wide_deep.py 35.5 KB
Newer Older
1
import numpy as np
2
import warnings
3
import torch
4 5 6
import torch.nn as nn
import torch.nn.functional as F

7 8 9 10 11 12 13 14 15 16 17
from ..wdtypes import *

from ..initializers import Initializer, MultipleInitializer
from ..callbacks import Callback, History, CallbackContainer
from ..metrics import Metric, MultipleMetrics, MetricCallback
from ..losses import FocalLoss

from ._wd_dataset import WideDeepDataset
from ._multiple_optimizer import MultipleOptimizer
from ._multiple_lr_scheduler import MultipleLRScheduler
from ._multiple_transforms import MultipleTransforms
18
from .deep_dense import dense_layer
19

20 21
from tqdm import tqdm,trange
from sklearn.model_selection import train_test_split
22
from torch.utils.data import DataLoader
23

24

25 26 27 28
use_cuda = torch.cuda.is_available()


class WideDeep(nn.Module):
29 30 31 32 33 34 35 36 37
    r""" Main collector class to combine all Wide, DeepDense, DeepText and
    DeepImage models. There are two options to combine these models.
    1) Directly connecting the output of the models to an ouput neuron(s).
    2) Adding a FC-Head on top of the deep models. This FC-Head will combine
    the output form the DeepDense, DeepText and DeepImage and will be then
    connected to the output neuron(s)

    Parameters
    ----------
38 39 40 41 42 43
    wide: nn.Module
        Wide model. I recommend using the Wide class in this package. However,
        can a custom model as long as is  consistent with the required
        architecture.
    deepdense: nn.Module
        'Deep dense' model consisting in a series of categorical features
44 45 46 47
        represented by embeddings combined with numerical (aka continuous)
        features. I recommend using the DeepDense class in this package.
        However, a custom model as long as is  consistent with the required
        architecture.
48 49
    deeptext: nn.Module, Optional
        'Deep text' model for the text input. Must be an object of class
50 51
        DeepText or a custom model as long as is consistent with the required
        architecture.
52 53
    deepimage: nn.Module, Optional
        'Deep Image' model for the images input. Must be an object of class
54 55
        DeepImage or a custom model as long as is consistent with the required
        architecture.
56 57 58 59 60 61 62 63 64 65 66 67
    deephead: nn.Module, Optional
        Dense model consisting in a stack of dense layers. The FC-Head
    head_layers: List, Optional
        Sizes of the stacked dense layers in the fc-head e.g: [128, 64]
    head_dropout: List, Optional
        Dropout between the dense layers. e.g: [0.5, 0.5]
    head_batchnorm: Boolean, Optional
        Whether or not to include batch normalizatin in the dense layers that
        form the texthead
    output_dim: Int
        Size of the final layer. 1 for regression and binary classification or
        'n_class' for multiclass classification
68 69 70

    ** While I recommend using the Wide and DeepDense classes within this
    package when building the corresponding model components, it is very likely
71 72 73 74 75 76
    that the user will want to use custom text and image models. That is perfectly
    possible. Simply, build them and pass them as the corresponding parameters.
    Note that the custom models MUST return a last layer of activations (i.e. not
    the final prediction) so that  these activations are collected by WideDeep and
    combined accordingly. In  addition, the models MUST also contain an attribute
    'output_dim' with the size of these last layers of activations.
77 78 79

    Attributes
    ----------
80 81 82
    deephead: nn.Sequential
        stack of dense layers comprising the FC-Head (aka imagehead) can be
        custom designed
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    ** The remaining attributes that will be set as we compile and run the model are
        discussed within the corresponding methods.

