wide_deep.py 35.3 KB
Newer Older
1
import numpy as np
2
import warnings
3
import torch
4 5 6
import torch.nn as nn
import torch.nn.functional as F

7 8 9 10 11 12 13 14 15 16 17
from ..wdtypes import *

from ..initializers import Initializer, MultipleInitializer
from ..callbacks import Callback, History, CallbackContainer
from ..metrics import Metric, MultipleMetrics, MetricCallback
from ..losses import FocalLoss

from ._wd_dataset import WideDeepDataset
from ._multiple_optimizer import MultipleOptimizer
from ._multiple_lr_scheduler import MultipleLRScheduler
from ._multiple_transforms import MultipleTransforms
18
from .deep_dense import dense_layer
19

20 21
from tqdm import tqdm,trange
from sklearn.model_selection import train_test_split
22
from torch.utils.data import DataLoader
23

24 25
import pdb

26

27 28 29 30
use_cuda = torch.cuda.is_available()


class WideDeep(nn.Module):
31 32 33 34 35 36 37 38 39
    r""" Main collector class to combine all Wide, DeepDense, DeepText and
    DeepImage models. There are two options to combine these models.
    1) Directly connecting the output of the models to an ouput neuron(s).
    2) Adding a FC-Head on top of the deep models. This FC-Head will combine
    the output form the DeepDense, DeepText and DeepImage and will be then
    connected to the output neuron(s)

    Parameters
    ----------
40 41 42 43 44 45
    wide: nn.Module
        Wide model. I recommend using the Wide class in this package. However,
        can a custom model as long as is  consistent with the required
        architecture.
    deepdense: nn.Module
        'Deep dense' model consisting in a series of categorical features
46 47 48 49
        represented by embeddings combined with numerical (aka continuous)
        features. I recommend using the DeepDense class in this package.
        However, a custom model as long as is  consistent with the required
        architecture.
50 51
    deeptext: nn.Module, Optional
        'Deep text' model for the text input. Must be an object of class
52 53
        DeepText or a custom model as long as is consistent with the required
        architecture.
54 55
    deepimage: nn.Module, Optional
        'Deep Image' model for the images input. Must be an object of class
56 57
        DeepImage or a custom model as long as is consistent with the required
        architecture.
58 59 60 61 62 63 64 65 66 67 68 69
    deephead: nn.Module, Optional
        Dense model consisting in a stack of dense layers. The FC-Head
    head_layers: List, Optional
        Sizes of the stacked dense layers in the fc-head e.g: [128, 64]
    head_dropout: List, Optional
        Dropout between the dense layers. e.g: [0.5, 0.5]
    head_batchnorm: Boolean, Optional
        Whether or not to include batch normalizatin in the dense layers that
        form the texthead
    output_dim: Int
        Size of the final layer. 1 for regression and binary classification or
        'n_class' for multiclass classification
70 71 72

    ** While I recommend using the Wide and DeepDense classes within this
    package when building the corresponding model components, it is very likely
73 74 75 76 77 78
    that the user will want to use custom text and image models. That is perfectly
    possible. Simply, build them and pass them as the corresponding parameters.
    Note that the custom models MUST return a last layer of activations (i.e. not
    the final prediction) so that  these activations are collected by WideDeep and
    combined accordingly. In  addition, the models MUST also contain an attribute
    'output_dim' with the size of these last layers of activations.
79 80 81

    Attributes
    ----------
82 83 84
    deephead: nn.Sequential
        stack of dense layers comprising the FC-Head (aka imagehead) can be
        custom designed
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    ** The remaining attributes that will be set as we compile and run the model are
        discussed within the corresponding methods.

