wide_deep.py 38.1 KB
Newer Older
1
import numpy as np
2
import os
3
import warnings
4
import torch
5 6 7
import torch.nn as nn
import torch.nn.functional as F

8 9 10 11 12 13 14 15 16 17 18
from ..wdtypes import *

from ..initializers import Initializer, MultipleInitializer
from ..callbacks import Callback, History, CallbackContainer
from ..metrics import Metric, MultipleMetrics, MetricCallback
from ..losses import FocalLoss

from ._wd_dataset import WideDeepDataset
from ._multiple_optimizer import MultipleOptimizer
from ._multiple_lr_scheduler import MultipleLRScheduler
from ._multiple_transforms import MultipleTransforms
19
from ._wdmodel_type import WDModel
20
from ._warmup import WarmUp
21
from .deep_dense import dense_layer
22

23 24
from tqdm import tqdm,trange
from sklearn.model_selection import train_test_split
25
from torch.utils.data import DataLoader
26

27
n_cpus = os.cpu_count()
28 29
use_cuda = torch.cuda.is_available()

30
import pdb
31 32

class WideDeep(nn.Module):
33 34 35 36 37 38 39 40 41
    r""" Main collector class to combine all Wide, DeepDense, DeepText and
    DeepImage models. There are two options to combine these models.
    1) Directly connecting the output of the models to an ouput neuron(s).
    2) Adding a FC-Head on top of the deep models. This FC-Head will combine
    the output form the DeepDense, DeepText and DeepImage and will be then
    connected to the output neuron(s)

    Parameters
    ----------
42 43 44 45 46 47
    wide: nn.Module
        Wide model. I recommend using the Wide class in this package. However,
        can a custom model as long as is  consistent with the required
        architecture.
    deepdense: nn.Module
        'Deep dense' model consisting in a series of categorical features
48 49 50 51
        represented by embeddings combined with numerical (aka continuous)
        features. I recommend using the DeepDense class in this package.
        However, a custom model as long as is  consistent with the required
        architecture.
52 53
    deeptext: nn.Module, Optional
        'Deep text' model for the text input. Must be an object of class
54 55
        DeepText or a custom model as long as is consistent with the required
        architecture.
56 57
    deepimage: nn.Module, Optional
        'Deep Image' model for the images input. Must be an object of class
58 59
        DeepImage or a custom model as long as is consistent with the required
        architecture.
60 61 62 63 64 65 66 67 68 69 70 71
    deephead: nn.Module, Optional
        Dense model consisting in a stack of dense layers. The FC-Head
    head_layers: List, Optional
        Sizes of the stacked dense layers in the fc-head e.g: [128, 64]
    head_dropout: List, Optional
        Dropout between the dense layers. e.g: [0.5, 0.5]
    head_batchnorm: Boolean, Optional
        Whether or not to include batch normalizatin in the dense layers that
        form the texthead
    output_dim: Int
        Size of the final layer. 1 for regression and binary classification or
        'n_class' for multiclass classification
72 73 74

    ** While I recommend using the Wide and DeepDense classes within this
    package when building the corresponding model components, it is very likely
75 76 77 78 79 80
    that the user will want to use custom text and image models. That is perfectly
    possible. Simply, build them and pass them as the corresponding parameters.
    Note that the custom models MUST return a last layer of activations (i.e. not
    the final prediction) so that  these activations are collected by WideDeep and
    combined accordingly. In  addition, the models MUST also contain an attribute
    'output_dim' with the size of these last layers of activations.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    Example
    --------
    >>> import torch
    >>> from pytorch_widedeep.models import Wide, DeepDense, DeepText, DeepImage, WideDeep
    >>>
    >>> X_wide = torch.empty(5, 5).random_(2)
    >>> wide = Wide(wide_dim=X_wide.size(0), output_dim=1)
    >>>
    >>> X_deep = torch.cat((torch.empty(5, 4).random_(4), torch.rand(5, 1)), axis=1)
    >>> colnames = ['a', 'b', 'c', 'd', 'e']
    >>> embed_input = [(u,i,j) for u,i,j in zip(colnames[:4], [4]*4, [8]*4)]
    >>> deep_column_idx = {k:v for v,k in enumerate(colnames)}
    >>> deepdense = DeepDense(hidden_layers=[8,4], deep_column_idx=deep_column_idx, embed_input=embed_input)
    >>>
    >>> X_text = torch.cat((torch.zeros([5,1]), torch.empty(5, 4).random_(1,4)), axis=1)
    >>> deeptext = DeepText(vocab_size=4, hidden_dim=4, n_layers=1, padding_idx=0, embed_dim=4)
    >>>
    >>> X_img = torch.rand((5,3,224,224))
    >>> deepimage = DeepImage(head_layers=[512, 64, 8])
    >>>
    >>> model = WideDeep(wide=wide, deepdense=deepdense, deeptext=deeptext, deepimage=deepimage, output_dim=1)
    >>> input_dict = {'wide':X_wide, 'deepdense':X_deep, 'deeptext':X_text, 'deepimage':X_img}
    >>> model(X=input_dict)
    tensor([[-0.3779],
            [-0.5247],
            [-0.2773],
            [-0.2888],
            [-0.2010]], grad_fn=<AddBackward0>)
    """
111
    def __init__(self,
112 113
        wide:nn.Module,
        deepdense:nn.Module,
114
        output_dim:int=1,
115
        deeptext:Optional[nn.Module]=None,
116 117 118 119 120
        deepimage:Optional[nn.Module]=None,
        deephead:Optional[nn.Module]=None,
        head_layers:Optional[List]=None,
        head_dropout:Optional[List]=None,
        head_batchnorm:Optional[bool]=None):
121