    Example
    --------
    >>> import torch
    >>> from pytorch_widedeep.models import Wide, DeepDense, DeepText, DeepImage, WideDeep
    >>>
    >>> X_wide = torch.empty(5, 5).random_(2)
    >>> wide = Wide(wide_dim=X_wide.size(0), output_dim=1)
    >>>
    >>> X_deep = torch.cat((torch.empty(5, 4).random_(4), torch.rand(5, 1)), axis=1)
    >>> colnames = ['a', 'b', 'c', 'd', 'e']
    >>> embed_input = [(u,i,j) for u,i,j in zip(colnames[:4], [4]*4, [8]*4)]
    >>> deep_column_idx = {k:v for v,k in enumerate(colnames)}
    >>> deepdense = DeepDense(hidden_layers=[8,4], deep_column_idx=deep_column_idx, embed_input=embed_input)
    >>>
    >>> X_text = torch.cat((torch.zeros([5,1]), torch.empty(5, 4).random_(1,4)), axis=1)
    >>> deeptext = DeepText(vocab_size=4, hidden_dim=4, n_layers=1, padding_idx=0, embed_dim=4)
    >>>
    >>> X_img = torch.rand((5,3,224,224))
    >>> deepimage = DeepImage(head_layers=[512, 64, 8])
    >>>
    >>> model = WideDeep(wide=wide, deepdense=deepdense, deeptext=deeptext, deepimage=deepimage, output_dim=1)
    >>> input_dict = {'wide':X_wide, 'deepdense':X_deep, 'deeptext':X_text, 'deepimage':X_img}
    >>> model(X=input_dict)
    tensor([[-0.3779],
            [-0.5247],
            [-0.2773],
            [-0.2888],
            [-0.2010]], grad_fn=<AddBackward0>)
    """
116
    def __init__(self,
117 118
        wide:nn.Module,
        deepdense:nn.Module,
119
        output_dim:int=1,
120
        deeptext:Optional[nn.Module]=None,
121 122 123 124 125
        deepimage:Optional[nn.Module]=None,
        deephead:Optional[nn.Module]=None,
        head_layers:Optional[List]=None,
        head_dropout:Optional[List]=None,
        head_batchnorm:Optional[bool]=None):
126

127
        super(WideDeep, self).__init__()
128 129

        # The main 5 components of the wide and deep assemble
130 131 132 133
        self.wide = wide
        self.deepdense = deepdense
        self.deeptext  = deeptext
        self.deepimage = deepimage
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        self.deephead = deephead

        if self.deephead is None:
            if head_layers is not None:
                input_dim = self.deepdense.output_dim + self.deeptext.output_dim + self.deepimage.output_dim
                head_layers = [input_dim] + head_layers
                if not head_dropout: head_dropout = [0.] * (len(head_layers)-1)
                self.deephead = nn.Sequential()
                for i in range(1, len(head_layers)):
                    self.deephead.add_module(
                        'head_layer_{}'.format(i-1),
                        dense_layer( head_layers[i-1], head_layers[i], head_dropout[i-1], head_batchnorm))
                self.deephead.add_module('head_out', nn.Linear(head_layers[-1], output_dim))
            else:
                self.deepdense = nn.Sequential(
                    self.deepdense,
                    nn.Linear(self.deepdense.output_dim, output_dim))
                if self.deeptext is not None:
                    self.deeptext = nn.Sequential(
                        self.deeptext,
                        nn.Linear(self.deeptext.output_dim, output_dim))
                if self.deepimage is not None:
                    self.deepimage = nn.Sequential(
                        self.deepimage,
                        nn.Linear(self.deepimage.output_dim, output_dim))
159

160
    def forward(self, X:List[Dict[str,Tensor]])->Tensor:
161 162 163
        r"""
        Parameters
        ----------
164 165 166 167
        X: List
            List of Dict where the keys are the model names (wide, deepdense,
            deeptext and deepimage) and the values are the corresponding
            Tensors
168
        """
169
        # Wide output: direct connection to the output neuron(s)
170
        out = self.wide(X['wide'])
171 172 173 174 175 176 177 178 179

        # Deep output: either connected directly to the output neuron(s) or
        # passed through a head first
        if self.deephead:
            deepside = self.deepdense(X['deepdense'])
            if self.deeptext is not None:
                deepside = torch.cat( [deepside, self.deeptext(X['deeptext'])], axis=1 )
            if self.deepimage is not None:
                deepside = torch.cat( [deepside, self.deepimage(X['deepimage'])], axis=1 )
180
            deepside_out = self.deephead(deepside)
181 182 183 184 185 186 187 188 189 190 191
            return out.add_(deepside_out)
        else:
            out.add_(self.deepdense(X['deepdense']))
            if self.deeptext is not None:
                out.add_(self.deeptext(X['deeptext']))
            if self.deepimage is not None:
                out.add_(self.deepimage(X['deepimage']))
            return out

    def compile(self,
        method:str,
192
        optimizers:Optional[Union[Optimizer,Dict[str,Optimizer]]]=None,
193
        lr_schedulers:Optional[Union[LRScheduler,Dict[str,LRScheduler]]]=None,
194 195 196 197 198
        initializers:Optional[Dict[str,Initializer]]=None,
        transforms:Optional[List[Transforms]]=None,
        callbacks:Optional[List[Callback]]=None,
        metrics:Optional[List[Metric]]=None,
        class_weight:Optional[Union[float,List[float],Tuple[float]]]=None,
199 200
        with_focal_loss:bool=False,
        alpha:float=0.25,
201
        gamma:float=2,
202 203 204 205 206 207
        verbose:int=1):
        r"""
        Function to set a number of attributes that are used during the training process.