    Example
    --------
    >>> import torch
    >>> from pytorch_widedeep.models import Wide, DeepDense, DeepText, DeepImage, WideDeep
    >>>
    >>> X_wide = torch.empty(5, 5).random_(2)
    >>> wide = Wide(wide_dim=X_wide.size(0), output_dim=1)
    >>>
    >>> X_deep = torch.cat((torch.empty(5, 4).random_(4), torch.rand(5, 1)), axis=1)
    >>> colnames = ['a', 'b', 'c', 'd', 'e']
    >>> embed_input = [(u,i,j) for u,i,j in zip(colnames[:4], [4]*4, [8]*4)]
    >>> deep_column_idx = {k:v for v,k in enumerate(colnames)}
    >>> deepdense = DeepDense(hidden_layers=[8,4], deep_column_idx=deep_column_idx, embed_input=embed_input)
    >>>
    >>> X_text = torch.cat((torch.zeros([5,1]), torch.empty(5, 4).random_(1,4)), axis=1)
    >>> deeptext = DeepText(vocab_size=4, hidden_dim=4, n_layers=1, padding_idx=0, embed_dim=4)
    >>>
    >>> X_img = torch.rand((5,3,224,224))
    >>> deepimage = DeepImage(head_layers=[512, 64, 8])
    >>>
    >>> model = WideDeep(wide=wide, deepdense=deepdense, deeptext=deeptext, deepimage=deepimage, output_dim=1)
    >>> input_dict = {'wide':X_wide, 'deepdense':X_deep, 'deeptext':X_text, 'deepimage':X_img}
    >>> model(X=input_dict)
    tensor([[-0.3779],
            [-0.5247],
            [-0.2773],
            [-0.2888],
            [-0.2010]], grad_fn=<AddBackward0>)
    """
118
    def __init__(self,
119 120
        wide:nn.Module,
        deepdense:nn.Module,
121
        output_dim:int=1,
122
        deeptext:Optional[nn.Module]=None,
123 124 125 126 127
        deepimage:Optional[nn.Module]=None,
        deephead:Optional[nn.Module]=None,
        head_layers:Optional[List]=None,
        head_dropout:Optional[List]=None,
        head_batchnorm:Optional[bool]=None):
128

129
        super(WideDeep, self).__init__()
130 131

        # The main 5 components of the wide and deep assemble
132 133 134 135
        self.wide = wide
        self.deepdense = deepdense
        self.deeptext  = deeptext
        self.deepimage = deepimage
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        self.deephead = deephead

        if self.deephead is None:
            if head_layers is not None:
                input_dim = self.deepdense.output_dim + self.deeptext.output_dim + self.deepimage.output_dim
                head_layers = [input_dim] + head_layers
                if not head_dropout: head_dropout = [0.] * (len(head_layers)-1)
                self.deephead = nn.Sequential()
                for i in range(1, len(head_layers)):
                    self.deephead.add_module(
                        'head_layer_{}'.format(i-1),
                        dense_layer( head_layers[i-1], head_layers[i], head_dropout[i-1], head_batchnorm))
                self.deephead.add_module('head_out', nn.Linear(head_layers[-1], output_dim))
            else:
                self.deepdense = nn.Sequential(
                    self.deepdense,
                    nn.Linear(self.deepdense.output_dim, output_dim))
                if self.deeptext is not None:
                    self.deeptext = nn.Sequential(
                        self.deeptext,
                        nn.Linear(self.deeptext.output_dim, output_dim))
                if self.deepimage is not None:
                    self.deepimage = nn.Sequential(
                        self.deepimage,
                        nn.Linear(self.deepimage.output_dim, output_dim))
161

162
    def forward(self, X:List[Dict[str,Tensor]])->Tensor:
163 164 165
        r"""
        Parameters
        ----------
166 167 168 169
        X: List
            List of Dict where the keys are the model names (wide, deepdense,
            deeptext and deepimage) and the values are the corresponding
            Tensors
170
        """
171
        # Wide output: direct connection to the output neuron(s)
172
        out = self.wide(X['wide'])
173 174 175 176 177 178 179 180 181

        # Deep output: either connected directly to the output neuron(s) or
        # passed through a head first
        if self.deephead:
            deepside = self.deepdense(X['deepdense'])
            if self.deeptext is not None:
                deepside = torch.cat( [deepside, self.deeptext(X['deeptext'])], axis=1 )
            if self.deepimage is not None:
                deepside = torch.cat( [deepside, self.deepimage(X['deepimage'])], axis=1 )
182
            deepside_out = self.deephead(deepside)
183 184 185 186 187 188 189 190 191 192 193
            return out.add_(deepside_out)
        else:
            out.add_(self.deepdense(X['deepdense']))
            if self.deeptext is not None:
                out.add_(self.deeptext(X['deeptext']))
            if self.deepimage is not None:
                out.add_(self.deepimage(X['deepimage']))
            return out

    def compile(self,
        method:str,
194
        optimizers:Optional[Union[Optimizer,Dict[str,Optimizer]]]=None,
195
        lr_schedulers:Optional[Union[LRScheduler,Dict[str,LRScheduler]]]=None,
196 197 198 199 200
        initializers:Optional[Dict[str,Initializer]]=None,
        transforms:Optional[List[Transforms]]=None,
        callbacks:Optional[List[Callback]]=None,
        metrics:Optional[List[Metric]]=None,
        class_weight:Optional[Union[float,List[float],Tuple[float]]]=None,
201 202
        with_focal_loss:bool=False,
        alpha:float=0.25,
203
        gamma:float=2,
204 205 206 207 208 209
        verbose:int=1):
        r"""
        Function to set a number of attributes that are used during the training process.