122
        super(WideDeep, self).__init__()
123 124

        # The main 5 components of the wide and deep assemble
125 126 127 128
        self.wide = wide
        self.deepdense = deepdense
        self.deeptext  = deeptext
        self.deepimage = deepimage
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        self.deephead = deephead

        if self.deephead is None:
            if head_layers is not None:
                input_dim = self.deepdense.output_dim + self.deeptext.output_dim + self.deepimage.output_dim
                head_layers = [input_dim] + head_layers
                if not head_dropout: head_dropout = [0.] * (len(head_layers)-1)
                self.deephead = nn.Sequential()
                for i in range(1, len(head_layers)):
                    self.deephead.add_module(
                        'head_layer_{}'.format(i-1),
                        dense_layer( head_layers[i-1], head_layers[i], head_dropout[i-1], head_batchnorm))
                self.deephead.add_module('head_out', nn.Linear(head_layers[-1], output_dim))
            else:
                self.deepdense = nn.Sequential(
                    self.deepdense,
                    nn.Linear(self.deepdense.output_dim, output_dim))
                if self.deeptext is not None:
                    self.deeptext = nn.Sequential(
                        self.deeptext,
                        nn.Linear(self.deeptext.output_dim, output_dim))
                if self.deepimage is not None:
                    self.deepimage = nn.Sequential(
                        self.deepimage,
                        nn.Linear(self.deepimage.output_dim, output_dim))
154

155
    def forward(self, X:List[Dict[str,Tensor]])->Tensor:
156 157 158
        r"""
        Parameters
        ----------
159
        X: List
160 161 162
            List of Dict where the keys are the model names ('wide',
            'deepdense', 'deeptext' and 'deepimage') and the values are the
            corresponding Tensors
163
        """
164
        # Wide output: direct connection to the output neuron(s)
165
        out = self.wide(X['wide'])
166 167 168 169 170 171 172 173 174

        # Deep output: either connected directly to the output neuron(s) or
        # passed through a head first
        if self.deephead:
            deepside = self.deepdense(X['deepdense'])
            if self.deeptext is not None:
                deepside = torch.cat( [deepside, self.deeptext(X['deeptext'])], axis=1 )
            if self.deepimage is not None:
                deepside = torch.cat( [deepside, self.deepimage(X['deepimage'])], axis=1 )
175
            deepside_out = self.deephead(deepside)
176 177 178 179 180 181 182 183 184 185 186
            return out.add_(deepside_out)
        else:
            out.add_(self.deepdense(X['deepdense']))
            if self.deeptext is not None:
                out.add_(self.deeptext(X['deeptext']))
            if self.deepimage is not None:
                out.add_(self.deepimage(X['deepimage']))
            return out

    def compile(self,
        method:str,
187
        optimizers:Optional[Union[Optimizer,Dict[str,Optimizer]]]=None,
188
        lr_schedulers:Optional[Union[LRScheduler,Dict[str,LRScheduler]]]=None,
189 190 191 192 193
        initializers:Optional[Dict[str,Initializer]]=None,
        transforms:Optional[List[Transforms]]=None,
        callbacks:Optional[List[Callback]]=None,
        metrics:Optional[List[Metric]]=None,
        class_weight:Optional[Union[float,List[float],Tuple[float]]]=None,
194 195
        with_focal_loss:bool=False,
        alpha:float=0.25,
196
        gamma:float=2,
197 198
        verbose:int=1,
        seed:int=1):
199
        r"""
200 201
        Function to set a number of attributes that will be used during the
        training process.
202 203 204