        Parameters
        ----------
208 209 210 211
        method: Str
             One of ('regression', 'binary' or 'multiclass')
        optimizers: Optimizer, Dict. Optional, Default=Adam
            Either an optimizers object (e.g. torch.optim.Adam()) or a
212 213 214
            dictionary where there keys are the model's children (i.e. wide,
            deepdense, deeptext, deepimage and/or deephead)  and the values
            are the corresponding optimizers. If multiple optimizers are used
215 216 217
            the  dictionary MUST contain an optimizer per child.
        lr_schedulers: LRScheduler, Dict. Optional. Default=None
            Either a LRScheduler object (e.g
218 219 220 221
            torch.optim.lr_scheduler.StepLR(opt, step_size=5)) or  dictionary
            where there keys are the model's children (i.e. wide, deepdense,
            deeptext, deepimage and/or deephead)  and the values are the
            corresponding learning rate schedulers.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        initializers: Dict, Optional. Default=None
            Dict where there keys are the model's children (i.e. wide,
            deepdense, deeptext, deepimage and/or deephead) and the values are
            the corresponding initializers.
        transforms: List, Optional. Default=None
            List with torchvision.transforms to be applied to the image
            component of the model
        callbacks: List, Optional. Default=None
            Callbacks available are: ModelCheckpoint, EarlyStopping, and
            LRHistory. The History callback is used by default.
        metrics: List, Optional. Default=None
            Metrics available are: BinaryAccuracy and CategoricalAccuracy
        class_weight: List, Tuple, Float. Optional. Default=None
            Can be one of: float indicating the weight of the minority class
            in binary classification problems (e.g. 9.) or a list or tuple
            with weights for the different classes in multiclass
            classification problems  (e.g. [1., 2., 3.]). The weights do not
            neccesarily need to be normalised. If your loss function uses
            reduction='mean', the loss will be normalized by the sum of the
            corresponding weights for each element. If you are using
242 243 244
            reduction='none', you would have to take care of the normalization
            yourself. See here:
            https://discuss.pytorch.org/t/passing-the-weights-to-crossentropyloss-correctly/14731/10
245 246 247 248 249 250
        with_focal_loss: Boolean, Optional. Default=False
            Whether or not to use the Focal Loss. https://arxiv.org/pdf/1708.02002.pdf
        alpha, gamma: Float. Default=0.25, 2
            Focal Loss parameters. See: https://arxiv.org/pdf/1708.02002.pdf
        verbose: Int
            Setting it to 0 will print nothing during training.
251 252 253 254 255

        Attributes
        ----------
        Attributes that are not direct assignations of parameters

256 257
        self.cyclic: Boolean
            Indicates if any of the lr_schedulers is CyclicLR or OneCycleLR
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

        Example
        --------
        Assuming you have already built the model components (wide, deepdense, etc...)

        >>> from pytorch_widedeep.models import WideDeep
        >>> from pytorch_widedeep.initializers import *
        >>> from pytorch_widedeep.callbacks import *
        >>> from pytorch_widedeep.optim import RAdam
        >>> model = WideDeep(wide=wide, deepdense=deepdense, deeptext=deeptext, deepimage=deepimage)
        >>> wide_opt = torch.optim.Adam(model.wide.parameters())
        >>> deep_opt = torch.optim.Adam(model.deepdense.parameters())
        >>> text_opt = RAdam(model.deeptext.parameters())
        >>> img_opt  = RAdam(model.deepimage.parameters())
        >>> wide_sch = torch.optim.lr_scheduler.StepLR(wide_opt, step_size=5)
        >>> deep_sch = torch.optim.lr_scheduler.StepLR(deep_opt, step_size=3)
        >>> text_sch = torch.optim.lr_scheduler.StepLR(text_opt, step_size=5)
        >>> img_sch  = torch.optim.lr_scheduler.StepLR(img_opt, step_size=3)
        >>> optimizers = {'wide': wide_opt, 'deepdense':deep_opt, 'deeptext':text_opt, 'deepimage': img_opt}
        >>> schedulers = {'wide': wide_sch, 'deepdense':deep_sch, 'deeptext':text_sch, 'deepimage': img_sch}
        >>> initializers = {'wide': Uniform, 'deepdense':Normal, 'deeptext':KaimingNormal,
        >>> ... 'deepimage':KaimingUniform}
        >>> transforms = [ToTensor, Normalize(mean=mean, std=std)]
        >>> callbacks = [LRHistory, EarlyStopping, ModelCheckpoint(filepath='model_weights/wd_out.pt')]
        >>> model.compile(method='regression', initializers=initializers, optimizers=optimizers,
        >>> ... lr_schedulers=schedulers, callbacks=callbacks, transforms=transforms)
        """
285
        self.verbose = verbose
286
        self.early_stop = False
287
        self.method = method
288 289
        self.with_focal_loss = with_focal_loss
        if self.with_focal_loss:
290
            self.alpha, self.gamma = alpha, gamma
291

