wide_deep.py 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from torch.utils.data import Dataset
from torch.optim.lr_scheduler import StepLR, MultiStepLR
from tqdm import tqdm,trange

11
from ..wdtypes import *
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
from .wide import Wide
from .deep_dense import DeepDense
from .deep_text import DeepText
from .deep_image import DeepImage


use_cuda = torch.cuda.is_available()


def set_method(method:str):
    if method =='regression':
        return None, F.mse_loss
    if method =='logistic':
        return torch.sigmoid, F.binary_cross_entropy
    if method=='multiclass':
        return F.softmax, F.cross_entropy


def set_optimizer(model_params:ModelParams, opt_params:List[Union[str,float]]):
    try:
        opt, lr, m = opt_params
    except:
        opt, lr = opt_params
    if opt == "Adam":
        return torch.optim.Adam(model_params, lr=lr)
    if opt == "Adagrad":
        return torch.optim.Adam(model_params, lr=lr)
    if opt == "RMSprop":
        return torch.optim.RMSprop(model_params, lr=lr, momentum=m)
    if opt == "SGD":
        return torch.optim.SGD(model_params, lr=lr, momentum=m)


def set_scheduler(optimizer:Optimizer, sch_params:List[Any]):
    sch,s,g = sch_params
    if sch == "StepLR":
        return StepLR(optimizer, step_size=s, gamma=g)
    if sch == "MultiStepLR":
        return MultiStepLR(optimizer, milestones=s, gamma=g)


class MultipleOptimizer(object):
    def __init__(self, opts:List[Optimizer]):
        self.optimizers = opts

    def zero_grad(self):
        for op in self.optimizers:
            op.zero_grad()

    def step(self):
        for op in self.optimizers:
            op.step()


class MultipleLRScheduler(object):
    def __init__(self, scheds:List[LRScheduler]):
        self.schedulers = scheds

    def step(self):
        for sc in self.schedulers:
            sc.step()


class WideDeepLoader(Dataset):
    def __init__(self, data:Dict[str,Any], transform:Optional=None, mode:str='train'):

        self.mode = mode
        input_types = list(data.keys())
        self.input_types = input_types
        self.X_wide = data['wide']
        if 'deep_dense' in self.input_types: self.X_deep_dense = data['deep_dense']
        if 'deep_text' in self.input_types: self.X_deep_text = data['deep_text']
        if 'deep_img' in self.input_types:
            self.X_deep_img = data['deep_img']
            self.transform = transform
        if self.mode is 'train':
            self.Y = data['target']
        elif self.mode is 'test':
            self.Y = None

    def __getitem__(self, idx:int):

        xw = self.X_wide[idx]
        X = (xw, )
        if 'deep_dense' in self.input_types:
            xdd = self.X_deep_dense[idx]
            X += (xdd,)
        if 'deep_text' in self.input_types:
            xdt = self.X_deep_text[idx]
            X += (xdt,)
        if 'deep_img' in self.input_types:
            xdi = (self.X_deep_img[idx]/255).astype('float32')
            xdi = self.transform(xdi)
            X += (xdi,)
        if self.mode is 'train':
            y  = self.Y[idx]
            return X, y
        elif self.mode is 'test':
            return X

    def __len__(self):
        return len(self.X_wide)


class WideDeep(nn.Module):
    """ Wide and Deep model (Heng-Tze Cheng et al., 2016), adjusted to take also
    text and images.
    """
    def __init__(self, output_dim:int, **params:Any):
        super(WideDeep, self).__init__()

        self.datasets = {}
        self.n_datasets = 1
        self.output_dim = output_dim

        for k,v in params['wide'].items():
            setattr(self, k, v)
        self.wide = Wide(
            self.wide_dim,
            self.output_dim
            )
        if 'deep_dense' in params.keys():
            self.datasets['deep_dense'] = self.n_datasets
            self.n_datasets+=1
            for k,v in params['deep_dense'].items():
                setattr(self, k, v)
            self.deep_dense = DeepDense(
                self.embeddings_input,
                self.embeddings_encoding_dict,
                self.continuous_cols,
                self.deep_column_idx,
                self.hidden_layers,
                self.dropout,
                self.output_dim
                )
        if 'deep_text' in params.keys():
            self.datasets['deep_text'] = self.n_datasets
            self.n_datasets+=1
            for k,v in params['deep_text'].items():
                setattr(self, k, v)
            self.deep_text = DeepText(
                self.vocab_size,
                self.embedding_dim,
                self.hidden_dim,
                self.n_layers,
                self.rnn_dropout,
                self.spatial_dropout,
                self.padding_idx,
                self.output_dim,
                self.attention,
                self.bidirectional,
                self.embedding_matrix
                )
        if 'deep_img' in params.keys():
            self.datasets['deep_img'] = self.n_datasets
            self.n_datasets+=1
            for k,v in params['deep_img'].items():
                setattr(self, k, v)
            self.deep_img = DeepImage(
                self.output_dim,
                self.pretrained,
                self.freeze
                )

    def compile(self, method:str, optimizer:Dict[str,List[Any]],
        lr_scheduler:Optional[Dict[str,List[Any]]]=None):
        """Set the activation, loss and the optimizer.