        Parameters
        ----------
205
        method: Str
206
            One of ('regression', 'binary' or 'multiclass')
207
        optimizers: Optimizer, Dict. Optional, Default=AdamW
208
            Either an optimizers object (e.g. torch.optim.Adam()) or a
209 210 211 212
            dictionary where there keys are the model's children (i.e. 'wide',
            'deepdense', 'deeptext', 'deepimage' and/or 'deephead')  and the
            values are the corresponding optimizers. If multiple optimizers
            are used the  dictionary MUST contain an optimizer per child.
213 214
        lr_schedulers: LRScheduler, Dict. Optional. Default=None
            Either a LRScheduler object (e.g
215 216 217
            torch.optim.lr_scheduler.StepLR(opt, step_size=5)) or dictionary
            where there keys are the model's children (i.e. 'wide', 'deepdense',
            'deeptext', 'deepimage' and/or 'deephead') and the values are the
218
            corresponding learning rate schedulers.
219
        initializers: Dict, Optional. Default=None
220 221 222
            Dict where there keys are the model's children (i.e. 'wide',
            'deepdense', 'deeptext', 'deepimage' and/or 'deephead') and the
            values are the corresponding initializers.
223 224
        transforms: List, Optional. Default=None
            List with torchvision.transforms to be applied to the image
225
            component of the model (i.e. 'deepimage')
226 227 228 229 230 231 232 233 234 235 236 237 238
        callbacks: List, Optional. Default=None
            Callbacks available are: ModelCheckpoint, EarlyStopping, and
            LRHistory. The History callback is used by default.
        metrics: List, Optional. Default=None
            Metrics available are: BinaryAccuracy and CategoricalAccuracy
        class_weight: List, Tuple, Float. Optional. Default=None
            Can be one of: float indicating the weight of the minority class
            in binary classification problems (e.g. 9.) or a list or tuple
            with weights for the different classes in multiclass
            classification problems  (e.g. [1., 2., 3.]). The weights do not
            neccesarily need to be normalised. If your loss function uses
            reduction='mean', the loss will be normalized by the sum of the
            corresponding weights for each element. If you are using
239 240 241
            reduction='none', you would have to take care of the normalization
            yourself. See here:
            https://discuss.pytorch.org/t/passing-the-weights-to-crossentropyloss-correctly/14731/10
242 243 244 245 246 247
        with_focal_loss: Boolean, Optional. Default=False
            Whether or not to use the Focal Loss. https://arxiv.org/pdf/1708.02002.pdf
        alpha, gamma: Float. Default=0.25, 2
            Focal Loss parameters. See: https://arxiv.org/pdf/1708.02002.pdf
        verbose: Int
            Setting it to 0 will print nothing during training.
248 249
        seed: Int, Default=1
            Random seed to be used throughout all the methods
250 251 252 253 254

        Attributes
        ----------
        Attributes that are not direct assignations of parameters

255
        self.cyclic: Boolean
256 257
            Indicates if any of the lr_schedulers is cyclic (i.e. CyclicLR or
            OneCycleLR)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

        Example
        --------
        Assuming you have already built the model components (wide, deepdense, etc...)

        >>> from pytorch_widedeep.models import WideDeep
        >>> from pytorch_widedeep.initializers import *
        >>> from pytorch_widedeep.callbacks import *
        >>> from pytorch_widedeep.optim import RAdam
        >>> model = WideDeep(wide=wide, deepdense=deepdense, deeptext=deeptext, deepimage=deepimage)
        >>> wide_opt = torch.optim.Adam(model.wide.parameters())
        >>> deep_opt = torch.optim.Adam(model.deepdense.parameters())
        >>> text_opt = RAdam(model.deeptext.parameters())
        >>> img_opt  = RAdam(model.deepimage.parameters())
        >>> wide_sch = torch.optim.lr_scheduler.StepLR(wide_opt, step_size=5)
        >>> deep_sch = torch.optim.lr_scheduler.StepLR(deep_opt, step_size=3)
        >>> text_sch = torch.optim.lr_scheduler.StepLR(text_opt, step_size=5)
        >>> img_sch  = torch.optim.lr_scheduler.StepLR(img_opt, step_size=3)
        >>> optimizers = {'wide': wide_opt, 'deepdense':deep_opt, 'deeptext':text_opt, 'deepimage': img_opt}
        >>> schedulers = {'wide': wide_sch, 'deepdense':deep_sch, 'deeptext':text_sch, 'deepimage': img_sch}
        >>> initializers = {'wide': Uniform, 'deepdense':Normal, 'deeptext':KaimingNormal,
        >>> ... 'deepimage':KaimingUniform}
        >>> transforms = [ToTensor, Normalize(mean=mean, std=std)]
        >>> callbacks = [LRHistory, EarlyStopping, ModelCheckpoint(filepath='model_weights/wd_out.pt')]
        >>> model.compile(method='regression', initializers=initializers, optimizers=optimizers,
        >>> ... lr_schedulers=schedulers, callbacks=callbacks, transforms=transforms)
        """
285
        self.verbose = verbose
286
        self.seed = seed
287
        self.early_stop = False
288
        self.method = method
289
        self.with_focal_loss = with_focal_loss
290
        if self.with_focal_loss: self.alpha, self.gamma = alpha, gamma
291