        Parameters
        ----------
210 211 212 213
        method: Str
             One of ('regression', 'binary' or 'multiclass')
        optimizers: Optimizer, Dict. Optional, Default=Adam
            Either an optimizers object (e.g. torch.optim.Adam()) or a
214 215 216
            dictionary where there keys are the model's children (i.e. wide,
            deepdense, deeptext, deepimage and/or deephead)  and the values
            are the corresponding optimizers. If multiple optimizers are used
217 218 219
            the  dictionary MUST contain an optimizer per child.
        lr_schedulers: LRScheduler, Dict. Optional. Default=None
            Either a LRScheduler object (e.g
220 221 222 223
            torch.optim.lr_scheduler.StepLR(opt, step_size=5)) or  dictionary
            where there keys are the model's children (i.e. wide, deepdense,
            deeptext, deepimage and/or deephead)  and the values are the
            corresponding learning rate schedulers.
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        initializers: Dict, Optional. Default=None
            Dict where there keys are the model's children (i.e. wide,
            deepdense, deeptext, deepimage and/or deephead) and the values are
            the corresponding initializers.
        transforms: List, Optional. Default=None
            List with torchvision.transforms to be applied to the image
            component of the model
        callbacks: List, Optional. Default=None
            Callbacks available are: ModelCheckpoint, EarlyStopping, and
            LRHistory. The History callback is used by default.
        metrics: List, Optional. Default=None
            Metrics available are: BinaryAccuracy and CategoricalAccuracy
        class_weight: List, Tuple, Float. Optional. Default=None
            Can be one of: float indicating the weight of the minority class
            in binary classification problems (e.g. 9.) or a list or tuple
            with weights for the different classes in multiclass
            classification problems  (e.g. [1., 2., 3.]). The weights do not
            neccesarily need to be normalised. If your loss function uses
            reduction='mean', the loss will be normalized by the sum of the
            corresponding weights for each element. If you are using
244 245 246
            reduction='none', you would have to take care of the normalization
            yourself. See here:
            https://discuss.pytorch.org/t/passing-the-weights-to-crossentropyloss-correctly/14731/10
247 248 249 250 251 252
        with_focal_loss: Boolean, Optional. Default=False
            Whether or not to use the Focal Loss. https://arxiv.org/pdf/1708.02002.pdf
        alpha, gamma: Float. Default=0.25, 2
            Focal Loss parameters. See: https://arxiv.org/pdf/1708.02002.pdf
        verbose: Int
            Setting it to 0 will print nothing during training.
253 254 255 256 257

        Attributes
        ----------
        Attributes that are not direct assignations of parameters

258 259
        self.cyclic: Boolean
            Indicates if any of the lr_schedulers is CyclicLR or OneCycleLR
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

        Example
        --------
        Assuming you have already built the model components (wide, deepdense, etc...)

        >>> from pytorch_widedeep.models import WideDeep
        >>> from pytorch_widedeep.initializers import *
        >>> from pytorch_widedeep.callbacks import *
        >>> from pytorch_widedeep.optim import RAdam
        >>> model = WideDeep(wide=wide, deepdense=deepdense, deeptext=deeptext, deepimage=deepimage)
        >>> wide_opt = torch.optim.Adam(model.wide.parameters())
        >>> deep_opt = torch.optim.Adam(model.deepdense.parameters())
        >>> text_opt = RAdam(model.deeptext.parameters())
        >>> img_opt  = RAdam(model.deepimage.parameters())
        >>> wide_sch = torch.optim.lr_scheduler.StepLR(wide_opt, step_size=5)
        >>> deep_sch = torch.optim.lr_scheduler.StepLR(deep_opt, step_size=3)
        >>> text_sch = torch.optim.lr_scheduler.StepLR(text_opt, step_size=5)
        >>> img_sch  = torch.optim.lr_scheduler.StepLR(img_opt, step_size=3)
        >>> optimizers = {'wide': wide_opt, 'deepdense':deep_opt, 'deeptext':text_opt, 'deepimage': img_opt}
        >>> schedulers = {'wide': wide_sch, 'deepdense':deep_sch, 'deeptext':text_sch, 'deepimage': img_sch}
        >>> initializers = {'wide': Uniform, 'deepdense':Normal, 'deeptext':KaimingNormal,
        >>> ... 'deepimage':KaimingUniform}
        >>> transforms = [ToTensor, Normalize(mean=mean, std=std)]
        >>> callbacks = [LRHistory, EarlyStopping, ModelCheckpoint(filepath='model_weights/wd_out.pt')]
        >>> model.compile(method='regression', initializers=initializers, optimizers=optimizers,
        >>> ... lr_schedulers=schedulers, callbacks=callbacks, transforms=transforms)
        """
287
        self.verbose = verbose
288
        self.early_stop = False
289
        self.method = method
290 291
        self.with_focal_loss = with_focal_loss
        if self.with_focal_loss:
292
            self.alpha, self.gamma = alpha, gamma
293