292
        if isinstance(class_weight, float):
293
            self.class_weight = torch.tensor([1.-class_weight, class_weight])
294 295 296 297
        elif isinstance(class_weight, (List, Tuple)):
            self.class_weight =  torch.tensor(class_weight)
        else:
            self.class_weight = None
298 299

        if initializers is not None:
300
            self.initializer = MultipleInitializer(initializers, verbose=self.verbose)
301 302
            self.initializer.apply(self)

303 304 305 306 307 308 309 310
        if optimizers is not None:
            if isinstance(optimizers, Optimizer):
                self.optimizer = optimizers
            elif len(optimizers)>1:
                opt_names = list(optimizers.keys())
                mod_names = [n  for n, c in self.named_children()]
                for mn in mod_names: assert mn in opt_names, "No optimizer found for {}".format(mn)
                self.optimizer = MultipleOptimizer(optimizers)
311 312 313
        else:
            self.optimizer = torch.optim.Adam(self.parameters())

314 315 316 317 318 319 320 321
        if lr_schedulers is not None:
            if isinstance(lr_schedulers, LRScheduler):
                self.lr_scheduler = lr_schedulers
                self.cyclic = 'cycl' in self.lr_scheduler.__class__.__name__.lower()
            elif len(lr_schedulers) > 1:
                self.lr_scheduler = MultipleLRScheduler(lr_schedulers)
                scheduler_names = [sc.__class__.__name__.lower() for _,sc in self.lr_scheduler._schedulers.items()]
                self.cyclic = any(['cycl' in sn for sn in scheduler_names])
322
        else:
323
            self.lr_scheduler, self.cyclic = None, False
324

325 326 327 328 329
        if transforms is not None:
            self.transforms = MultipleTransforms(transforms)()
        else:
            self.transforms = None

330
        self.history = History()
331 332
        self.callbacks = [self.history]
        if callbacks is not None:
333 334 335
            for callback in callbacks:
                if isinstance(callback, type): callback = callback()
                self.callbacks.append(callback)
336 337 338

        if metrics is not None:
            self.metric = MultipleMetrics(metrics)
339
            self.callbacks += [MetricCallback(self.metric)]
340 341
        else:
            self.metric = None
342

343 344
        self.callback_container = CallbackContainer(self.callbacks)
        self.callback_container.set_model(self)
345

J
jrzaurin 已提交
346 347 348
        if use_cuda:
            self.cuda()

349 350 351
    def _activation_fn(self, inp:Tensor) -> Tensor:
        if self.method == 'regression':
            return inp
352
        if self.method == 'binary':
353 354 355 356 357
            return torch.sigmoid(inp)
        if self.method == 'multiclass':
            return F.softmax(inp, dim=1)

    def _loss_fn(self, y_pred:Tensor, y_true:Tensor) -> Tensor:
358 359
        if self.with_focal_loss:
            return FocalLoss(self.alpha, self.gamma)(y_pred, y_true)
360 361
        if self.method == 'regression':
            return F.mse_loss(y_pred, y_true.view(-1, 1))
362
        if self.method == 'binary':
363 364 365 366
            return F.binary_cross_entropy(y_pred, y_true.view(-1, 1), weight=self.class_weight)
        if self.method == 'multiclass':
            return F.cross_entropy(y_pred, y_true, weight=self.class_weight)

367
    def _training_step(self, data:Dict[str, Tensor], target:Tensor, batch_idx:int):
368
        self.train()
369
        X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
370 371 372 373
        y = target.float() if self.method != 'multiclass' else target
        y = y.cuda() if use_cuda else y

        self.optimizer.zero_grad()
374 375
        y_pred =  self._activation_fn(self.forward(X))
        loss = self._loss_fn(y_pred, y)
376 377 378
        loss.backward()
        self.optimizer.step()

379 380
        self.train_running_loss += loss.item()
        avg_loss = self.train_running_loss/(batch_idx+1)
381

382 383
        if self.metric is not None:
            acc = self.metric(y_pred, y)
384
            return acc, avg_loss
385
        else:
386
            return None, avg_loss
387