292
        if isinstance(class_weight, float):
293
            self.class_weight = torch.tensor([1.-class_weight, class_weight])
294 295 296 297
        elif isinstance(class_weight, (List, Tuple)):
            self.class_weight =  torch.tensor(class_weight)
        else:
            self.class_weight = None
298 299

        if initializers is not None:
300
            self.initializer = MultipleInitializer(initializers, verbose=self.verbose)
301 302
            self.initializer.apply(self)

303 304 305 306 307 308 309 310
        if optimizers is not None:
            if isinstance(optimizers, Optimizer):
                self.optimizer = optimizers
            elif len(optimizers)>1:
                opt_names = list(optimizers.keys())
                mod_names = [n  for n, c in self.named_children()]
                for mn in mod_names: assert mn in opt_names, "No optimizer found for {}".format(mn)
                self.optimizer = MultipleOptimizer(optimizers)
311
        else:
312
            self.optimizer = torch.optim.AdamW(self.parameters())
313

314 315 316 317 318 319 320 321
        if lr_schedulers is not None:
            if isinstance(lr_schedulers, LRScheduler):
                self.lr_scheduler = lr_schedulers
                self.cyclic = 'cycl' in self.lr_scheduler.__class__.__name__.lower()
            elif len(lr_schedulers) > 1:
                self.lr_scheduler = MultipleLRScheduler(lr_schedulers)
                scheduler_names = [sc.__class__.__name__.lower() for _,sc in self.lr_scheduler._schedulers.items()]
                self.cyclic = any(['cycl' in sn for sn in scheduler_names])
322
        else:
323
            self.lr_scheduler, self.cyclic = None, False
324

325 326 327 328 329
        if transforms is not None:
            self.transforms = MultipleTransforms(transforms)()
        else:
            self.transforms = None

330
        self.history = History()
331 332
        self.callbacks = [self.history]
        if callbacks is not None:
333 334 335
            for callback in callbacks:
                if isinstance(callback, type): callback = callback()
                self.callbacks.append(callback)
336 337 338

        if metrics is not None:
            self.metric = MultipleMetrics(metrics)
339
            self.callbacks += [MetricCallback(self.metric)]
340 341
        else:
            self.metric = None
342

343 344
        self.callback_container = CallbackContainer(self.callbacks)
        self.callback_container.set_model(self)
345

346
        if use_cuda: self.cuda()
J
jrzaurin 已提交
347

348 349 350 351 352
    def fit(self,
        X_wide:Optional[np.ndarray]=None,
        X_deep:Optional[np.ndarray]=None,
        X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None,
353 354
        X_train:Optional[Dict[str,np.ndarray]]=None,
        X_val:Optional[Dict[str,np.ndarray]]=None,
355 356 357
        val_split:Optional[float]=None,
        target:Optional[np.ndarray]=None,
        n_epochs:int=1,
358
        validation_freq:int=1,
359 360
        batch_size:int=32,
        patience:int=10,
361 362
        warm_up:bool=False,
        warm_epochs:int=4,
363 364 365 366 367 368 369 370
        warm_max_lr:float=0.01,
        warm_deeptext_gradual:bool=False,
        warm_deeptext_max_lr:float=0.01,
        warm_deeptext_layers:Optional[List[nn.Module]]=None,
        warm_deepimage_gradual:bool=False,
        warm_deepimage_max_lr:float=0.01,
        warm_deepimage_layers:Optional[List[nn.Module]]=None,
        warm_routine:str='felbo'):
371 372 373 374 375
        r"""
        fit method that must run after calling 'compile'

        Parameters
        ----------
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        X_wide: np.ndarray, Optional. Default=None
            One hot encoded wide input.
        X_deep: np.ndarray, Optional. Default=None
            Input for the deepdense model
        X_text: np.ndarray, Optional. Default=None
            Input for the deeptext model
        X_img : np.ndarray, Optional. Default=None
            Input for the deepimage model
        X_train: Dict, Optional. Default=None
            Training dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_train = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
        X_val: Dict, Optional. Default=None
            Validation dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_val = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
        val_split: Float, Optional. Default=None
            train/val split
        target: np.ndarray, Optional. Default=None
            target values
        n_epochs: Int, Default=1
        validation_freq: Int, Default=1
        batch_size: Int, Default=32
        patience: Int, Default=10
            Number of epochs without improving the target metric before we
            stop the fit
404
        warm_up: Boolean, Default=False
405
            Warm up the models individually before starting the joined training
406 407 408 409 410
        warm_epochs: Int, Default=4
            Number of warm up epochs
        warm_max_lr: Float, Default=0.01
            Warming up will happen using a slanted triangular learning rates
            (https://arxiv.org/pdf/1801.06146.pdf). warm_max_lr indicates the
411 412
            maximum learning rate that will be used during the cycle. The
            minimum (base_lr) learning rate is warm_max_lr/10.
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