294
        if isinstance(class_weight, float):
295
            self.class_weight = torch.tensor([1.-class_weight, class_weight])
296 297 298 299
        elif isinstance(class_weight, (List, Tuple)):
            self.class_weight =  torch.tensor(class_weight)
        else:
            self.class_weight = None
300 301

        if initializers is not None:
302
            self.initializer = MultipleInitializer(initializers, verbose=self.verbose)
303 304
            self.initializer.apply(self)

305 306 307 308 309 310
        if isinstance(optimizers, Optimizer):
            self.optimizer = optimizers
        elif len(optimizers)>1:
            opt_names = list(optimizers.keys())
            mod_names = [n  for n, c in self.named_children()]
            for mn in mod_names: assert mn in opt_names, "No optimizer found for {}".format(mn)
311
            self.optimizer = MultipleOptimizer(optimizers)
312 313 314
        else:
            self.optimizer = torch.optim.Adam(self.parameters())

315 316 317 318
        if isinstance(lr_schedulers, LRScheduler):
            self.lr_scheduler = lr_schedulers
            self.cyclic = 'cycl' in self.lr_scheduler.__class__.__name__.lower()
        elif len(lr_schedulers) > 1:
319
            self.lr_scheduler = MultipleLRScheduler(lr_schedulers)
320 321
            scheduler_names = [sc.__class__.__name__.lower() for _,sc in self.lr_scheduler._schedulers.items()]
            self.cyclic = any(['cycl' in sn for sn in scheduler_names])
322
        else:
323
            self.lr_scheduler, self.cyclic = None, False
324

325 326 327 328 329
        if transforms is not None:
            self.transforms = MultipleTransforms(transforms)()
        else:
            self.transforms = None

330
        self.history = History()
331 332
        self.callbacks = [self.history]
        if callbacks is not None:
333 334 335
            for callback in callbacks:
                if isinstance(callback, type): callback = callback()
                self.callbacks.append(callback)
336 337 338

        if metrics is not None:
            self.metric = MultipleMetrics(metrics)
339
            self.callbacks += [MetricCallback(self.metric)]
340 341
        else:
            self.metric = None
342

343 344
        self.callback_container = CallbackContainer(self.callbacks)
        self.callback_container.set_model(self)
345

346 347 348
    def _activation_fn(self, inp:Tensor) -> Tensor:
        if self.method == 'regression':
            return inp
349
        if self.method == 'binary':
350 351 352 353 354
            return torch.sigmoid(inp)
        if self.method == 'multiclass':
            return F.softmax(inp, dim=1)

    def _loss_fn(self, y_pred:Tensor, y_true:Tensor) -> Tensor:
355 356
        if self.with_focal_loss:
            return FocalLoss(self.alpha, self.gamma)(y_pred, y_true)
357 358
        if self.method == 'regression':
            return F.mse_loss(y_pred, y_true.view(-1, 1))
359
        if self.method == 'binary':
360 361 362 363
            return F.binary_cross_entropy(y_pred, y_true.view(-1, 1), weight=self.class_weight)
        if self.method == 'multiclass':
            return F.cross_entropy(y_pred, y_true, weight=self.class_weight)

364
    def _training_step(self, data:Dict[str, Tensor], target:Tensor, batch_idx:int):
365
        self.train()
366
        X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
367 368 369 370
        y = target.float() if self.method != 'multiclass' else target
        y = y.cuda() if use_cuda else y

        self.optimizer.zero_grad()
371 372
        y_pred =  self._activation_fn(self.forward(X))
        loss = self._loss_fn(y_pred, y)
373 374 375
        loss.backward()
        self.optimizer.step()