388
    def _validation_step(self, data:Dict[str, Tensor], target:Tensor, batch_idx:int):
389

390
        self.eval()
391
        with torch.no_grad():
J
jrzaurin 已提交
392
            X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
393 394 395
            y = target.float() if self.method != 'multiclass' else target
            y = y.cuda() if use_cuda else y

396 397
            y_pred = self._activation_fn(self.forward(X))
            loss = self._loss_fn(y_pred, y)
398 399 400 401 402
            self.valid_running_loss += loss.item()
            avg_loss = self.valid_running_loss/(batch_idx+1)

        if self.metric is not None:
            acc = self.metric(y_pred, y)
403
            return acc, avg_loss
404
        else:
405 406
            return None, avg_loss

407
    def _lr_scheduler_step(self, step_location:str):
408 409 410 411 412 413 414 415 416
        r"""
        Function to execute the learning rate schedulers steps.
        If the lr_scheduler is Cyclic (i.e. CyclicLR or OneCycleLR), the step
        must  happen after training each bach durig training. On the other
        hand, if the  scheduler is not Cyclic, is expected to be called after
        validation.

        Parameters
        ----------
417 418
        step_location: Str
            Indicates where to run the lr_scheduler step
419
        """
420 421
        if self.lr_scheduler.__class__.__name__ == 'MultipleLRScheduler' and self.cyclic:
            if step_location == 'on_batch_end':
422 423
                for model_name, scheduler in self.lr_scheduler._schedulers.items():
                    if 'cycl' in scheduler.__class__.__name__.lower(): scheduler.step()
424 425
            elif step_location == 'on_epoch_end':
                for scheduler_name, scheduler in self.lr_scheduler._schedulers.items():
426
                    if 'cycl' not in scheduler.__class__.__name__.lower(): scheduler.step()
427 428 429 430 431 432 433 434 435
        elif self.cyclic:
            if step_location == 'on_batch_end': self.lr_scheduler.step()
            else: pass
        elif self.lr_scheduler.__class__.__name__ == 'MultipleLRScheduler':
            if step_location == 'on_epoch_end': self.lr_scheduler.step()
            else: pass
        elif step_location == 'on_epoch_end': self.lr_scheduler.step()
        else: pass

436 437 438 439
    def _train_val_split(self,
        X_wide:Optional[np.ndarray]=None,
        X_deep:Optional[np.ndarray]=None,
        X_text:Optional[np.ndarray]=None,
440 441 442
        X_img:Optional[np.ndarray]=None,
        X_train:Optional[Dict[str,np.ndarray]]=None,
        X_val:Optional[Dict[str,np.ndarray]]=None,
443 444
        val_split:Optional[float]=None,
        target:Optional[np.ndarray]=None,
445
        seed:int=1):
446 447 448 449 450 451 452 453
        r"""
        If a validation set (X_val) is passed to the fit method, or val_split
        is specified, the train/val split will happen internally. A number of
        options are allowed in terms of data inputs. For parameter
        information, please, see the .fit() method documentation

