ppo.py 16.2 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8 9 10 11
import math
from pathlib import Path
import copy
from tqdm import tqdm
from functools import partial
from collections import deque, namedtuple
from random import randrange

from beartype import beartype
from beartype.typing import List, Optional, Callable, Deque

U
u010280923 已提交
12 13 14
from einops import rearrange, repeat
from einops.layers.torch import Rearrange

U
u010280923 已提交
15 16 17 18 19 20 21 22
import torch
from torch import nn
import torch.nn.functional as F

from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence

U
u010280923 已提交
23
import pytorch_lightning as pl
U
u010280923 已提交
24
from pytorch_lightning.utilities import rank_zero_info
U
u010280923 已提交
25 26
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
U
u010280923 已提交
27

U
u010280923 已提交
28 29 30 31
from src.model import RWKV
from src.rlhf.reward import RewardModel
from src.rlhf.optimizer import get_optimizer
from src.rlhf.utils import masked_mean, eval_decorator
U
u010280923 已提交
32

每日一练社区's avatar
fix bug  
每日一练社区 已提交
33
# actor critic
U
u010280923 已提交
34 35 36 37 38 39 40 41 42 43 44

PPOActionCriticReturn = namedtuple('PPOActionCriticReturn', [
    'actions',
    'sequence',
    'mask',
    'prompt_mask',
    'action_logits',
    'values'
])

@beartype
U
u010280923 已提交
45
class ActorCritic(nn.Module):
U
u010280923 已提交
46 47
    def __init__(
        self,
U
u010280923 已提交
48
        args,
U
u010280923 已提交
49 50
        actor: RWKV,
        critic: RWKV,
U
u010280923 已提交
51
        pooled_values = False
U
u010280923 已提交
52 53 54
    ):
        super().__init__()

U
u010280923 已提交
55
        self.actor = actor
U
u010280923 已提交
56
        self.critic = critic
U
u010280923 已提交
57 58 59

        self.pooled_values = pooled_values
        self.value_head = nn.Sequential(
U
u010280923 已提交
60
            nn.Linear(args.n_embd, 1),
U
u010280923 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73
            Rearrange('... 1 -> ...')
        )

        nn.init.zeros_(self.value_head[0].bias)
        nn.init.orthogonal_(self.value_head[0].weight, gain = math.sqrt(2))

    @torch.no_grad()
    @eval_decorator
    def generate(
        self,
        state,
        max_seq_len,
        eos_token = None,
U
u010280923 已提交
74
        return_values = False
U
u010280923 已提交
75
    ):
U
u010280923 已提交
76 77
        # 产生一条 response,相当于采取了一次 action
        actions = self.actor.generate(
U
u010280923 已提交
78 79
            max_seq_len,
            prompt = state,       
U
u010280923 已提交
80
            eos_token = eos_token
U
u010280923 已提交
81 82
        )

U
u010280923 已提交
83
        # 将 prompt (state) 和 response (action) 进行拼接
U
u010280923 已提交
84 85 86 87
        sequence = torch.cat((state, actions), dim = -1)
        action_len = actions.shape[-1]
        state_len = state.shape[-1]

U
u010280923 已提交
88
        # 构建 prompt_mask (state_mask) 和 response_mask (action_mask)
U
u010280923 已提交
89 90 91 92 93
        prompt_mask = torch.arange(sequence.shape[-1], device = state.device) < state_len
        prompt_mask = repeat(prompt_mask, 'n -> b n', b = sequence.shape[0])

        action_mask = ~prompt_mask

U
u010280923 已提交
94
        # 考虑 eos token
U
u010280923 已提交
95 96 97 98 99 100
        mask = None
        if exists(eos_token):
            mask = ((sequence == eos_token).cumsum(dim = -1) == 0)
            mask = F.pad(mask, (1, -1), value = True) # include eos token
            action_mask &= mask

U
u010280923 已提交
101 102
        # 将生成的 sequence 输入到 actor 中,得到 action_logits
        # 将生成的 sequence 输入到 critic 中,得到 value
U
u010280923 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        action_logits, value = self.forward(
            sequence,
            mask = action_mask,
            return_values = return_values
        )        

        return PPOActionCriticReturn(
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        )

    def forward(
        self,
        x,
        mask = None,
        return_values = True
    ):
U
u010280923 已提交
124
        action_logits, _ = self.actor(
U
u010280923 已提交
125
            x,
U
u010280923 已提交
126
            ppo_train = True
U
u010280923 已提交
127 128 129 130 131
        )