        Parameters:
        ----------
        method: str
            'regression', 'logistic' or 'multiclass'
        optimizer: str or Dict
            if str one of the following: 'SGD', 'Adam', or 'RMSprop'
            if Dict must contain  elements for different models
            e.g. optimizer = {'wide: ['SGD', 0.001, 0.3]', 'deep':['Adam', 0.001]}
        """

        self.method = method
        self.activation, self.criterion = set_method(method)

        if len(optimizer)==1:
            self.optimizer = set_optimizer(self.parameters(), optimizer['widedeep'])
            self.lr_scheduler = set_scheduler(self.optimizer, lr_scheduler['widedeep']) if lr_scheduler else None
        else:
            wide_opt = set_optimizer(self.wide.parameters(), optimizer['wide'])
            wide_sch = set_scheduler(wide_opt, lr_scheduler['wide']) if lr_scheduler else None
            optimizers, schedulers = [wide_opt], [wide_sch]
            if 'deep_dense' in optimizer.keys():
                deep_dense_opt = set_optimizer(self.deep_dense.parameters(), optimizer['deep_dense'])
                deep_dense_sch = set_scheduler(deep_dense_opt, lr_scheduler['deep_dense']) if lr_scheduler else None
                optimizers+=[deep_dense_opt]
                schedulers+=[deep_dense_sch]
            if 'deep_text' in optimizer.keys():
                deep_text_opt = set_optimizer(self.deep_text.parameters(), optimizer['deep_text'])
                deep_text_sch = set_scheduler(deep_text_opt, lr_scheduler['deep_text']) if lr_scheduler else None
                optimizers+=[deep_text_opt]
                schedulers+=[deep_text_sch]
            if 'deep_img' in optimizer.keys():
                deep_img_opt = set_optimizer(self.deep_img.parameters(), optimizer['deep_img'])
                deep_img_sch = set_scheduler(deep_img_opt, lr_scheduler['deep_img']) if lr_scheduler else None
                optimizers+=[deep_img_opt]
                schedulers+=[deep_img_sch]
            self.optimizer = MultipleOptimizer(optimizers)
            self.lr_scheduler = MultipleLRScheduler(schedulers)

    def forward(self, X:Tuple[Tensor,...])->Tensor:

        wide_inp = X[0]
        wide_deep = self.wide(wide_inp)
        if 'deep_dense' in self.datasets.keys():
            deep_dense_idx = self.datasets['deep_dense']
            deep_dense_out = self.deep_dense(X[deep_dense_idx])
            wide_deep.add_(deep_dense_out)
        if 'deep_text' in self.datasets.keys():
            deep_text_idx = self.datasets['deep_text']
            deep_text_out = self.deep_text(X[deep_text_idx])
            wide_deep.add_(deep_text_out)
        if 'deep_img' in self.datasets.keys():
            deep_img_idx = self.datasets['deep_img']
            deep_img_out = self.deep_img(X[deep_img_idx])
            wide_deep.add_(deep_img_out)

        if not self.activation:
            return wide_deep
        else:
            if (self.activation==F.softmax):
                out = self.activation(wide_deep, dim=1)
            else:
                out = self.activation(wide_deep)
            return out

    def fit(self, n_epochs:int, train_loader:DataLoader, eval_loader:Optional[DataLoader]=None):

        train_steps =  (len(train_loader.dataset) // train_loader.batch_size) + 1
        if eval_loader:
            eval_steps =  (len(eval_loader.dataset) // eval_loader.batch_size) + 1
        for epoch in range(n_epochs):
            if self.lr_scheduler: self.lr_scheduler.step()
            net = self.train()
            total, correct, running_loss = 0,0,0
            with trange(train_steps) as t:
                for i, (data,target) in zip(t, train_loader):
                    t.set_description('epoch %i' % (epoch+1))
                    X = tuple(x.cuda() for x in data) if use_cuda else data
                    y = target.float() if self.method != 'multiclass' else target
                    y = y.cuda() if use_cuda else y