        Returns
        -------
454 455
        train_set: WideDeepDataset
            WideDeepDataset object that will be loaded through
456
            torch.utils.data.DataLoader
457 458
        eval_set : WideDeepDataset
            WideDeepDataset object that will be loaded through
459 460 461
            torch.utils.data.DataLoader
        """
        # Without validation
462
        if X_val is None and val_split is None:
463 464
            # if a train dictionary is passed, check if text and image datasets
            # are present and instantiate the WideDeepDataset class
465
            if X_train is not None:
466 467 468 469 470 471 472 473
                X_wide, X_deep, target = X_train['X_wide'], X_train['X_deep'], X_train['target']
                if 'X_text' in X_train.keys(): X_text = X_train['X_text']
                if 'X_img' in X_train.keys(): X_img = X_train['X_img']
            X_train={'X_wide': X_wide, 'X_deep': X_deep, 'target': target}
            try: X_train.update({'X_text': X_text})
            except: pass
            try: X_train.update({'X_img': X_img})
            except: pass
474
            train_set = WideDeepDataset(**X_train, transforms=self.transforms)
475
            eval_set = None
476
        # With validation
477 478
        else:
            if X_val is not None:
479 480 481
                # if a validation dictionary is passed, then if not train
                # dictionary is passed we build it with the input arrays
                # (either the dictionary or the arrays must be passed)
482 483 484 485 486
                if X_train is None:
                    X_train = {'X_wide':X_wide, 'X_deep': X_deep, 'target': target}
                    if X_text is not None: X_train.update({'X_text': X_text})
                    if X_img is not None:  X_train.update({'X_img': X_img})
            else:
487 488
                # if a train dictionary is passed, check if text and image
                # datasets are present. The train/val split using val_split
489
                if X_train is not None:
490
                    X_wide, X_deep, target = X_train['X_wide'], X_train['X_deep'], X_train['target']
491 492 493 494
                    if 'X_text' in X_train.keys(): X_text = X_train['X_text']
                    if 'X_img' in X_train.keys(): X_img = X_train['X_img']
                X_tr_wide, X_val_wide, X_tr_deep, X_val_deep, y_tr, y_val = train_test_split(X_wide,
                    X_deep, target, test_size=val_split, random_state=seed)
495 496
                X_train = {'X_wide':X_tr_wide, 'X_deep': X_tr_deep, 'target': y_tr}
                X_val = {'X_wide':X_val_wide, 'X_deep': X_val_deep, 'target': y_val}
497
                try:
498 499
                    X_tr_text, X_val_text = train_test_split(X_text, test_size=val_split,
                        random_state=seed)
500
                    X_train.update({'X_text': X_tr_text}), X_val.update({'X_text': X_val_text})
501 502
                except: pass
                try:
503 504
                    X_tr_img, X_val_img = train_test_split(X_img, test_size=val_split,
                        random_state=seed)
505 506
                    X_train.update({'X_img': X_tr_img}), X_val.update({'X_img': X_val_img})
                except: pass
507
            # At this point the X_train and X_val dictionaries have been built
508 509
            train_set = WideDeepDataset(**X_train, transforms=self.transforms)
            eval_set = WideDeepDataset(**X_val, transforms=self.transforms)
510 511
        return train_set, eval_set

512 513 514 515 516
    def fit(self,
        X_wide:Optional[np.ndarray]=None,
        X_deep:Optional[np.ndarray]=None,
        X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None,
517 518
        X_train:Optional[Dict[str,np.ndarray]]=None,
        X_val:Optional[Dict[str,np.ndarray]]=None,
519 520 521
        val_split:Optional[float]=None,
        target:Optional[np.ndarray]=None,
        n_epochs:int=1,
522
        validation_freq:int=1,
523 524 525
        batch_size:int=32,
        patience:int=10,
        seed:int=1):
526 527 528 529 530
        r"""
        fit method that must run after calling 'compile'

        Parameters
        ----------
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
        X_wide: np.ndarray, Optional. Default=None
            One hot encoded wide input.
        X_deep: np.ndarray, Optional. Default=None
            Input for the deepdense model
        X_text: np.ndarray, Optional. Default=None
            Input for the deeptext model
        X_img : np.ndarray, Optional. Default=None
            Input for the deepimage model
        X_train: Dict, Optional. Default=None
            Training dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_train = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
        X_val: Dict, Optional. Default=None
            Validation dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_val = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
        val_split: Float, Optional. Default=None
            train/val split
        target: np.ndarray, Optional. Default=None
            target values
        n_epochs: Int, Default=1
        validation_freq: Int, Default=1
        batch_size: Int, Default=32
        patience: Int, Default=10
            Number of epochs without improving the target metric before we
            stop the fit
        seed: Int, Default=1
            Random seed for the train/val split
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

        **WideDeep assumes that X_wide, X_deep and target ALWAYS exist, while
        X_text and X_img are optional
        **Either X_train or X_wide, X_deep and target must be passed to the
        fit method

        Example
        --------
        Assuming you have already built and compiled the model

        Ex 1. using train input arrays directly and no validation
        >>> model.fit(X_wide=X_wide, X_deep=X_deep, target=target, n_epochs=10, batch_size=256)

        Ex 2: using train input arrays directly and validation with val_split
        >>> model.fit(X_wide=X_wide, X_deep=X_deep, target=target, n_epochs=10, batch_size=256, val_split=0.2)

        Ex 3: using train dict and val_split
        >>> X_train = {'X_wide': X_wide, 'X_deep': X_deep, 'target': y}
        >>> model.fit(X_train, n_epochs=10, batch_size=256, val_split=0.2)

