038 4039 4040
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4041
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4042
{
4043 4044
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4045

M
Matt Mackall 已提交
4046 4047 4048 4049
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4061
	long nice, retval;
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4068 4069
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4079 4080 4081
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4100
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4101 4102 4103 4104 4105 4106 4107 4108
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4109
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4128
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4129 4130 4131 4132 4133 4134 4135 4136
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4137
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4143 4144
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4145
{
I
Ingo Molnar 已提交
4146
	BUG_ON(p->se.on_rq);
4147

L
Linus Torvalds 已提交
4148
	p->policy = policy;
I
Ingo Molnar 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4161
	p->rt_priority = prio;
4162 4163 4164
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4165
	set_load_weight(p);
L
Linus Torvalds 已提交
4166 4167 4168
}

/**
4169
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4170 4171 4172
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4173
 *
4174
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4175
 */
I
Ingo Molnar 已提交
4176 4177
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4178
{
I
Ingo Molnar 已提交
4179
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4180
	unsigned long flags;
4181
	struct rq *rq;
L
Linus Torvalds 已提交
4182

4183 4184
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4185 4186 4187 4188 4189
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4190 4191
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4192
		return -EINVAL;
L
Linus Torvalds 已提交
4193 4194
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4195 4196
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4197 4198
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4199
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4200
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4201
		return -EINVAL;
4202
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4203 4204
		return -EINVAL;

4205 4206 4207 4208
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4209
		if (rt_policy(policy)) {
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4226 4227 4228 4229 4230 4231
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4232

4233 4234 4235 4236 4237
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4238 4239 4240 4241

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4242 4243 4244 4245 4246
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4247 4248 4249 4250
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4251
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4252 4253 4254
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4255 4256
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4257 4258
		goto recheck;
	}
I
Ingo Molnar 已提交
4259
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4260
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4261
	if (on_rq)
4262
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4263
	oldprio = p->prio;
I
Ingo Molnar 已提交
4264 4265 4266
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4267 4268
		/*
		 * Reschedule if we are currently running on this runqueue and
4269 4270
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4271
		 */
4272 4273 4274
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4275 4276 4277
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4278
	}
4279 4280 4281
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4282 4283
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4284 4285 4286 4287
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4288 4289
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4290 4291 4292
{
	struct sched_param lparam;
	struct task_struct *p;
4293
	int retval;
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4299 4300 4301

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4302
	p = find_process_by_pid(pid);
4303 4304 4305
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4306

L
Linus Torvalds 已提交
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4319 4320 4321 4322
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4342
	struct task_struct *p;
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4370
	struct task_struct *p;
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4405 4406
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4407

4408
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4409 4410 4411 4412 4413
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4414
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4431 4432 4433 4434
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4441
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4482
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4483 4484 4485
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4486
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4487 4488
EXPORT_SYMBOL(cpu_online_map);

4489
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4490
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4491 4492 4493 4494
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4495
	struct task_struct *p;
L
Linus Torvalds 已提交
4496 4497
	int retval;

4498
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4499 4500 4501 4502 4503 4504 4505
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4506 4507 4508 4509
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4510
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4511 4512 4513

out_unlock:
	read_unlock(&tasklist_lock);
4514
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4515

4516
	return retval;
L
Linus Torvalds 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4547 4548
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4549 4550 4551
 */
asmlinkage long sys_sched_yield(void)
{
4552
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4553 4554

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4555
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4556
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4557 4558
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4559 4560 4561 4562 4563 4564

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4565
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570 4571 4572 4573
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4574
static void __cond_resched(void)
L
Linus Torvalds 已提交
4575
{
4576 4577 4578
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4579 4580 4581 4582 4583
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4593 4594
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4610
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4611
{
J
Jan Kara 已提交
4612 4613
	int ret = 0;

L
Linus Torvalds 已提交
4614 4615 4616
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4617
		ret = 1;
L
Linus Torvalds 已提交
4618 4619
		spin_lock(lock);
	}
4620
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4621
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4622 4623 4624
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4625
		ret = 1;
L
Linus Torvalds 已提交
4626 4627
		spin_lock(lock);
	}
J
Jan Kara 已提交
4628
	return ret;
L
Linus Torvalds 已提交
4629 4630 4631 4632 4633 4634 4635
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4636
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4637
		local_bh_enable();
L
Linus Torvalds 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4649
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4668
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4669