        if not return_values:
            return action_logits, None

U
u010280923 已提交
132
        _, critic_embeds = self.critic(
U
u010280923 已提交
133 134
            x,
            return_only_embedding = True,
U
u010280923 已提交
135
            ppo_train = True
U
u010280923 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        )

        if self.pooled_values:
            critic_embeds = shift(critic_embeds, shift = 1, dim = -2)
            critic_embeds = masked_mean(critic_embeds, mask, dim = 1)

        values = self.value_head(critic_embeds)

        return action_logits, values

@beartype
class ExperienceDataset(Dataset):
    def __init__(
        self,
        data: List[torch.Tensor],
        device = None
    ):
        super().__init__()
        self.data = data
        self.device = device

    def __len__(self):
        return self.data[0].shape[0]

    def __getitem__(self, ind):
        return tuple(map(lambda t: t[ind].to(self.device), self.data))

def create_dataloader(data, batch_size, shuffle = True, device = None, **kwargs):
    ds = ExperienceDataset(data, device = device)
    return DataLoader(ds, batch_size = batch_size, shuffle = shuffle, **kwargs)

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def masked_normalize(t, eps = 1e-5, mask = None, dim = None):
    dim = default(dim, tuple(range(t.ndim)))
    kwargs = dict(dim = dim, keepdim = True)

    mean = masked_mean(t, mask = mask, **kwargs)
    mean_centered = t - mean
    var = masked_mean(mean_centered ** 2, mask = mask, **kwargs)

    return mean_centered * var.clamp(min = eps).rsqrt()

def pad_sequence_fixed(sequences, *args, **kwargs):
    first_el = sequences[0]
    has_no_dimension = first_el.ndim == 0

    # if no dimensions, add a single dimension
    if has_no_dimension:
        sequences = tuple(map(lambda t: t[None], sequences))

    out = pad_sequence(sequences, *args, **kwargs)

    if has_no_dimension:
        out = rearrange(out, '... 1 -> ...')

    return out

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def log_prob(prob, indices):
    assert prob.shape[:2] == indices.shape, f'preceding shapes of prob {prob.shape[:2]} and indices {indices.shape} must match'
    return log(prob.gather(-1, indices[..., None])).squeeze(-1)

def shift(t, value = 0, shift = 1, dim = -1):
    zeros = (0, 0) * (-dim - 1)
    return F.pad(t, (*zeros, shift, -shift), value = value)

def masked_entropy(prob, dim = -1, mask = None):
    entropies = (prob * log(prob)).sum(dim = -1)
    return masked_mean(entropies, mask = mask).mean()

def masked_kl_div(prob1, prob2, mask = None):
    """
    need to account for variable sequence lengths, therefore not using the built-in functional version
    """
    kl_divs = (prob1 * (log(prob2) - log(prob1))).sum(dim = -1)

    if not exists(mask):
        return kl_divs.mean()

    return masked_mean(kl_divs, mask).mean()

def clipped_value_loss(values, rewards, old_values, clip):
    value_clipped = old_values + (values - old_values).clamp(-clip, clip)
    value_loss_1 = (value_clipped.flatten() - rewards) ** 2
    value_loss_2 = (values.flatten() - rewards) ** 2
    return torch.mean(torch.max(value_loss_1, value_loss_2))

U
u010280923 已提交
232
# rlhf
U
u010280923 已提交
233 234

@beartype
U
u010280923 已提交
235
class RLHF(pl.LightningModule):
U
u010280923 已提交
236 237
    def __init__(
        self,
U
u010280923 已提交
238
        args,
U
u010280923 已提交
239 240
        actor: RWKV,
        critic: RWKV,
U
u010280923 已提交
241
        reward_model: RewardModel
U
u010280923 已提交
242 243 244
    ):
        super().__init__()

U
u010280923 已提交
245
        self.args = args
U
u010280923 已提交
246

U
u010280923 已提交
247 248
        # 使用 RWKV 初始化 actor_critic
        actor_critic = ActorCritic(
U
u010280923 已提交
249 250 251
            args=self.args,
            actor=actor,
            critic=critic,
U
u010280923 已提交
252
            pooled_values = args.critic_pooled_values
U
u010280923 已提交
253
        ).to(actor.device)
U
u010280923 已提交
254 255 256

        self.actor_critic = actor_critic

U
u010280923 已提交
257
        # 将 reward_model 设置为 evaluation 模式 
U
u010280923 已提交
258 259 260 261 262 263 264 265
        self.reward_model = reward_model.eval()

    def save(self, filepath = './checkpoint.pt'):
        torch.save(self.actor_critic.state_dict(), filepath)