        **WideDeep assumes that X_wide, X_deep and target ALWAYS exist, while
        X_text and X_img are optional
        **Either X_train or X_wide, X_deep and target must be passed to the
        fit method

        Example
        --------
        Assuming you have already built and compiled the model

        Ex 1. using train input arrays directly and no validation
        >>> model.fit(X_wide=X_wide, X_deep=X_deep, target=target, n_epochs=10, batch_size=256)

        Ex 2: using train input arrays directly and validation with val_split
        >>> model.fit(X_wide=X_wide, X_deep=X_deep, target=target, n_epochs=10, batch_size=256, val_split=0.2)

        Ex 3: using train dict and val_split
        >>> X_train = {'X_wide': X_wide, 'X_deep': X_deep, 'target': y}
        >>> model.fit(X_train, n_epochs=10, batch_size=256, val_split=0.2)

        Ex 4: validation using training and validation dicts
        >>> X_train = {'X_wide': X_wide_tr, 'X_deep': X_deep_tr, 'target': y_tr}
        >>> X_val = {'X_wide': X_wide_val, 'X_deep': X_deep_val, 'target': y_val}
        >>> model.fit(X_train=X_train, X_val=X_val n_epochs=10, batch_size=256)
        """
438 439 440

        if X_train is None and (X_wide is None or X_deep is None or target is None):
            raise ValueError(
441 442
                "Training data is missing. Either a dictionary (X_train) with "
                "the training dataset or at least 3 arrays (X_wide, X_deep, "
443
                "target) must be passed to the fit method")
444 445

        self.batch_size = batch_size
446
        train_set, eval_set = self._train_val_split(X_wide, X_deep, X_text, X_img,
447
            X_train, X_val, val_split, target)
448
        train_loader = DataLoader(dataset=train_set, batch_size=batch_size, num_workers=n_cpus)
449 450 451 452 453
        if warm_up:
            # warm up...
            self._warm_up(train_loader, warm_epochs, warm_max_lr, warm_deeptext_gradual,
                warm_deeptext_layers, warm_deeptext_max_lr, warm_deepimage_gradual,
                warm_deepimage_layers, warm_deepimage_max_lr, warm_routine)
454
        train_steps =  len(train_loader)
455 456
        self.callback_container.on_train_begin({'batch_size': batch_size,
            'train_steps': train_steps, 'n_epochs': n_epochs})
457
        if self.verbose: print('Training')
458
        for epoch in range(n_epochs):
459
            # train step...
460 461
            epoch_logs={}
            self.callback_container.on_epoch_begin(epoch, logs=epoch_logs)
462
            self.train_running_loss = 0.
463
            with trange(train_steps, disable=self.verbose != 1) as t:
464
                for batch_idx, (data,target) in zip(t, train_loader):
465
                    t.set_description('epoch %i' % (epoch+1))
466
                    acc, train_loss = self._training_step(data, target, batch_idx)
467 468
                    if acc is not None:
                        t.set_postfix(metrics=acc, loss=train_loss)
469
                    else:
470
                        t.set_postfix(loss=np.sqrt(train_loss))
471 472
                    if self.lr_scheduler: self._lr_scheduler_step(step_location='on_batch_end')
                    self.callback_container.on_batch_end(batch=batch_idx)
473
            epoch_logs['train_loss'] = train_loss
474
            if acc is not None: epoch_logs['train_acc'] = acc['acc']
475
            # eval step...
476 477
            if epoch % validation_freq  == (validation_freq - 1):
                if eval_set is not None:
478
                    eval_loader = DataLoader(dataset=eval_set, batch_size=batch_size, num_workers=n_cpus,
479
                        shuffle=False)
480
                    eval_steps =  len(eval_loader)
481 482 483 484 485 486 487 488 489 490 491
                    self.valid_running_loss = 0.
                    with trange(eval_steps, disable=self.verbose != 1) as v:
                        for i, (data,target) in zip(v, eval_loader):
                            v.set_description('valid')
                            acc, val_loss = self._validation_step(data, target, i)
                            if acc is not None:
                                v.set_postfix(metrics=acc, loss=val_loss)
                            else:
                                v.set_postfix(loss=np.sqrt(val_loss))
                    epoch_logs['val_loss'] = val_loss
                    if acc is not None: epoch_logs['val_acc'] = acc['acc']
492 493 494
            if self.lr_scheduler: self._lr_scheduler_step(step_location='on_epoch_end')
            # log and check if early_stop...
            self.callback_container.on_epoch_end(epoch, epoch_logs)
495
            if self.early_stop:
496
                self.callback_container.on_train_end(epoch)
497
                break
498
            self.callback_container.on_train_end(epoch)
499 500 501
        self.train()

    def predict(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
502
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->np.ndarray:
503 504 505 506 507
        r"""
        fit method that must run after calling 'compile'