376 377
        self.train_running_loss += loss.item()
        avg_loss = self.train_running_loss/(batch_idx+1)
378

379 380
        if self.metric is not None:
            acc = self.metric(y_pred, y)
381
            return acc, avg_loss
382
        else:
383
            return None, avg_loss
384

385
    def _validation_step(self, data:Dict[str, Tensor], target:Tensor, batch_idx:int):
386

387
        self.eval()
388
        with torch.no_grad():
389
            X = {k:v.cuda() for k,v in data.item()} if use_cuda else data
390 391 392
            y = target.float() if self.method != 'multiclass' else target
            y = y.cuda() if use_cuda else y

393 394
            y_pred = self._activation_fn(self.forward(X))
            loss = self._loss_fn(y_pred, y)
395 396 397 398 399
            self.valid_running_loss += loss.item()
            avg_loss = self.valid_running_loss/(batch_idx+1)

        if self.metric is not None:
            acc = self.metric(y_pred, y)
400
            return acc, avg_loss
401
        else:
402 403
            return None, avg_loss

404
    def _lr_scheduler_step(self, step_location:str):
405 406 407 408 409 410 411 412 413
        r"""
        Function to execute the learning rate schedulers steps.
        If the lr_scheduler is Cyclic (i.e. CyclicLR or OneCycleLR), the step
        must  happen after training each bach durig training. On the other
        hand, if the  scheduler is not Cyclic, is expected to be called after
        validation.

        Parameters
        ----------
414 415
        step_location: Str
            Indicates where to run the lr_scheduler step
416
        """
417 418
        if self.lr_scheduler.__class__.__name__ == 'MultipleLRScheduler' and self.cyclic:
            if step_location == 'on_batch_end':
419 420
                for model_name, scheduler in self.lr_scheduler._schedulers.items():
                    if 'cycl' in scheduler.__class__.__name__.lower(): scheduler.step()
421 422
            elif step_location == 'on_epoch_end':
                for scheduler_name, scheduler in self.lr_scheduler._schedulers.items():
423
                    if 'cycl' not in scheduler.__class__.__name__.lower(): scheduler.step()
424 425 426 427 428 429 430 431 432
        elif self.cyclic:
            if step_location == 'on_batch_end': self.lr_scheduler.step()
            else: pass
        elif self.lr_scheduler.__class__.__name__ == 'MultipleLRScheduler':
            if step_location == 'on_epoch_end': self.lr_scheduler.step()
            else: pass
        elif step_location == 'on_epoch_end': self.lr_scheduler.step()
        else: pass

433 434 435 436
    def _train_val_split(self,
        X_wide:Optional[np.ndarray]=None,
        X_deep:Optional[np.ndarray]=None,
        X_text:Optional[np.ndarray]=None,
437 438 439
        X_img:Optional[np.ndarray]=None,
        X_train:Optional[Dict[str,np.ndarray]]=None,
        X_val:Optional[Dict[str,np.ndarray]]=None,
440 441
        val_split:Optional[float]=None,
        target:Optional[np.ndarray]=None,
442
        seed:int=1):
443 444 445 446 447 448 449 450
        r"""
        If a validation set (X_val) is passed to the fit method, or val_split
        is specified, the train/val split will happen internally. A number of
        options are allowed in terms of data inputs. For parameter
        information, please, see the .fit() method documentation