4670
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4671 4672 4673
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4674
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4675 4676 4677 4678 4679
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4680
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4681 4682
	long ret;

4683
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4684 4685 4686
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4687
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4708
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4709
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4733
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4734
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4751
	struct task_struct *p;
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4768
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4769
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4779
static const char stat_nam[] = "RSDTtZX";
4780 4781

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4782 4783
{
	unsigned long free = 0;
4784
	unsigned state;
L
Linus Torvalds 已提交
4785 4786

	state = p->state ? __ffs(p->state) + 1 : 0;
4787 4788
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4789
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4790
	if (state == TASK_RUNNING)
4791
		printk(" running  ");
L
Linus Torvalds 已提交
4792
	else
4793
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4794 4795
#else
	if (state == TASK_RUNNING)
4796
		printk("  running task    ");
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4802
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4803 4804
		while (!*n)
			n++;
4805
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4806 4807
	}
#endif
4808
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4809 4810 4811 4812 4813

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4814
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4815
{
4816
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4817

4818 4819 4820
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4821
#else
4822 4823
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4824 4825 4826 4827 4828 4829 4830 4831
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4832
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4833
			show_task(p);
L
Linus Torvalds 已提交
4834 4835
	} while_each_thread(g, p);

4836 4837
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4838 4839 4840
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4841
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4842 4843 4844 4845 4846
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4847 4848
}

I
Ingo Molnar 已提交
4849 4850
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4851
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4852 4853
}

4854 4855 4856 4857 4858 4859 4860 4861
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4862
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4863
{
4864
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4865 4866
	unsigned long flags;

I
Ingo Molnar 已提交
4867 4868 4869
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4870
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4871
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4872
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4873 4874 4875

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4876 4877 4878
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4879 4880 4881 4882
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4883
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4884
#else
A
Al Viro 已提交
4885
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4886
#endif
I
Ingo Molnar 已提交
4887 4888 4889 4890
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4914
	const unsigned long limit = 100000000;
I
Ingo Molnar 已提交
4915 4916

	sysctl_sched_granularity *= factor;
4917 4918
	if (sysctl_sched_granularity > limit)
		sysctl_sched_granularity = limit;
I
Ingo Molnar 已提交
4919

4920 4921 4922 4923 4924 4925
	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_runtime_limit = sysctl_sched_latency * 5;
	sysctl_sched_wakeup_granularity = sysctl_sched_latency / 2;
I
Ingo Molnar 已提交
4926 4927
}

L
Linus Torvalds 已提交
4928 4929 4930 4931
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4932
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4954
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4955
{
4956
	struct migration_req req;
L
Linus Torvalds 已提交
4957
	unsigned long flags;
4958
	struct rq *rq;
4959
	int ret = 0;
L
Linus Torvalds 已提交
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4982

L
Linus Torvalds 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4995 4996
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4997
 */
4998
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4999
{
5000
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5001
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5002 5003

	if (unlikely(cpu_is_offline(dest_cpu)))
5004
		return ret;
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5017
	on_rq = p->se.on_rq;
5018
	if (on_rq)
5019
		deactivate_task(rq_src, p, 0);
5020

L
Linus Torvalds 已提交
5021
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5022 5023 5024
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5025
	}
5026
	ret = 1;
L
Linus Torvalds 已提交
5027 5028
out:
	double_rq_unlock(rq_src, rq_dest);
5029
	return ret;
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5037
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5038 5039
{
	int cpu = (long)data;
5040
	struct rq *rq;
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5047
		struct migration_req *req;
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5070
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5071 5072
		list_del_init(head->next);

N
Nick Piggin 已提交
5073 5074 5075
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5094 5095 5096 5097
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5098
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5099
{
5100
	unsigned long flags;
L
Linus Torvalds 已提交
5101
	cpumask_t mask;
5102 5103
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5104

5105
restart:
L
Linus Torvalds 已提交
5106 5107
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5108
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5109 5110 5111 5112
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5113
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5114 5115 5116

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5117 5118 5119
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5120
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5121 5122 5123 5124 5125 5126