        Parameters
        ----------
508 509 510 511 512 513 514 515 516 517 518 519 520
        X_wide: np.ndarray, Optional. Default=None
            One hot encoded wide input.
        X_deep: np.ndarray, Optional. Default=None
            Input for the deepdense model
        X_text: np.ndarray, Optional. Default=None
            Input for the deeptext model
        X_img : np.ndarray, Optional. Default=None
            Input for the deepimage model
        X_test: Dict, Optional. Default=None
            Testing dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_train = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
521 522 523 524 525 526 527 528

        **WideDeep assumes that X_wide, X_deep and target ALWAYS exist, while
        X_text and X_img are optional

        Returns
        -------
        preds: np.array with the predicted target for the test dataset.
        """
529
        preds_l = self._predict(X_wide, X_deep, X_text, X_img, X_test)
530 531 532 533 534 535 536 537
        if self.method == "regression":
            return np.vstack(preds_l).squeeze(1)
        if self.method == "binary":
            preds = np.vstack(preds_l).squeeze(1)
            return (preds > 0.5).astype('int')
        if self.method == "multiclass":
            preds = np.vstack(preds_l)
            return np.argmax(preds, 1)
538

539 540
    def predict_proba(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->np.ndarray:
541
        r"""
542 543
        Returns
        -------
544 545 546
        preds: np.ndarray
            Predicted probabilities of target for the test dataset for  binary
            and multiclass methods
547
        """
548
        preds_l = self._predict(X_wide, X_deep, X_text, X_img, X_test)
549 550 551 552 553 554 555 556
        if self.method == "binary":
            preds = np.vstack(preds_l).squeeze(1)
            probs = np.zeros([preds.shape[0],2])
            probs[:,0] = 1-preds
            probs[:,1] = preds
            return probs
        if self.method == "multiclass":
            return np.vstack(preds_l)
557

558
    def get_embeddings(self, col_name:str,
559
        cat_encoding_dict:Dict[str,Dict[str,int]]) -> Dict[str,np.ndarray]:
560
        r"""
561 562 563 564
        Get the learned embeddings for the categorical features passed through deepdense.

        Parameters
        ----------
565 566 567 568 569 570
        col_name: str,
            Column name of the feature we want to get the embeddings for
        cat_encoding_dict: Dict
            Categorical encodings. The function is designed to take the
            'encoding_dict' attribute from the DeepPreprocessor class. Any
            Dict with the same structure can be used
571 572 573

        Returns
        -------
574 575 576
        cat_embed_dict: Dict
            Categorical levels of the col_name feature and the corresponding
            embeddings
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

        Example:
        -------
        Assuming we have already train the model:

        >>> model.get_embeddings(col_name='education', cat_encoding_dict=deep_preprocessor.encoding_dict)
        {'11th': array([-0.42739448, -0.22282735,  0.36969638,  0.4445322 ,  0.2562272 ,
        0.11572784, -0.01648579,  0.09027119,  0.0457597 , -0.28337458], dtype=float32),
         'HS-grad': array([-0.10600474, -0.48775527,  0.3444158 ,  0.13818645, -0.16547225,
        0.27409762, -0.05006042, -0.0668492 , -0.11047247,  0.3280354 ], dtype=float32),
        ...
        }

        where:

        >>> deep_preprocessor.encoding_dict['education']
        {'11th': 0, 'HS-grad': 1, 'Assoc-acdm': 2, 'Some-college': 3, '10th': 4, 'Prof-school': 5,
        '7th-8th': 6, 'Bachelors': 7, 'Masters': 8, 'Doctorate': 9, '5th-6th': 10, 'Assoc-voc': 11,
        '9th': 12, '12th': 13, '1st-4th': 14, 'Preschool': 15}
        """
597 598 599 600 601 602 603 604
        for n,p in self.named_parameters():
            if 'embed_layers' in n and col_name in n:
                embed_mtx = p.cpu().data.numpy()
        encoding_dict = cat_encoding_dict[col_name]
        inv_encoding_dict = {v:k for k,v in encoding_dict.items()}
        cat_embed_dict = {}
        for idx,value in inv_encoding_dict.items():
            cat_embed_dict[value] = embed_mtx[idx]
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
        return cat_embed_dict

    def _activation_fn(self, inp:Tensor) -> Tensor:
        if self.method == 'regression':
            return inp
        if self.method == 'binary':
            return torch.sigmoid(inp)
        if self.method == 'multiclass':
            return F.softmax(inp, dim=1)