        Returns
        -------
451 452
        train_set: WideDeepDataset
            WideDeepDataset object that will be loaded through
453
            torch.utils.data.DataLoader
454 455
        eval_set : WideDeepDataset
            WideDeepDataset object that will be loaded through
456 457 458
            torch.utils.data.DataLoader
        """
        # Without validation
459
        if X_val is None and val_split is None:
460 461
            # if a train dictionary is passed, check if text and image datasets
            # are present and instantiate the WideDeepDataset class
462
            if X_train is not None:
463 464 465 466 467 468 469 470
                X_wide, X_deep, target = X_train['X_wide'], X_train['X_deep'], X_train['target']
                if 'X_text' in X_train.keys(): X_text = X_train['X_text']
                if 'X_img' in X_train.keys(): X_img = X_train['X_img']
            X_train={'X_wide': X_wide, 'X_deep': X_deep, 'target': target}
            try: X_train.update({'X_text': X_text})
            except: pass
            try: X_train.update({'X_img': X_img})
            except: pass
471
            train_set = WideDeepDataset(**X_train, transforms=self.transforms)
472
            eval_set = None
473
        # With validation
474 475
        else:
            if X_val is not None:
476 477 478
                # if a validation dictionary is passed, then if not train
                # dictionary is passed we build it with the input arrays
                # (either the dictionary or the arrays must be passed)
479 480 481 482 483
                if X_train is None:
                    X_train = {'X_wide':X_wide, 'X_deep': X_deep, 'target': target}
                    if X_text is not None: X_train.update({'X_text': X_text})
                    if X_img is not None:  X_train.update({'X_img': X_img})
            else:
484 485
                # if a train dictionary is passed, check if text and image
                # datasets are present. The train/val split using val_split
486
                if X_train is not None:
487
                    X_wide, X_deep, target = X_train['X_wide'], X_train['X_deep'], X_train['target']
488 489 490 491
                    if 'X_text' in X_train.keys(): X_text = X_train['X_text']
                    if 'X_img' in X_train.keys(): X_img = X_train['X_img']
                X_tr_wide, X_val_wide, X_tr_deep, X_val_deep, y_tr, y_val = train_test_split(X_wide,
                    X_deep, target, test_size=val_split, random_state=seed)
492 493
                X_train = {'X_wide':X_tr_wide, 'X_deep': X_tr_deep, 'target': y_tr}
                X_val = {'X_wide':X_val_wide, 'X_deep': X_val_deep, 'target': y_val}
494
                try:
495 496
                    X_tr_text, X_val_text = train_test_split(X_text, test_size=val_split,
                        random_state=seed)
497
                    X_train.update({'X_text': X_tr_text}), X_val.update({'X_text': X_val_text})
498 499
                except: pass
                try:
500 501
                    X_tr_img, X_val_img = train_test_split(X_img, test_size=val_split,
                        random_state=seed)
502 503
                    X_train.update({'X_img': X_tr_img}), X_val.update({'X_img': X_val_img})
                except: pass
504
            # At this point the X_train and X_val dictionaries have been built
505 506
            train_set = WideDeepDataset(**X_train, transforms=self.transforms)
            eval_set = WideDeepDataset(**X_val, transforms=self.transforms)
507 508
        return train_set, eval_set

509 510 511 512 513
    def fit(self,
        X_wide:Optional[np.ndarray]=None,
        X_deep:Optional[np.ndarray]=None,
        X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None,
514 515
        X_train:Optional[Dict[str,np.ndarray]]=None,
        X_val:Optional[Dict[str,np.ndarray]]=None,
516 517 518
        val_split:Optional[float]=None,
        target:Optional[np.ndarray]=None,
        n_epochs:int=1,
519
        validation_freq:int=1,
520 521 522
        batch_size:int=32,
        patience:int=10,
        seed:int=1):
523 524 525 526 527
        r"""
        fit method that must run after calling 'compile'

        Parameters
        ----------
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
        X_wide: np.ndarray, Optional. Default=None
            One hot encoded wide input.
        X_deep: np.ndarray, Optional. Default=None
            Input for the deepdense model
        X_text: np.ndarray, Optional. Default=None
            Input for the deeptext model
        X_img : np.ndarray, Optional. Default=None
            Input for the deepimage model
        X_train: Dict, Optional. Default=None
            Training dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_train = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
        X_val: Dict, Optional. Default=None
            Validation dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_val = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
        val_split: Float, Optional. Default=None
            train/val split
        target: np.ndarray, Optional. Default=None
            target values
        n_epochs: Int, Default=1
        validation_freq: Int, Default=1
        batch_size: Int, Default=32
        patience: Int, Default=10
            Number of epochs without improving the target metric before we
            stop the fit
        seed: Int, Default=1
            Random seed for the train/val split
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

        **WideDeep assumes that X_wide, X_deep and target ALWAYS exist, while
        X_text and X_img are optional
        **Either X_train or X_wide, X_deep and target must be passed to the
        fit method

        Example
        --------
        Assuming you have already built and compiled the model

        Ex 1. using train input arrays directly and no validation
        >>> model.fit(X_wide=X_wide, X_deep=X_deep, target=target, n_epochs=10, batch_size=256)

        Ex 2: using train input arrays directly and validation with val_split
        >>> model.fit(X_wide=X_wide, X_deep=X_deep, target=target, n_epochs=10, batch_size=256, val_split=0.2)

        Ex 3: using train dict and val_split
        >>> X_train = {'X_wide': X_wide, 'X_deep': X_deep, 'target': y}
        >>> model.fit(X_train, n_epochs=10, batch_size=256, val_split=0.2)