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5127
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5128 5129
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5130
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5131
	}
5132
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5133
		goto restart;
L
Linus Torvalds 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5143
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5144
{
5145
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5159
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5160 5161 5162

	write_lock_irq(&tasklist_lock);

5163 5164
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5165 5166
			continue;

5167 5168 5169
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5170 5171 5172 5173

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5174 5175
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5176
 * It does so by boosting its priority to highest possible and adding it to
5177
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5178 5179 5180
 */
void sched_idle_next(void)
{
5181
	int this_cpu = smp_processor_id();
5182
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5183 5184 5185 5186
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5187
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5188

5189 5190 5191
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5192 5193 5194
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5195
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5196 5197

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5198
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5199 5200 5201 5202

	spin_unlock_irqrestore(&rq->lock, flags);
}

5203 5204
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5218
/* called under rq->lock with disabled interrupts */
5219
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5220
{
5221
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5222 5223

	/* Must be exiting, otherwise would be on tasklist. */
5224
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5225 5226

	/* Cannot have done final schedule yet: would have vanished. */
5227
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5228

5229
	get_task_struct(p);
L
Linus Torvalds 已提交
5230 5231 5232 5233 5234

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5235
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5236
	 */
5237
	spin_unlock(&rq->lock);
5238
	move_task_off_dead_cpu(dead_cpu, p);
5239
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5240

5241
	put_task_struct(p);
L
Linus Torvalds 已提交
5242 5243 5244 5245 5246
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5247
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5248
	struct task_struct *next;
5249

I
Ingo Molnar 已提交
5250 5251 5252
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5253
		update_rq_clock(rq);
5254
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5255 5256 5257
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5258

L
Linus Torvalds 已提交
5259 5260 5261 5262
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5263 5264 5265
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5266 5267
	{
		.procname	= "sched_domain",
5268
		.mode		= 0555,
5269
	},
5270 5271 5272 5273
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5274
	{
5275
		.ctl_name	= CTL_KERN,
5276
		.procname	= "kernel",
5277
		.mode		= 0555,
5278 5279
		.child		= sd_ctl_dir,
	},
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5295
set_table_entry(struct ctl_table *entry,
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5311
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5312
		sizeof(long), 0644, proc_doulongvec_minmax);
5313
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5314
		sizeof(long), 0644, proc_doulongvec_minmax);
5315
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5316
		sizeof(int), 0644, proc_dointvec_minmax);
5317
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5318
		sizeof(int), 0644, proc_dointvec_minmax);
5319
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5320
		sizeof(int), 0644, proc_dointvec_minmax);
5321
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5322
		sizeof(int), 0644, proc_dointvec_minmax);
5323
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5324
		sizeof(int), 0644, proc_dointvec_minmax);
5325
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5326
		sizeof(int), 0644, proc_dointvec_minmax);
5327
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5328
		sizeof(int), 0644, proc_dointvec_minmax);
5329
	set_table_entry(&table[10], "cache_nice_tries",
5330 5331
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5332
	set_table_entry(&table[12], "flags", &sd->flags,
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5353
		entry->mode = 0555;
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5373
		entry->mode = 0555;
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5384 5385 5386 5387
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5388 5389
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5390 5391
{
	struct task_struct *p;
5392
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5393
	unsigned long flags;
5394
	struct rq *rq;
L
Linus Torvalds 已提交
5395 5396

	switch (action) {
5397 5398 5399 5400
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5401
	case CPU_UP_PREPARE:
5402
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5403
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5409
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5410 5411 5412
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5413

L
Linus Torvalds 已提交
5414
	case CPU_ONLINE:
5415
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5416 5417 5418
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5419

L
Linus Torvalds 已提交
5420 5421
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5422
	case CPU_UP_CANCELED_FROZEN:
5423 5424
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5425
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5426 5427
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5428 5429 5430
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5431

L
Linus Torvalds 已提交
5432
	case CPU_DEAD:
5433
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5434 5435 5436 5437 5438 5439
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5440
		update_rq_clock(rq);
5441
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5442
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5443 5444
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5445 5446 5447 5448 5449 5450
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5451
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5452 5453 5454
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5455 5456
			struct migration_req *req;