    def _loss_fn(self, y_pred:Tensor, y_true:Tensor) -> Tensor:
        if self.with_focal_loss:
            return FocalLoss(self.alpha, self.gamma)(y_pred, y_true)
        if self.method == 'regression':
            return F.mse_loss(y_pred, y_true.view(-1, 1))
        if self.method == 'binary':
            return F.binary_cross_entropy(y_pred, y_true.view(-1, 1), weight=self.class_weight)
        if self.method == 'multiclass':
            return F.cross_entropy(y_pred, y_true, weight=self.class_weight)

    def _train_val_split(self,
        X_wide:Optional[np.ndarray]=None,
        X_deep:Optional[np.ndarray]=None,
        X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None,
        X_train:Optional[Dict[str,np.ndarray]]=None,
        X_val:Optional[Dict[str,np.ndarray]]=None,
        val_split:Optional[float]=None,
        target:Optional[np.ndarray]=None):
        r"""
        If a validation set (X_val) is passed to the fit method, or val_split
        is specified, the train/val split will happen internally. A number of
        options are allowed in terms of data inputs. For parameter
        information, please, see the .fit() method documentation

        Returns
        -------
        train_set: WideDeepDataset
            WideDeepDataset object that will be loaded through
            torch.utils.data.DataLoader
        eval_set : WideDeepDataset
            WideDeepDataset object that will be loaded through
            torch.utils.data.DataLoader
        """
        # Without validation
        if X_val is None and val_split is None:
            # if a train dictionary is passed, check if text and image datasets
            # are present and instantiate the WideDeepDataset class
            if X_train is not None:
                X_wide, X_deep, target = X_train['X_wide'], X_train['X_deep'], X_train['target']
                if 'X_text' in X_train.keys(): X_text = X_train['X_text']
                if 'X_img' in X_train.keys(): X_img = X_train['X_img']
            X_train={'X_wide': X_wide, 'X_deep': X_deep, 'target': target}
            try: X_train.update({'X_text': X_text})
            except: pass
            try: X_train.update({'X_img': X_img})
            except: pass
            train_set = WideDeepDataset(**X_train, transforms=self.transforms)
            eval_set = None
        # With validation
        else:
            if X_val is not None:
                # if a validation dictionary is passed, then if not train
                # dictionary is passed we build it with the input arrays
                # (either the dictionary or the arrays must be passed)
                if X_train is None:
                    X_train = {'X_wide':X_wide, 'X_deep': X_deep, 'target': target}
                    if X_text is not None: X_train.update({'X_text': X_text})
                    if X_img is not None:  X_train.update({'X_img': X_img})
            else:
                # if a train dictionary is passed, check if text and image
                # datasets are present. The train/val split using val_split
                if X_train is not None:
                    X_wide, X_deep, target = X_train['X_wide'], X_train['X_deep'], X_train['target']
                    if 'X_text' in X_train.keys(): X_text = X_train['X_text']
                    if 'X_img' in X_train.keys(): X_img = X_train['X_img']
                X_tr_wide, X_val_wide, X_tr_deep, X_val_deep, y_tr, y_val = train_test_split(X_wide,
                    X_deep, target, test_size=val_split, random_state=self.seed)
                X_train = {'X_wide':X_tr_wide, 'X_deep': X_tr_deep, 'target': y_tr}
                X_val = {'X_wide':X_val_wide, 'X_deep': X_val_deep, 'target': y_val}
                try:
                    X_tr_text, X_val_text = train_test_split(X_text, test_size=val_split,
                        random_state=self.seed)
                    X_train.update({'X_text': X_tr_text}), X_val.update({'X_text': X_val_text})
                except: pass
                try:
                    X_tr_img, X_val_img = train_test_split(X_img, test_size=val_split,
                        random_state=self.seed)
                    X_train.update({'X_img': X_tr_img}), X_val.update({'X_img': X_val_img})
                except: pass
            # At this point the X_train and X_val dictionaries have been built
            train_set = WideDeepDataset(**X_train, transforms=self.transforms)
            eval_set = WideDeepDataset(**X_val, transforms=self.transforms)
        return train_set, eval_set