    def load(self, filepath = './checkpoint.pt'):
        state_dict = torch.load(filepath)
        self.actor_critic.load_state_dict(state_dict)
U
u010280923 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    
    def configure_optimizers(self):
        args = self.args
        if args.layerwise_lr > 0:
            lr_1x = set()
            lr_2x = set()
            lr_3x = set()
            for n, p in self.named_parameters():
                if "time_mix" in n:
                    if args.my_pile_stage == 2:
                        lr_2x.add(n)
                    else:
                        lr_1x.add(n)
                elif "time_decay" in n:
                    if args.my_pile_stage == 2:
                        lr_3x.add(n)
                    else:
                        lr_2x.add(n)
                elif "time_first" in n:
                    lr_3x.add(n)
                else:
                    lr_1x.add(n)
            lr_1x = sorted(list(lr_1x))
            lr_2x = sorted(list(lr_2x))
            lr_3x = sorted(list(lr_3x))
            param_dict = {n: p for n, p in self.named_parameters()}
            if args.my_pile_stage == 2:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
                ]
            else:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
                ]
        else:
            optim_groups = [
                {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
            ]

        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
        return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            cfg = strategy.config["zero_optimization"]
            return cfg.get("offload_optimizer") or cfg.get("offload_param")
        return False
U
u010280923 已提交
321 322 323 324 325 326

    @torch.no_grad()
    def generate(
        self,
        max_seq_len,
        prompt,
U
u010280923 已提交
327
        num_samples = 4  # sample 4 per prompt and select the one with highest reward
U
u010280923 已提交
328
    ):
U
u010280923 已提交
329 330 331
        ''' 未参与训练,仅推理时使用
        '''

U
u010280923 已提交
332 333 334
        assert prompt.ndim == 1, 'only one prompt allowed at a time for now'
        prompt = repeat(prompt, 'n -> b n', b = num_samples)

U
u010280923 已提交
335
        self.actor_critic.eval()
U
u010280923 已提交
336 337 338 339 340 341 342
        (
            actions,
            sequences,
            mask,
            prompt_mask,
            action_logits,
            _
U
u010280923 已提交
343
        ) = self.actor_critic.generate(
U
u010280923 已提交
344 345
            prompt,
            max_seq_len = max_seq_len,
U
u010280923 已提交
346
            return_values = False
U
u010280923 已提交
347 348
        )

U
u010280923 已提交
349
        rewards = self.reward_model(
U
u010280923 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362
            sequences,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )

        best_sequence_index = rewards.topk(1, dim = -1).indices

        best_sequence = sequences[best_sequence_index]
        best_sequence = rearrange(best_sequence, '1 ... -> ...')

        return best_sequence

U
u010280923 已提交
363 364 365 366 367 368 369 370
    def training_step(self, batch, batch_idx):
        sequences, \
        prompt_masks, \
        masks, \
        old_action_probs, \
        old_log_probs, \
        rewards, \
        old_values = batch
U
u010280923 已提交
371 372

        # PPO training
U
u010280923 已提交
373
        action_masks = ~prompt_masks & masks
U
u010280923 已提交
374

U
u010280923 已提交
375 376 377 378
        action_logits, values = self.actor_critic(
            sequences,
            mask = action_masks
        )
U
u010280923 已提交
379

U
u010280923 已提交
380
        action_logits = shift(action_logits, shift=1, dim=-2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
381
        action_len = old_log_probs.shape[-1]
U
u010280923 已提交
382

U
u010280923 已提交
383 384 385
        action_probs = action_logits.softmax(dim = -1)
        action_log_probs = log_prob(action_probs, sequences)
        action_log_probs = action_log_probs[:, -action_len:]
U
u010280923 已提交
386

U
u010280923 已提交
387
        # calculate entropies, taking into account which part of the sequence is actually an action
U
u010280923 已提交
388

U
u010280923 已提交
389
        entropies = masked_entropy(action_probs, mask = action_masks)
U
u010280923 已提交
390

U
u010280923 已提交
391
        # calculate kl div between old action probs and new ones, taking into account which part of the sequence is action or not
U
u010280923 已提交
392

U
u010280923 已提交
393
        kl_div_loss = 0.
U
u010280923 已提交
394

U
u010280923 已提交
395 396
        if self.args.kl_div_loss_weight > 0:
            kl_div_loss = masked_kl_div(action_probs, old_action_probs, mask = action_masks) * self.args.kl_div_loss_weight
U
u010280923 已提交
397

U
u010280923 已提交
398
        # handle non-pooled values
U
u010280923 已提交
399

U
u010280923 已提交
400
        normalize_kwargs = dict()
U
u010280923 已提交
401

U
u010280923 已提交
402 403
        if old_values.ndim == 2:
            old_values, values = map(lambda t: shift(t, shift = 1, dim = -2), (old_values, values))
U
u010280923 已提交
404