        Ex 4: validation using training and validation dicts
        >>> X_train = {'X_wide': X_wide_tr, 'X_deep': X_deep_tr, 'target': y_tr}
        >>> X_val = {'X_wide': X_wide_val, 'X_deep': X_deep_val, 'target': y_val}
        >>> model.fit(X_train=X_train, X_val=X_val n_epochs=10, batch_size=256)
        """
583 584 585

        if X_train is None and (X_wide is None or X_deep is None or target is None):
            raise ValueError(
586 587
                "Training data is missing. Either a dictionary (X_train) with "
                "the training dataset or at least 3 arrays (X_wide, X_deep, "
588
                "target) must be passed to the fit method")
589 590

        self.batch_size = batch_size
591 592
        train_set, eval_set = self._train_val_split(X_wide, X_deep, X_text, X_img,
            X_train, X_val, val_split, target, seed)
593
        train_loader = DataLoader(dataset=train_set, batch_size=batch_size, num_workers=8)
594 595 596
        train_steps =  (len(train_loader.dataset) // batch_size) + 1
        self.callback_container.on_train_begin({'batch_size': batch_size,
            'train_steps': train_steps, 'n_epochs': n_epochs})
597

598
        for epoch in range(n_epochs):
599
            # train step...
600 601
            epoch_logs={}
            self.callback_container.on_epoch_begin(epoch, logs=epoch_logs)
602
            self.train_running_loss = 0.
603
            with trange(train_steps, disable=self.verbose != 1) as t:
604
                for batch_idx, (data,target) in zip(t, train_loader):
605
                    t.set_description('epoch %i' % (epoch+1))
606
                    acc, train_loss = self._training_step(data, target, batch_idx)
607 608
                    if acc is not None:
                        t.set_postfix(metrics=acc, loss=train_loss)
609
                    else:
610
                        t.set_postfix(loss=np.sqrt(train_loss))
611 612
                    if self.lr_scheduler: self._lr_scheduler_step(step_location='on_batch_end')
                    self.callback_container.on_batch_end(batch=batch_idx)
613
            epoch_logs['train_loss'] = train_loss
614
            if acc is not None: epoch_logs['train_acc'] = acc['acc']
615
            # eval step...
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

            if epoch % validation_freq  == (validation_freq - 1):
                if eval_set is not None:
                    eval_loader = DataLoader(dataset=eval_set, batch_size=batch_size, num_workers=8,
                        shuffle=False)
                    eval_steps =  (len(eval_loader.dataset) // batch_size) + 1
                    self.valid_running_loss = 0.
                    with trange(eval_steps, disable=self.verbose != 1) as v:
                        for i, (data,target) in zip(v, eval_loader):
                            v.set_description('valid')
                            acc, val_loss = self._validation_step(data, target, i)
                            if acc is not None:
                                v.set_postfix(metrics=acc, loss=val_loss)
                            else:
                                v.set_postfix(loss=np.sqrt(val_loss))
                    epoch_logs['val_loss'] = val_loss
                    if acc is not None: epoch_logs['val_acc'] = acc['acc']
633 634 635
            if self.lr_scheduler: self._lr_scheduler_step(step_location='on_epoch_end')
            # log and check if early_stop...
            self.callback_container.on_epoch_end(epoch, epoch_logs)
636
            if self.early_stop:
637
                self.callback_container.on_train_end(epoch)
638
                break
639
            self.callback_container.on_train_end(epoch)
640 641 642 643 644 645 646 647 648
        self.train()

    def _predict(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->List:
        r"""
        Hidden method to avoid code repetition in predict and predict_proba.
        For parameter information, please, see the .predict() method
        documentation
        """
649
        if X_test is not None:
650
            test_set = WideDeepDataset(**X_test)
651
        else:
652
            load_dict = {'X_wide': X_wide, 'X_deep': X_deep}
653 654
            if X_text is not None: load_dict.update({'X_text': X_text})
            if X_img is not None:  load_dict.update({'X_img': X_img})
655
            test_set = WideDeepDataset(**load_dict)
656 657 658 659

        test_loader = torch.utils.data.DataLoader(dataset=test_set,
            batch_size=self.batch_size,shuffle=False)
        test_steps =  (len(test_loader.dataset) // test_loader.batch_size) + 1
660