        Ex 4: validation using training and validation dicts
        >>> X_train = {'X_wide': X_wide_tr, 'X_deep': X_deep_tr, 'target': y_tr}
        >>> X_val = {'X_wide': X_wide_val, 'X_deep': X_deep_val, 'target': y_val}
        >>> model.fit(X_train=X_train, X_val=X_val n_epochs=10, batch_size=256)
        """
586 587 588

        if X_train is None and (X_wide is None or X_deep is None or target is None):
            raise ValueError(
589 590
                "Training data is missing. Either a dictionary (X_train) with "
                "the training dataset or at least 3 arrays (X_wide, X_deep, "
591
                "target) must be passed to the fit method")
592 593

        self.batch_size = batch_size
594 595
        train_set, eval_set = self._train_val_split(X_wide, X_deep, X_text, X_img,
            X_train, X_val, val_split, target, seed)
596
        train_loader = DataLoader(dataset=train_set, batch_size=batch_size, num_workers=8)
597 598 599
        train_steps =  (len(train_loader.dataset) // batch_size) + 1
        self.callback_container.on_train_begin({'batch_size': batch_size,
            'train_steps': train_steps, 'n_epochs': n_epochs})
600

601
        for epoch in range(n_epochs):
602
            # train step...
603 604
            epoch_logs={}
            self.callback_container.on_epoch_begin(epoch, logs=epoch_logs)
605
            self.train_running_loss = 0.
606
            with trange(train_steps, disable=self.verbose != 1) as t:
607
                for batch_idx, (data,target) in zip(t, train_loader):
608
                    t.set_description('epoch %i' % (epoch+1))
609
                    acc, train_loss = self._training_step(data, target, batch_idx)
610 611
                    if acc is not None:
                        t.set_postfix(metrics=acc, loss=train_loss)
612
                    else:
613
                        t.set_postfix(loss=np.sqrt(train_loss))
614 615
                    if self.lr_scheduler: self._lr_scheduler_step(step_location='on_batch_end')
                    self.callback_container.on_batch_end(batch=batch_idx)
616
            epoch_logs['train_loss'] = train_loss
617
            if acc is not None: epoch_logs['train_acc'] = acc['acc']
618
            # eval step...
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

            if epoch % validation_freq  == (validation_freq - 1):
                if eval_set is not None:
                    eval_loader = DataLoader(dataset=eval_set, batch_size=batch_size, num_workers=8,
                        shuffle=False)
                    eval_steps =  (len(eval_loader.dataset) // batch_size) + 1
                    self.valid_running_loss = 0.
                    with trange(eval_steps, disable=self.verbose != 1) as v:
                        for i, (data,target) in zip(v, eval_loader):
                            v.set_description('valid')
                            acc, val_loss = self._validation_step(data, target, i)
                            if acc is not None:
                                v.set_postfix(metrics=acc, loss=val_loss)
                            else:
                                v.set_postfix(loss=np.sqrt(val_loss))
                    epoch_logs['val_loss'] = val_loss
                    if acc is not None: epoch_logs['val_acc'] = acc['acc']
636 637 638
            if self.lr_scheduler: self._lr_scheduler_step(step_location='on_epoch_end')
            # log and check if early_stop...
            self.callback_container.on_epoch_end(epoch, epoch_logs)
639
            if self.early_stop:
640
                self.callback_container.on_train_end(epoch)
641
                break
642
            self.callback_container.on_train_end(epoch)
643 644 645 646 647 648 649 650 651
        self.train()

    def _predict(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->List:
        r"""
        Hidden method to avoid code repetition in predict and predict_proba.
        For parameter information, please, see the .predict() method
        documentation
        """
652
        if X_test is not None:
653
            test_set = WideDeepDataset(**X_test)
654
        else:
655
            load_dict = {'X_wide': X_wide, 'X_deep': X_deep}
656 657
            if X_text is not None: load_dict.update({'X_text': X_text})
            if X_img is not None:  load_dict.update({'X_img': X_img})
658
            test_set = WideDeepDataset(**load_dict)
659 660 661 662

        test_loader = torch.utils.data.DataLoader(dataset=test_set,
            batch_size=self.batch_size,shuffle=False)
        test_steps =  (len(test_loader.dataset) // test_loader.batch_size) + 1
663

664
        self.eval()
665 666
        preds_l = []
        with torch.no_grad():
667
            with trange(test_steps, disable=self.verbose != 1) as t:
668
                for i, data in zip(t, test_loader):
669
                    t.set_description('predict')
670
                    X = {k:v.cuda() for k,v in data.items()} if use_cuda else data
671
                    preds = self._activation_fn(self.forward(X)).cpu().data.numpy()
672
                    preds_l.append(preds)
673 674
        self.train()
        return preds_l
675

676
    def predict(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
677
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->np.ndarray:
678 679 680 681 682
        r"""
        fit method that must run after calling 'compile'