L
Linus Torvalds 已提交
5457
			req = list_entry(rq->migration_queue.next,
5458
					 struct migration_req, list);
L
Linus Torvalds 已提交
5459 5460 5461 5462 5463 5464
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5465 5466 5467
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5468 5469 5470 5471 5472 5473 5474
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5475
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5476 5477 5478 5479 5480 5481 5482
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5483
	int err;
5484 5485

	/* Start one for the boot CPU: */
5486 5487
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5488 5489
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5490

L
Linus Torvalds 已提交
5491 5492 5493 5494 5495
	return 0;
}
#endif

#ifdef CONFIG_SMP
5496 5497 5498 5499 5500

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5501
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5502 5503 5504 5505 5506
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5507 5508 5509 5510 5511
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5531 5532
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5533 5534 5535 5536 5537 5538
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5539 5540
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5541
		if (!cpu_isset(cpu, group->cpumask))
5542 5543
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5556
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5557
				printk("\n");
5558 5559
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5582 5583
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5584 5585 5586

		level++;
		sd = sd->parent;
5587 5588
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5589

5590 5591 5592
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5593 5594 5595 5596

	} while (sd);
}
#else
5597
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5598 5599
#endif

5600
static int sd_degenerate(struct sched_domain *sd)
5601 5602 5603 5604 5605 5606 5607 5608
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5609 5610 5611
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5625 5626
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5645 5646 5647
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5648 5649 5650 5651 5652 5653 5654
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5655 5656 5657 5658
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5659
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5660
{
5661
	struct rq *rq = cpu_rq(cpu);
5662 5663 5664 5665 5666 5667 5668
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5669
		if (sd_parent_degenerate(tmp, parent)) {
5670
			tmp->parent = parent->parent;
5671 5672 5673
			if (parent->parent)
				parent->parent->child = tmp;
		}
5674 5675
	}

5676
	if (sd && sd_degenerate(sd)) {
5677
		sd = sd->parent;
5678 5679 5680
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5681 5682 5683

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5684
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5685 5686 5687
}

/* cpus with isolated domains */
5688
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5706 5707 5708 5709
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5710 5711 5712 5713 5714
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5715
static void
5716 5717 5718
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5719 5720 5721 5722 5723 5724
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5725 5726
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5727 5728 5729 5730 5731 5732
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5733
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5734 5735

		for_each_cpu_mask(j, span) {
5736
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5751
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5752

5753
#ifdef CONFIG_NUMA
5754

5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5807 5808
	cpumask_t span, nodemask;
	int i;
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5819

5820 5821 5822 5823 5824 5825 5826 5827
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5828
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5829

5830
/*
5831
 * SMT sched-domains:
5832
 */
L
Linus Torvalds 已提交
5833 5834
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5835
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5836

5837 5838
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5839
{
5840 5841
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5842 5843 5844 5845
	return cpu;
}
#endif

5846 5847 5848
/*
 * multi-core sched-domains:
 */
5849 5850
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5851
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5852 5853 5854
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5855 5856
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5857
{
5858
	int group;
5859 5860
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5861 5862 5863 5864
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5865 5866
}
#elif defined(CONFIG_SCHED_MC)
5867 5868
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5869
{
5870 5871
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5872 5873 5874 5875
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5876
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5877
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5878

5879 5880
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5881
{
5882
	int group;
5883
#ifdef CONFIG_SCHED_MC
5884
	cpumask_t mask = cpu_coregroup_map(cpu);
5885
	cpus_and(mask, mask, *cpu_map);
5886
	group = first_cpu(mask);
5887
#elif defined(CONFIG_SCHED_SMT)
5888 5889
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5890
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5891
#else
5892
	group = cpu;
L
Linus Torvalds 已提交
5893
#endif
5894 5895 5896
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5897 5898 5899 5900
}

#ifdef CONFIG_NUMA
/*
5901 5902 5903
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5904
 */
5905
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5906
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5907

5908
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5909
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5910

5911 5912
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5913
{
5914 5915 5916 5917 5918 5919 5920 5921 5922
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5923
}
5924

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5945
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5946 5947 5948 5949 5950
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5951 5952
#endif

5953
#ifdef CONFIG_NUMA
5954 5955 5956
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5957
	int cpu, i;
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5988 5989 5990 5991 5992
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5993

5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6020 6021
	sd->groups->__cpu_power = 0;

