wide_deep.py 13.3 KB
Newer Older
1 2 3 4 5 6 7
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from tqdm import tqdm,trange
8 9 10 11
from sklearn.utils import Bunch

from torch.utils.data import Dataset
from torch.optim.lr_scheduler import StepLR, MultiStepLR, ExponentialLR, ReduceLROnPlateau
12

13
from ..wdtypes import *
14 15 16 17 18
from ..radam import RAdam

from ..initializers import MultipleInitializers
from ..optimizers import MultipleOptimizers
from ..lr_schedulers import MultipleLRScheduler
19

20 21 22 23 24
from .wide import Wide
from .deep_dense import DeepDense
from .deep_text import DeepText
from .deep_image import DeepImage

25 26
from .callbacks import History, CallbackContainer
from .metrics import MultipleMetrics, MetricCallback
27 28

import pdb
29 30 31 32 33

use_cuda = torch.cuda.is_available()


class WideDeepLoader(Dataset):
34 35 36 37 38 39 40 41 42 43 44
    def __init__(self, X_wide:np.ndarray, X_deep_dense:np.ndarray,
        X_deep_text:Optional[np.ndarray]=None,
        X_deep_img:Optional[np.ndarray]=None,
        target:Optional[np.ndarray]=None, transform:Optional=None):

        self.X_wide = X_wide
        self.X_deep_dense = X_deep_dense
        self.X_deep_text = X_deep_text
        self.X_deep_img = X_deep_img
        self.transform = transform
        self.Y = target
45 46 47 48

    def __getitem__(self, idx:int):

        xw = self.X_wide[idx]
49 50 51 52
        X = Bunch(wide=xw)
        xdd = self.X_deep_dense[idx]
        X.deep_dense= xdd
        if self.X_deep_text is not None:
53
            xdt = self.X_deep_text[idx]
54 55
            X.deep_text = xdt
        if self.X_deep_img is not None:
56
            xdi = (self.X_deep_img[idx]/255).astype('float32')
57 58 59 60
            if self.transform is not None:
                xdi = self.transform(xdi)
            X.deep_img = xdi
        if self.Y is not None:
61 62
            y  = self.Y[idx]
            return X, y
63
        else:
64 65 66 67 68 69 70
            return X

    def __len__(self):
        return len(self.X_wide)


class WideDeep(nn.Module):
71 72 73 74 75 76 77 78 79 80 81 82 83

    def __init__(self, output_dim:int, wide_dim:int, embeddings_input:List[Tuple[str,int,int]],
        embeddings_encoding_dict:Dict[str,Any], continuous_cols:List[str],
        deep_column_idx:Dict[str,int], hidden_layers:List[int]=[64,32],
        dropout:List[float]=[0.], nlp_model:Optional[nn.Module]=None,
        vocab_size:Optional[int]=None, word_embedding_dim:Optional[int]=64,
        rnn_hidden_dim:Optional[int]=32, rnn_n_layers:Optional[int]=3,
        rnn_dropout:Optional[float]=0.,emb_spatial_dropout:Optional[float]=0.,
        padding_idx:Optional[int]=1, bidirectional:Optional[bool]=False,
        embedding_matrix:Optional[np.ndarray]=None,
        vision_model:Optional[nn.Module]=None, pretrained:Optional[bool]=True,
        resnet:Optional[int]=18, freeze:Optional[Union[str,int]]=6):

84 85 86 87
        super(WideDeep, self).__init__()

        self.output_dim = output_dim

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        # WIDE
        self.wide_dim = wide_dim
        self.wide = Wide(self.wide_dim, self.output_dim)

        # DEEP DENSE
        self.embeddings_input = embeddings_input
        self.embeddings_encoding_dict = embeddings_encoding_dict
        self.continuous_cols = continuous_cols
        self.deep_column_idx = deep_column_idx
        self.hidden_layers = hidden_layers
        self.dropout = dropout
        self.deep_dense = DeepDense( self.embeddings_input, self.embeddings_encoding_dict,
            self.continuous_cols, self.deep_column_idx, self.hidden_layers, self.dropout,
            self.output_dim)

        # DEEP TEXT
        if nlp_model is not None:
            self.deep_text = nlp_model
        else:
            self.vocab_size = vocab_size
            self.word_embedding_dim = word_embedding_dim
            self.rnn_hidden_dim = rnn_hidden_dim
            self.rnn_n_layers = rnn_n_layers
            self.rnn_dropout = rnn_dropout
            self.emb_spatial_dropout = emb_spatial_dropout
            self.padding_idx = padding_idx
            self.bidirectional = bidirectional
            self.embedding_matrix = embedding_matrix
            self.deep_text = DeepText(self.vocab_size, self.word_embedding_dim, self.rnn_hidden_dim,
                self.rnn_n_layers, self.rnn_dropout, self.emb_spatial_dropout, self.padding_idx,
                self.output_dim, self.bidirectional, self.embedding_matrix)