U
u010280923 已提交
405 406 407 408
            old_values = old_values[:, -action_len:]
            values = values[:, -action_len:]
            rewards = rearrange(rewards, 'b -> b 1')
            normalize_kwargs = dict(dim = -1, mask = action_masks[:, -action_len:])
U
u010280923 已提交
409

U
u010280923 已提交
410 411
        if values.ndim < rewards.ndim:
            values = rearrange(values, '... -> ... 1')
U
u010280923 已提交
412

U
u010280923 已提交
413
        # calculate clipped surrogate objective, classic PPO loss
U
u010280923 已提交
414

U
u010280923 已提交
415 416
        ratios = (action_log_probs - old_log_probs).exp()
        advantages = masked_normalize(rewards - old_values, **normalize_kwargs)
U
u010280923 已提交
417

U
u010280923 已提交
418 419
        if advantages.ndim == 1:
            advantages = rearrange(advantages, 'b -> b 1')
U
u010280923 已提交
420

U
u010280923 已提交
421 422 423
        surr1 = ratios * advantages
        surr2 = ratios.clamp(1 - self.args.eps_clip, 1 + self.args.eps_clip) * advantages
        policy_loss = - torch.min(surr1, surr2) - self.args.beta_s * entropies
U
u010280923 已提交
424

U
u010280923 已提交
425 426
        # actor loss (也称为 policy loss, 是最终要使用模型的 loss)
        actor_loss = policy_loss.mean() + kl_div_loss
U
u010280923 已提交
427

U
u010280923 已提交
428 429 430 431
        # critic loss (也称为 value loss)
        # update value network separate from policy network
        critic_loss = clipped_value_loss(values, rewards, old_values, self.args.value_clip)
        critic_loss = critic_loss.mean()
U
u010280923 已提交
432

U
u010280923 已提交
433
        return {'actor_loss': actor_loss.item(), 'critic_loss': critic_loss.item()}
U
u010280923 已提交
434

U
u010280923 已提交
435 436 437 438
    def make_experience(self, prompts, eos_token=None, temperature=1):
        ''' 通过与 environment 交互产生训练数据
        '''
        
U
u010280923 已提交
439 440
        device = self.device

U
u010280923 已提交
441 442 443 444
        # select a bunch of random states (prompts)
        # and get the action (sampled sequence from rwkv as well as the action probs)
        # also calculate the reward using reward model and store
        # 随机挑选一条 prompt
U
u010280923 已提交
445 446
        rand_prompt_index = randrange(0, len(prompts))
        state = prompts[rand_prompt_index]
U
u010280923 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

        # remove padding from state
        state_mask = state != self.args.pad_value
        state = state[state_mask]

        # get predicted sequence
        # 与 environment 进行交互,其中返回的:
        #   action 是 response,
        #   sequence 是 prompt + response, 
        (
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        ) = self.actor_critic.generate(
            rearrange(state, 'n -> 1 n'),
            max_seq_len = self.args.ctx_len,
            eos_token = eos_token,
            return_values = True
        )
        action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
470

U
u010280923 已提交
471
        action_prob = action_logits.softmax(dim = -1)
U
u010280923 已提交
472

U
u010280923 已提交
473 474 475
        action_len = actions.shape[-1]
        action_log_prob = log_prob(action_prob, sequence)
        action_log_prob = action_log_prob[:, -action_len:]
U
u010280923 已提交
476

U
u010280923 已提交
477
        actions = rearrange(actions, '1 ... -> ...')
U
u010280923 已提交
478

U
u010280923 已提交
479 480
        # get reward as given by supervised trained reward model
        sequence = torch.cat((state, actions), dim = 0)
U
u010280923 已提交
481

U
u010280923 已提交
482 483
        prompt_length = len(state)
        prompt_mask = torch.arange(sequence.shape[-1], device = device) < prompt_length
U
u010280923 已提交
484

U
u010280923 已提交
485 486 487
        sequence = rearrange(sequence, 'n -> 1 n')
        prompt_mask = rearrange(prompt_mask, 'n -> 1 n')
        mask = rearrange(mask, 'n -> 1 n') if exists(mask) else torch.ones(sequence.shape, dtype = torch.bool, device = device)
U
u010280923 已提交
488

U
u010280923 已提交
489 490 491 492 493 494
        reward = self.reward_model(
            sequence,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )
U
u010280923 已提交
495

U
u010280923 已提交
496 497 498 499 500 501 502 503 504
        return (
            sequence,
            prompt_mask,
            mask,
            action_prob,
            action_log_prob,
            reward,
            value
        )