700 701 702
    def _warm_up(self, loader:DataLoader, n_epochs:int, max_lr:float, deeptext_gradual:bool,
        deeptext_layers:List[nn.Module], deeptext_max_lr:float, deepimage_gradual:bool,
        deepimage_layers:List[nn.Module], deepimage_max_lr:float, routine:str='felbo'):
703 704 705
        r"""
        Simple wrappup to individually warm up model components
        """
706 707 708
        if self.deephead is not None:
            raise ValueError(
                "Currently warming up is only supported without a fully connected 'DeepHead'")
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
        # This is not the most elegant solution, but is a soluton "in-between"
        # a non elegant one and re-factoring the whole code
        warmer = WarmUp(self._activation_fn, self._loss_fn, self.metric, self.method,
            self.verbose)
        warmer.warm_all(self.wide, 'wide', loader, n_epochs, max_lr)
        warmer.warm_all(self.deepdense, 'deepdense', loader, n_epochs, max_lr)
        if self.deeptext:
            if deeptext_gradual:
                warmer.warm_gradual(self.deeptext, 'deeptext', loader, deeptext_max_lr,
                    deeptext_layers, routine)
            else: warmer.warm_all(self.deeptext, 'deeptext', loader, n_epochs, max_lr)
        if self.deepimage:
            if deepimage_gradual:
                warmer.warm_gradual(self.deepimage, 'deepimage', loader, deepimage_max_lr,
                    deepimage_layers, routine)
            else: warmer.warm_all(self.deepimage, 'deepimage', loader, n_epochs, max_lr)
725 726 727 728 729

    def _lr_scheduler_step(self, step_location:str):
        r"""
        Function to execute the learning rate schedulers steps.
        If the lr_scheduler is Cyclic (i.e. CyclicLR or OneCycleLR), the step
730
        must happen after training each bach durig training. On the other
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
        hand, if the  scheduler is not Cyclic, is expected to be called after
        validation.

        Parameters
        ----------
        step_location: Str
            Indicates where to run the lr_scheduler step
        """
        if self.lr_scheduler.__class__.__name__ == 'MultipleLRScheduler' and self.cyclic:
            if step_location == 'on_batch_end':
                for model_name, scheduler in self.lr_scheduler._schedulers.items():
                    if 'cycl' in scheduler.__class__.__name__.lower(): scheduler.step()
            elif step_location == 'on_epoch_end':
                for scheduler_name, scheduler in self.lr_scheduler._schedulers.items():
                    if 'cycl' not in scheduler.__class__.__name__.lower(): scheduler.step()
        elif self.cyclic:
            if step_location == 'on_batch_end': self.lr_scheduler.step()
            else: pass
        elif self.lr_scheduler.__class__.__name__ == 'MultipleLRScheduler':
            if step_location == 'on_epoch_end': self.lr_scheduler.step()
            else: pass
        elif step_location == 'on_epoch_end': self.lr_scheduler.step()
        else: pass

    def _training_step(self, data:Dict[str, Tensor], target:Tensor, batch_idx:int):
        self.train()
        X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
        y = target.float() if self.method != 'multiclass' else target
        y = y.cuda() if use_cuda else y

        self.optimizer.zero_grad()
        y_pred =  self._activation_fn(self.forward(X))
        loss = self._loss_fn(y_pred, y)
        loss.backward()
        self.optimizer.step()

        self.train_running_loss += loss.item()
        avg_loss = self.train_running_loss/(batch_idx+1)

        if self.metric is not None:
            acc = self.metric(y_pred, y)
            return acc, avg_loss
        else:
            return None, avg_loss

    def _validation_step(self, data:Dict[str, Tensor], target:Tensor, batch_idx:int):

        self.eval()
        with torch.no_grad():
            X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
            y = target.float() if self.method != 'multiclass' else target
            y = y.cuda() if use_cuda else y

            y_pred = self._activation_fn(self.forward(X))
            loss = self._loss_fn(y_pred, y)
            self.valid_running_loss += loss.item()
            avg_loss = self.valid_running_loss/(batch_idx+1)

        if self.metric is not None:
            acc = self.metric(y_pred, y)
            return acc, avg_loss
        else:
            return None, avg_loss

    def _predict(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->List:
        r"""
        Hidden method to avoid code repetition in predict and predict_proba.
        For parameter information, please, see the .predict() method
        documentation
        """
        if X_test is not None:
            test_set = WideDeepDataset(**X_test)
        else:
            load_dict = {'X_wide': X_wide, 'X_deep': X_deep}
            if X_text is not None: load_dict.update({'X_text': X_text})
            if X_img is not None:  load_dict.update({'X_img': X_img})
            test_set = WideDeepDataset(**load_dict)

        test_loader = DataLoader(dataset=test_set, batch_size=self.batch_size, num_workers=n_cpus,
            shuffle=False)
        test_steps =  (len(test_loader.dataset) // test_loader.batch_size) + 1

        self.eval()
        preds_l = []
        with torch.no_grad():
            with trange(test_steps, disable=self.verbose != 1) as t:
                for i, data in zip(t, test_loader):
                    t.set_description('predict')
                    X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
                    preds = self._activation_fn(self.forward(X)).cpu().data.numpy()
                    preds_l.append(preds)
        self.train()
        return preds_l