                    self.optimizer.zero_grad()
                    y_pred =  net(X)
                    if(self.criterion == F.cross_entropy):
                        loss = self.criterion(y_pred, y)
                    else:
                        loss = self.criterion(y_pred, y.view(-1, 1))
                    loss.backward()
                    self.optimizer.step()

                    running_loss += loss.item()
                    avg_loss = running_loss/(i+1)

                    if self.method != "regression":
                        total+= y.size(0)
                        if self.method == 'logistic':
                            y_pred_cat = (y_pred > 0.5).squeeze(1).float()
                        if self.method == "multiclass":
                            _, y_pred_cat = torch.max(y_pred, 1)
                        correct+= float((y_pred_cat == y).sum().item())
                        t.set_postfix(acc=correct/total, loss=avg_loss)
                    else:
                        t.set_postfix(loss=np.sqrt(avg_loss))

            if eval_loader:
                total, correct, running_loss = 0,0,0
                net = self.eval()
                with torch.no_grad():
                    with trange(eval_steps) as v:
                        for i, (data,target) in zip(v, eval_loader):
                            v.set_description('valid')
                            X = tuple(x.cuda() for x in data) if use_cuda else data
                            y = target.float() if self.method != 'multiclass' else target
                            y = y.cuda() if use_cuda else y
                            y_pred =  net(X)
                            if(self.criterion == F.cross_entropy):
                                loss = self.criterion(y_pred, y)
                            else:
                                loss = self.criterion(y_pred, y.view(-1, 1))
                            running_loss += loss.item()
                            avg_loss = running_loss/(i+1)
                            if self.method != "regression":
                                total+= y.size(0)
                                if self.method == 'logistic':
                                    y_pred_cat = (y_pred > 0.5).squeeze(1).float()
                                if self.method == "multiclass":
                                    _, y_pred_cat = torch.max(y_pred, 1)
                                correct+= float((y_pred_cat == y).sum().item())
                                v.set_postfix(acc=correct/total, loss=avg_loss)
                            else:
                                v.set_postfix(loss=np.sqrt(avg_loss))

    def predict(self, dataloader:DataLoader)->np.ndarray:
        test_steps =  (len(dataloader.dataset) // dataloader.batch_size) + 1
        net = self.eval()
        preds_l = []
        with torch.no_grad():
            with trange(test_steps) as t:
                for i, data in zip(t, dataloader):
                    t.set_description('predict')
                    X = tuple(x.cuda() for x in data) if use_cuda else data
                    # This operations is cheap in terms of computing time, but
                    # would be more efficient to append Tensors and then cat
                    preds_l.append(net(X).cpu().data.numpy())
            if self.method == "regression":
                return np.vstack(preds_l).squeeze(1)
            if self.method == "logistic":
                preds = np.vstack(preds_l).squeeze(1)
                return (preds > 0.5).astype('int')
            if self.method == "multiclass":
                preds = np.vstack(preds_l)
                return np.argmax(preds, 1)

    def predict_proba(self, dataloader:DataLoader)->np.ndarray:
        test_steps =  (len(dataloader.dataset) // dataloader.batch_size) + 1
        net = self.eval()
        preds_l = []
        with torch.no_grad():
            with trange(test_steps) as t:
                for i, data in zip(t, dataloader):
                    t.set_description('predict')
                    X = tuple(x.cuda() for x in data) if use_cuda else data
                    preds_l.append(net(X).cpu().data.numpy())
            if self.method == "logistic":
                preds = np.vstack(preds_l).squeeze(1)
                probs = np.zeros([preds.shape[0],2])
                probs[:,0] = 1-preds
                probs[:,1] = preds
                return probs
            if self.method == "multiclass":
                return np.vstack(preds_l)

    def get_embeddings(self, col_name:str) -> Dict[str,np.ndarray]:
        """Extract the embeddings for the embedding columns.

        Parameters:
        -----------
        col_name: str
            column we want to extract the embedding for

        Returns:
        --------
        embeddings_dict: Dict
            Dict with the column values and the corresponding embeddings
        """

        params = list(self.named_parameters())
        emb_layers = [p for p in params if 'emb_layer' in p[0]]
        emb_layer  = [layer for layer in emb_layers if col_name in layer[0]][0]
        embeddings = emb_layer[1].cpu().data.numpy()
        col_label_encoding = self.embeddings_encoding_dict[col_name]
        inv_dict = {v:k for k,v in col_label_encoding.items()}
        embeddings_dict = {}
        for idx,value in inv_dict.items():
            embeddings_dict[value] = embeddings[idx]
        return embeddings_dict