        Parameters
        ----------
683 684 685 686 687 688 689 690 691 692 693 694 695
        X_wide: np.ndarray, Optional. Default=None
            One hot encoded wide input.
        X_deep: np.ndarray, Optional. Default=None
            Input for the deepdense model
        X_text: np.ndarray, Optional. Default=None
            Input for the deeptext model
        X_img : np.ndarray, Optional. Default=None
            Input for the deepimage model
        X_test: Dict, Optional. Default=None
            Testing dataset for the different model branches.  Keys are
            'X_wide', 'X_deep', 'X_text', 'X_img' and 'target' the values are
            the corresponding matrices e.g X_train = {'X_wide': X_wide,
            'X_wide': X_wide, 'X_text': X_text, 'X_img': X_img}
696 697 698 699 700 701 702 703

        **WideDeep assumes that X_wide, X_deep and target ALWAYS exist, while
        X_text and X_img are optional

        Returns
        -------
        preds: np.array with the predicted target for the test dataset.
        """
704
        preds_l = self._predict(X_wide, X_deep, X_text, X_img, X_test)
705 706 707 708 709 710 711 712
        if self.method == "regression":
            return np.vstack(preds_l).squeeze(1)
        if self.method == "binary":
            preds = np.vstack(preds_l).squeeze(1)
            return (preds > 0.5).astype('int')
        if self.method == "multiclass":
            preds = np.vstack(preds_l)
            return np.argmax(preds, 1)
713

714 715 716 717 718
    def predict_proba(self, X_wide:np.ndarray, X_deep:np.ndarray, X_text:Optional[np.ndarray]=None,
        X_img:Optional[np.ndarray]=None, X_test:Optional[Dict[str, np.ndarray]]=None)->np.ndarray:
        """
        Returns
        -------
719 720 721
        preds: np.ndarray
            Predicted probabilities of target for the test dataset for  binary
            and multiclass methods
722
        """
723
        preds_l = self._predict(X_wide, X_deep, X_text, X_img, X_test)
724 725 726 727 728 729 730 731
        if self.method == "binary":
            preds = np.vstack(preds_l).squeeze(1)
            probs = np.zeros([preds.shape[0],2])
            probs[:,0] = 1-preds
            probs[:,1] = preds
            return probs
        if self.method == "multiclass":
            return np.vstack(preds_l)
732

733
    def get_embeddings(self, col_name:str,
734
        cat_encoding_dict:Dict[str,Dict[str,int]]) -> Dict[str,np.ndarray]:
735 736 737 738 739
        """
        Get the learned embeddings for the categorical features passed through deepdense.

        Parameters
        ----------
740 741 742 743 744 745
        col_name: str,
            Column name of the feature we want to get the embeddings for
        cat_encoding_dict: Dict
            Categorical encodings. The function is designed to take the
            'encoding_dict' attribute from the DeepPreprocessor class. Any
            Dict with the same structure can be used
746 747 748

        Returns
        -------
749 750 751
        cat_embed_dict: Dict
            Categorical levels of the col_name feature and the corresponding
            embeddings
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

        Example:
        -------
        Assuming we have already train the model:

        >>> model.get_embeddings(col_name='education', cat_encoding_dict=deep_preprocessor.encoding_dict)
        {'11th': array([-0.42739448, -0.22282735,  0.36969638,  0.4445322 ,  0.2562272 ,
        0.11572784, -0.01648579,  0.09027119,  0.0457597 , -0.28337458], dtype=float32),
         'HS-grad': array([-0.10600474, -0.48775527,  0.3444158 ,  0.13818645, -0.16547225,
        0.27409762, -0.05006042, -0.0668492 , -0.11047247,  0.3280354 ], dtype=float32),
        ...
        }

        where:

        >>> deep_preprocessor.encoding_dict['education']
        {'11th': 0, 'HS-grad': 1, 'Assoc-acdm': 2, 'Some-college': 3, '10th': 4, 'Prof-school': 5,
        '7th-8th': 6, 'Bachelors': 7, 'Masters': 8, 'Doctorate': 9, '5th-6th': 10, 'Assoc-voc': 11,
        '9th': 12, '12th': 13, '1st-4th': 14, 'Preschool': 15}
        """
772 773 774 775 776 777 778 779 780
        for n,p in self.named_parameters():
            if 'embed_layers' in n and col_name in n:
                embed_mtx = p.cpu().data.numpy()
        encoding_dict = cat_encoding_dict[col_name]
        inv_encoding_dict = {v:k for k,v in encoding_dict.items()}
        cat_embed_dict = {}
        for idx,value in inv_encoding_dict.items():
            cat_embed_dict[value] = embed_mtx[idx]
        return cat_embed_dict