6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6032
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6033 6034 6035 6036 6037 6038 6039 6040
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6041
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6042 6043 6044 6045
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6046
/*
6047 6048
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6049
 */
6050
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6051 6052
{
	int i;
6053 6054
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6055
	int sd_allnodes = 0;
6056 6057 6058 6059

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6060
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6061
					   GFP_KERNEL);
6062 6063
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6064
		return -ENOMEM;
6065 6066 6067
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6068 6069

	/*
6070
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6071
	 */
6072
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6073 6074 6075
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6076
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6077 6078

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6079 6080
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6081 6082 6083
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6084
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6085
			p = sd;
6086
			sd_allnodes = 1;
6087 6088 6089
		} else
			p = NULL;

L
Linus Torvalds 已提交
6090 6091
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6092 6093
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6094 6095
		if (p)
			p->child = sd;
6096
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101 6102 6103
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6104 6105
		if (p)
			p->child = sd;
6106
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6107

6108 6109 6110 6111 6112 6113 6114
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6115
		p->child = sd;
6116
		cpu_to_core_group(i, cpu_map, &sd->groups);
6117 6118
#endif

L
Linus Torvalds 已提交
6119 6120 6121 6122 6123
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6124
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6125
		sd->parent = p;
6126
		p->child = sd;
6127
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6128 6129 6130 6131 6132
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6133
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6134
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6135
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6136 6137 6138
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6139 6140
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6141 6142 6143
	}
#endif

6144 6145 6146 6147 6148 6149 6150
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6151 6152
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6153 6154 6155
	}
#endif

L
Linus Torvalds 已提交
6156 6157 6158 6159
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6160
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6161 6162 6163
		if (cpus_empty(nodemask))
			continue;

6164
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6165 6166 6167 6168
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6169
	if (sd_allnodes)
I
Ingo Molnar 已提交
6170 6171
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6182 6183
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6184
			continue;
6185
		}
6186 6187 6188 6189

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6190
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6191 6192 6193 6194 6195
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6196 6197 6198
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6199

6200 6201 6202
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6203
		sg->__cpu_power = 0;
6204
		sg->cpumask = nodemask;
6205
		sg->next = sg;
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6224 6225
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6226 6227 6228
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6229
				goto error;
6230
			}
6231
			sg->__cpu_power = 0;
6232
			sg->cpumask = tmp;
6233
			sg->next = prev->next;
6234 6235 6236 6237 6238
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6239 6240 6241
#endif

	/* Calculate CPU power for physical packages and nodes */
6242
#ifdef CONFIG_SCHED_SMT
6243
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6244 6245
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6246
		init_sched_groups_power(i, sd);
6247
	}
L
Linus Torvalds 已提交
6248
#endif
6249
#ifdef CONFIG_SCHED_MC
6250
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6251 6252
		struct sched_domain *sd = &per_cpu(core_domains, i);

6253
		init_sched_groups_power(i, sd);
6254 6255
	}
#endif
6256

6257
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6258 6259
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6260
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6261 6262
	}

6263
#ifdef CONFIG_NUMA
6264 6265
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6266

6267 6268
	if (sd_allnodes) {
		struct sched_group *sg;
6269

6270
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6271 6272
		init_numa_sched_groups_power(sg);
	}
6273 6274
#endif

L
Linus Torvalds 已提交
6275
	/* Attach the domains */
6276
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6277 6278 6279
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6280 6281
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6282 6283 6284 6285 6286
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6287 6288 6289

	return 0;

6290
#ifdef CONFIG_NUMA
6291 6292 6293
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6294
#endif
L
Linus Torvalds 已提交
6295
}
6296 6297 6298
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6299
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6300 6301
{
	cpumask_t cpu_default_map;
6302
	int err;
L
Linus Torvalds 已提交
6303

6304 6305 6306 6307 6308 6309 6310
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6311 6312 6313
	err = build_sched_domains(&cpu_default_map);

	return err;
6314 6315 6316
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6317
{
6318
	free_sched_groups(cpu_map);
6319
}
L
Linus Torvalds 已提交
6320

6321 6322 6323 6324
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6325
static void detach_destroy_domains(const cpumask_t *cpu_map)
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6343
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6344 6345
{
	cpumask_t change_map;
6346
	int err = 0;
6347 6348 6349 6350 6351 6352 6353 6354