        # DEEP IMAGE
        if vision_model is not None:
            self.deep_img = vision_model
        else:
            self.pretrained = pretrained
            self.resnet = resnet
            self.freeze = freeze
            self.deep_img = DeepImage(self.output_dim, self.pretrained, self.resnet,
                self.freeze)

    def forward(self, X:Tuple[Dict[str,Tensor],Tensor])->Tensor:

        wide_deep = self.wide(X['wide'])
        wide_deep.add_(self.deep_dense(X['deep_dense']))

        if 'deep_text' in X.keys():
            wide_deep.add_(self.deep_text(X['deep_text']))

        if 'deep_img' in X.keys():
            wide_deep.add_(self.deep_img(X['deep_img']))
140 141 142 143 144 145 146 147 148 149

        if not self.activation:
            return wide_deep
        else:
            if (self.activation==F.softmax):
                out = self.activation(wide_deep, dim=1)
            else:
                out = self.activation(wide_deep)
            return out

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    def set_method(self, method:str):
        self.method = method
        if self.method =='regression':
            self.activation, self.criterion = None, F.mse_loss
        if self.method =='logistic':
            self.activation, self.criterion = torch.sigmoid, F.binary_cross_entropy
        if self.method=='multiclass':
            self.activation, self.criterion = F.softmax, F.cross_entropy

    def compile(self, method, callbacks=None, initializers=None, optimizers=None, lr_schedulers=None,
        metrics=None, global_optimizer=None, global_optimizer_params=None, global_lr_scheduler=None,
        global_lr_scheduler_params=None):

        self.set_method(method)

        if initializers is not None:
            self.initializer = MultipleInitializers(initializers)
            self.initializer.apply(self)

        if optimizers is not None:
            self.optimizer = MultipleOptimizers(optimizers)
            self.optimizer.apply(self)
        elif global_optimizer is not None:
            self.optimizer = global_optimizer(self)
        else:
            print('bla bla...')
            self.optimizer = torch.optim.Adam(self.parameters())

        if lr_schedulers is not None:
            self.lr_scheduler = MultipleLRScheduler(lr_schedulers)
            self.lr_scheduler.apply(self.optimizer._optimizers)
        elif global_lr_scheduler is not None:
            self.lr_scheduler = global_lr_scheduler(self.optimizer)
        else:
            self.lr_scheduler = None

        self.history = History
        self.callbacks = [self.history]
        if callbacks is not None:
            self.callbacks.append(callbacks)

        if metrics is not None:
            self.metric = MultipleMetrics(metrics)
            self.callbacks.append(MetricCallback(self.metric))

        callback_container = CallbackContainer(self.callbacks)

197 198
    def training_step(self, data:Dict[str, Tensor], target:Tensor, batch_nb:int):

199
        X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
200 201 202 203 204 205 206 207 208 209 210 211
        y = target.float() if self.method != 'multiclass' else target
        y = y.cuda() if use_cuda else y

        self.optimizer.zero_grad()
        y_pred =  self.forward(X)
        if(self.criterion == F.cross_entropy):
            loss = self.criterion(y_pred, y)
        else:
            loss = self.criterion(y_pred, y.view(-1, 1))
        loss.backward()
        self.optimizer.step()

212 213
        self.running_loss += loss.item()
        avg_loss = self.running_loss/(batch_nb+1)
214
        if self.method != "regression":
215
            self.total+= y.size(0)
216 217 218 219
            if self.method == 'logistic':
                y_pred_cat = (y_pred > 0.5).squeeze(1).float()
            if self.method == "multiclass":
                _, y_pred_cat = torch.max(y_pred, 1)
220 221
            self.correct+= float((y_pred_cat == y).sum().item())
            acc = self.correct/self.total
222 223 224

        if self.method != 'regression':
            return acc, avg_loss
225 226
        else:
            return avg_loss
227 228 229 230

    def validation_step(self, data:Dict[str, Tensor], target:Tensor, batch_nb:int):

        with torch.no_grad():
231
            X = {k:v.cuda() for k,v in data.item()} if use_cuda else data
232 233 234 235 236 237 238 239
            y = target.float() if self.method != 'multiclass' else target
            y = y.cuda() if use_cuda else y

            y_pred =  self.forward(X)
            if(self.criterion == F.cross_entropy):
                loss = self.criterion(y_pred, y)
            else:
                loss = self.criterion(y_pred, y.view(-1, 1))
240 241
            self.running_loss += loss.item()
            avg_loss = self.running_loss/(batch_nb+1)
242
            if self.method != "regression":
243
                self.total+= y.size(0)
244 245 246 247
                if self.method == 'logistic':
                    y_pred_cat = (y_pred > 0.5).squeeze(1).float()
                if self.method == "multiclass":
                    _, y_pred_cat = torch.max(y_pred, 1)
248 249
                self.correct+= float((y_pred_cat == y).sum().item())
                acc = self.correct/self.total
250 251 252

        if self.method != 'regression':
            return acc, avg_loss
253 254 255
        else:
            return avg_loss