661
        self.eval()
662 663
        preds_l = []
        with torch.no_grad():
664
            with trange(test_steps, disable=self.verbose != 1) as t:
665
                for i, data in zip(t, test_loader):
666
                    t.set_description('predict')
667
                    X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
668
                    preds = self._activation_fn(self.forward(X)).cpu().data.numpy()
669
                    preds_l.append(preds)
670 671
        self.train()
        return preds_l
672

673
    def predict(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
674
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->np.ndarray:
675 676 677 678 679
        r"""
        fit method that must run after calling 'compile'

        Parameters
        ----------
680 681 682 683 684 685 686 687 688 689 690 691 692
        X_wide: np.ndarray, Optional. Default=None
            One hot encoded wide input.
        X_deep: np.ndarray, Optional. Default=None
            Input for the deepdense model
        X_text: np.ndarray, Optional. Default=None
            Input for the deeptext model
        X_img : np.ndarray, Optional. Default=None
            Input for the deepimage model
        X_test: Dict, Optional. Default=None
            Testing dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_train = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

        **WideDeep assumes that X_wide, X_deep and target ALWAYS exist, while
        X_text and X_img are optional

        Returns
        -------
        preds: np.array with the predicted target for the test dataset.
        """
        preds_l = _predict(X_wide, X_deep, X_text, X_img, X_test)
        if self.method == "regression":
            return np.vstack(preds_l).squeeze(1)
        if self.method == "binary":
            preds = np.vstack(preds_l).squeeze(1)
            return (preds > 0.5).astype('int')
        if self.method == "multiclass":
            preds = np.vstack(preds_l)
            return np.argmax(preds, 1)
710

711 712 713 714 715
    def predict_proba(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->np.ndarray:
        """
        Returns
        -------
716 717 718
        preds: np.ndarray
            Predicted probabilities of target for the test dataset for  binary
            and multiclass methods
719 720 721 722 723 724 725 726 727 728
        """
        preds_l = _predict(X_wide, X_deep, X_text, X_img, X_test)
        if self.method == "binary":
            preds = np.vstack(preds_l).squeeze(1)
            probs = np.zeros([preds.shape[0],2])
            probs[:,0] = 1-preds
            probs[:,1] = preds
            return probs
        if self.method == "multiclass":
            return np.vstack(preds_l)
729

730
    def get_embeddings(self, col_name:str,
731
        cat_encoding_dict:Dict[str,Dict[str,int]]) -> Dict[str,np.ndarray]:
732 733 734 735 736
        """
        Get the learned embeddings for the categorical features passed through deepdense.

        Parameters
        ----------
737 738 739 740 741 742
        col_name: str,
            Column name of the feature we want to get the embeddings for
        cat_encoding_dict: Dict
            Categorical encodings. The function is designed to take the
            'encoding_dict' attribute from the DeepPreprocessor class. Any
            Dict with the same structure can be used
743 744 745

        Returns
        -------
746 747 748
        cat_embed_dict: Dict
            Categorical levels of the col_name feature and the corresponding
            embeddings
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

        Example:
        -------
        Assuming we have already train the model:

        >>> model.get_embeddings(col_name='education', cat_encoding_dict=deep_preprocessor.encoding_dict)
        {'11th': array([-0.42739448, -0.22282735,  0.36969638,  0.4445322 ,  0.2562272 ,
        0.11572784, -0.01648579,  0.09027119,  0.0457597 , -0.28337458], dtype=float32),
         'HS-grad': array([-0.10600474, -0.48775527,  0.3444158 ,  0.13818645, -0.16547225,
        0.27409762, -0.05006042, -0.0668492 , -0.11047247,  0.3280354 ], dtype=float32),
        ...
        }

        where:

        >>> deep_preprocessor.encoding_dict['education']
        {'11th': 0, 'HS-grad': 1, 'Assoc-acdm': 2, 'Some-college': 3, '10th': 4, 'Prof-school': 5,
        '7th-8th': 6, 'Bachelors': 7, 'Masters': 8, 'Doctorate': 9, '5th-6th': 10, 'Assoc-voc': 11,
        '9th': 12, '12th': 13, '1st-4th': 14, 'Preschool': 15}
        """
769 770 771 772 773 774 775 776 777
        for n,p in self.named_parameters():
            if 'embed_layers' in n and col_name in n:
                embed_mtx = p.cpu().data.numpy()
        encoding_dict = cat_encoding_dict[col_name]
        inv_encoding_dict = {v:k for k,v in encoding_dict.items()}
        cat_embed_dict = {}
        for idx,value in inv_encoding_dict.items():
            cat_embed_dict[value] = embed_mtx[idx]
        return cat_embed_dict