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6355 6356 6357 6358 6359
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6360 6361
}

6362
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6363
static int arch_reinit_sched_domains(void)
6364 6365 6366
{
	int err;

6367
	mutex_lock(&sched_hotcpu_mutex);
6368 6369
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6370
	mutex_unlock(&sched_hotcpu_mutex);
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6397 6398
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6399 6400 6401
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6402 6403
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6404 6405 6406 6407 6408 6409 6410
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6411 6412
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6413 6414 6415
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6436 6437
#endif

L
Linus Torvalds 已提交
6438 6439 6440
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6441
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6442 6443 6444 6445 6446 6447 6448
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6449
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6450
	case CPU_DOWN_PREPARE:
6451
	case CPU_DOWN_PREPARE_FROZEN:
6452
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6453 6454 6455
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6456
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6457
	case CPU_DOWN_FAILED:
6458
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6459
	case CPU_ONLINE:
6460
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6461
	case CPU_DEAD:
6462
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6463 6464 6465 6466 6467 6468 6469 6470 6471
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6472
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6473 6474 6475 6476 6477 6478

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6479 6480
	cpumask_t non_isolated_cpus;

6481
	mutex_lock(&sched_hotcpu_mutex);
6482
	arch_init_sched_domains(&cpu_online_map);
6483
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6484 6485
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6486
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6487 6488
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6489

6490 6491
	init_sched_domain_sysctl();

6492 6493 6494
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6495
	sched_init_granularity();
L
Linus Torvalds 已提交
6496 6497 6498 6499
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6500
	sched_init_granularity();
L
Linus Torvalds 已提交
6501 6502 6503 6504 6505 6506 6507
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6508

L
Linus Torvalds 已提交
6509 6510 6511 6512 6513
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6523 6524
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6525
	u64 now = sched_clock();
6526
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6527 6528 6529 6530 6531 6532 6533 6534
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6535

6536
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6537
		struct rt_prio_array *array;
6538
		struct rq *rq;
L
Linus Torvalds 已提交
6539 6540 6541

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6542
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6543
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6544 6545 6546 6547 6548 6549 6550 6551
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6552

I
Ingo Molnar 已提交
6553 6554
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6555
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6556
		rq->sd = NULL;
L
Linus Torvalds 已提交
6557
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6558
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6559
		rq->push_cpu = 0;
6560
		rq->cpu = i;
L
Linus Torvalds 已提交
6561 6562 6563 6564 6565
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6566 6567 6568 6569
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6570
		}
6571
		highest_cpu = i;
I
Ingo Molnar 已提交
6572 6573
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6574 6575
	}

6576
	set_load_weight(&init_task);
6577

6578 6579 6580 6581
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6582
#ifdef CONFIG_SMP
6583
	nr_cpu_ids = highest_cpu + 1;
6584 6585 6586
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6587 6588 6589 6590
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6604 6605 6606 6607
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6608 6609 6610 6611 6612
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6613
#ifdef in_atomic
L
Linus Torvalds 已提交
6614 6615 6616 6617 6618 6619 6620
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6621
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6622 6623 6624
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6625
		debug_show_held_locks(current);
6626 6627
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6638
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6639
	unsigned long flags;
6640
	struct rq *rq;
I
Ingo Molnar 已提交
6641
	int on_rq;
L
Linus Torvalds 已提交
6642 6643

	read_lock_irq(&tasklist_lock);
6644
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6645 6646
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6647
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6648
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6649 6650
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6651 6652 6653
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6654
#endif
I
Ingo Molnar 已提交
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6665
			continue;
I
Ingo Molnar 已提交
6666
		}
L
Linus Torvalds 已提交
6667

6668 6669
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6670 6671 6672 6673 6674 6675 6676
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6677

I
Ingo Molnar 已提交
6678
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6679
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6680 6681
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6682 6683
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6684
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6685 6686
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6687 6688 6689
#ifdef CONFIG_SMP
 out_unlock:
#endif
6690 6691
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6692 6693
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6694 6695 6696 6697
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6716
struct task_struct *curr_task(int cpu)
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6736
void set_curr_task(int cpu, struct task_struct *p)
6737 6738 6739 6740 6741
{
	cpu_curr(cpu) = p;
}

#endif