256 257 258

    def fit(self, n_epochs:int, train_loader:DataLoader, eval_loader:Optional[DataLoader]=None,
        patience:Optional[int]=10):
259 260 261 262 263

        train_steps =  (len(train_loader.dataset) // train_loader.batch_size) + 1
        if eval_loader:
            eval_steps =  (len(eval_loader.dataset) // eval_loader.batch_size) + 1
        for epoch in range(n_epochs):
264

265
            self.total, self.correct, self.running_loss = 0,0,0
266 267 268
            with trange(train_steps) as t:
                for i, (data,target) in zip(t, train_loader):
                    t.set_description('epoch %i' % (epoch+1))
269 270
                    if self.method != 'regression':
                        acc, avg_loss = self.training_step(data, target, i)
271
                        t.set_postfix(acc=acc, loss=avg_loss)
272
                    else:
273
                        avg_loss = self.training_step(data, target, i)
274 275 276
                        t.set_postfix(loss=np.sqrt(avg_loss))

            if eval_loader:
277
                self.total, self.correct, self.running_loss = 0,0,0
278 279 280 281 282 283
                current_best_loss, stopping_step, should_stop = 1e3, 0, False
                with trange(eval_steps) as v:
                    for i, (data,target) in zip(v, eval_loader):
                        v.set_description('valid')
                        if self.method != 'regression':
                            acc, avg_loss = self.validation_step(data, target, i)
284
                            v.set_postfix(acc=self.correct/self.total, loss=avg_loss)
285 286 287 288
                        else:
                            avg_loss = self.validation_step(data, target, i)
                            v.set_postfix(loss=np.sqrt(avg_loss))

289
            if self.lr_scheduler: self.lr_scheduler.step()
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

    def predict(self, dataloader:DataLoader)->np.ndarray:
        test_steps =  (len(dataloader.dataset) // dataloader.batch_size) + 1
        net = self.eval()
        preds_l = []
        with torch.no_grad():
            with trange(test_steps) as t:
                for i, data in zip(t, dataloader):
                    t.set_description('predict')
                    X = tuple(x.cuda() for x in data) if use_cuda else data
                    # This operations is cheap in terms of computing time, but
                    # would be more efficient to append Tensors and then cat
                    preds_l.append(net(X).cpu().data.numpy())
            if self.method == "regression":
                return np.vstack(preds_l).squeeze(1)
            if self.method == "logistic":
                preds = np.vstack(preds_l).squeeze(1)
                return (preds > 0.5).astype('int')
            if self.method == "multiclass":
                preds = np.vstack(preds_l)
                return np.argmax(preds, 1)

    def predict_proba(self, dataloader:DataLoader)->np.ndarray:
        test_steps =  (len(dataloader.dataset) // dataloader.batch_size) + 1
        net = self.eval()
        preds_l = []
        with torch.no_grad():
            with trange(test_steps) as t:
                for i, data in zip(t, dataloader):
                    t.set_description('predict')
                    X = tuple(x.cuda() for x in data) if use_cuda else data
                    preds_l.append(net(X).cpu().data.numpy())
            if self.method == "logistic":
                preds = np.vstack(preds_l).squeeze(1)
                probs = np.zeros([preds.shape[0],2])
                probs[:,0] = 1-preds
                probs[:,1] = preds
                return probs
            if self.method == "multiclass":
                return np.vstack(preds_l)

    def get_embeddings(self, col_name:str) -> Dict[str,np.ndarray]:
        params = list(self.named_parameters())
        emb_layers = [p for p in params if 'emb_layer' in p[0]]
        emb_layer  = [layer for layer in emb_layers if col_name in layer[0]][0]
        embeddings = emb_layer[1].cpu().data.numpy()
        col_label_encoding = self.embeddings_encoding_dict[col_name]
        inv_dict = {v:k for k,v in col_label_encoding.items()}
        embeddings_dict = {}
        for idx,value in inv_dict.items():
            embeddings_dict[value] = embeddings[idx]
        return embeddings_dict