ppo.py 20.0 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
import math
from pathlib import Path
import copy
from tqdm import tqdm
from functools import partial
from collections import deque, namedtuple
from random import randrange

from beartype import beartype
from beartype.typing import List, Optional, Callable, Deque

import torch
from torch import nn
import torch.nn.functional as F

from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

from palm_rlhf_pytorch.palm import PaLM
from palm_rlhf_pytorch.reward import RewardModel
from palm_rlhf_pytorch.optimizer import get_optimizer
from palm_rlhf_pytorch.utils import masked_mean, eval_decorator

from accelerate import Accelerator

# actor critic - PaLM with lora

PPOActionCriticReturn = namedtuple('PPOActionCriticReturn', [
    'actions',
    'sequence',
    'mask',
    'prompt_mask',
    'action_logits',
    'values'
])

@beartype
class ActorCritic(nn.Module):
    def __init__(
        self,
        palm: PaLM,
        critic_palm: Optional[PaLM] = None,
        pooled_values = False,
        actor_lora = True,
        critic_lora = True,
        actor_lora_r = 8,
        critic_lora_r = 8,
        actor_lora_scope = 'actor',
        critic_lora_scope = 'critic',
        actor_dropout = 0.,
        critic_dropout = 0.
    ):
        super().__init__()
        self.actor_palm = palm

        self.critic_palm = critic_palm

        if not exists(self.critic_palm):
            self.critic_palm = copy.deepcopy(palm)

        self.actor_palm.set_dropout(actor_dropout)
        self.critic_palm.set_dropout(critic_dropout)

        self.actor_lora = actor_lora
        self.critic_lora = critic_lora

        self.actor_lora_scope = actor_lora_scope if actor_lora else None
        self.critic_lora_scope = critic_lora_scope if critic_lora else None

        if self.actor_lora:
            self.actor_palm.add_finetune_params(actor_lora_scope, lora_r = actor_lora_r)

        if self.critic_lora:
            self.critic_palm.add_finetune_params(critic_lora_scope, lora_r = critic_lora_r)

        self.pooled_values = pooled_values
        self.value_head = nn.Sequential(
            nn.Linear(palm.dim, 1),
            Rearrange('... 1 -> ...')
        )

        nn.init.zeros_(self.value_head[0].bias)
        nn.init.orthogonal_(self.value_head[0].weight, gain = math.sqrt(2))

    def actor_parameters(self):
        if not self.actor_lora:
            return self.actor_palm.parameters()

        return [
            *self.actor_palm.finetune_parameters(self.actor_lora_scope)
        ]

    def critic_parameters(self):
        if not self.actor_lora:
            return [*self.critic_palm.parameters(), *self.value_head.parameters()]

        return [
            *self.critic_palm.finetune_parameters(self.critic_lora_scope),
            *self.value_head.parameters()
        ]

    @torch.no_grad()
    @eval_decorator
    def generate(
        self,
        state,
        max_seq_len,
        eos_token = None,
        return_values = False,
        **kwargs
    ):
        actions = self.actor_palm.generate(
            max_seq_len,
            prompt = state,       
            eos_token = eos_token,     
            finetune_scope = self.actor_lora_scope,
            use_tqdm = True,
            **kwargs
        )

        sequence = torch.cat((state, actions), dim = -1)
        action_len = actions.shape[-1]
        state_len = state.shape[-1]

        prompt_mask = torch.arange(sequence.shape[-1], device = state.device) < state_len
        prompt_mask = repeat(prompt_mask, 'n -> b n', b = sequence.shape[0])

        action_mask = ~prompt_mask

        mask = None
        if exists(eos_token):
            mask = ((sequence == eos_token).cumsum(dim = -1) == 0)
            mask = F.pad(mask, (1, -1), value = True) # include eos token
            action_mask &= mask

        action_logits, value = self.forward(
            sequence,
            mask = action_mask,
            return_values = return_values
        )        

        return PPOActionCriticReturn(
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        )

    def forward(
        self,
        x,
        mask = None,
        return_values = True
    ):
        action_logits = self.actor_palm(
            x,
            finetune_scope = self.actor_lora_scope
        )

        if not return_values:
            return action_logits, None

        critic_embeds = self.critic_palm(
            x,
            return_only_embedding = True,
            finetune_scope = self.critic_lora_scope
        )

        if self.pooled_values:
            critic_embeds = shift(critic_embeds, shift = 1, dim = -2)
            critic_embeds = masked_mean(critic_embeds, mask, dim = 1)

        values = self.value_head(critic_embeds)

        return action_logits, values

# data

Memory = namedtuple('Memory', [
    'sequence',
    'prompt_mask',
    'mask',
    'action_prob',
    'action_log_prob',
    'reward',
    'value'
])

@beartype
class ExperienceDataset(Dataset):
    def __init__(
        self,
        data: List[torch.Tensor],
        device = None
    ):
        super().__init__()
        self.data = data
        self.device = device

    def __len__(self):
        return self.data[0].shape[0]

    def __getitem__(self, ind):
        return tuple(map(lambda t: t[ind].to(self.device), self.data))

def create_dataloader(data, batch_size, shuffle = True, device = None, **kwargs):
    ds = ExperienceDataset(data, device = device)
    return DataLoader(ds, batch_size = batch_size, shuffle = shuffle, **kwargs)

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def masked_normalize(t, eps = 1e-5, mask = None, dim = None):
    dim = default(dim, tuple(range(t.ndim)))
    kwargs = dict(dim = dim, keepdim = True)

    mean = masked_mean(t, mask = mask, **kwargs)
    mean_centered = t - mean
    var = masked_mean(mean_centered ** 2, mask = mask, **kwargs)

    return mean_centered * var.clamp(min = eps).rsqrt()

def pad_sequence_fixed(sequences, *args, **kwargs):
    first_el = sequences[0]
    has_no_dimension = first_el.ndim == 0

    # if no dimensions, add a single dimension
    if has_no_dimension:
        sequences = tuple(map(lambda t: t[None], sequences))

    out = pad_sequence(sequences, *args, **kwargs)

    if has_no_dimension:
        out = rearrange(out, '... 1 -> ...')

    return out

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def log_prob(prob, indices):
    assert prob.shape[:2] == indices.shape, f'preceding shapes of prob {prob.shape[:2]} and indices {indices.shape} must match'
    return log(prob.gather(-1, indices[..., None])).squeeze(-1)

def shift(t, value = 0, shift = 1, dim = -1):
    zeros = (0, 0) * (-dim - 1)
    return F.pad(t, (*zeros, shift, -shift), value = value)

def masked_entropy(prob, dim = -1, mask = None):
    entropies = (prob * log(prob)).sum(dim = -1)
    return masked_mean(entropies, mask = mask).mean()

def masked_kl_div(prob1, prob2, mask = None):
    """
    need to account for variable sequence lengths, therefore not using the built-in functional version
    """
    kl_divs = (prob1 * (log(prob2) - log(prob1))).sum(dim = -1)

    if not exists(mask):
        return kl_divs.mean()

    return masked_mean(kl_divs, mask).mean()

def clipped_value_loss(values, rewards, old_values, clip):
    value_clipped = old_values + (values - old_values).clamp(-clip, clip)
    value_loss_1 = (value_clipped.flatten() - rewards) ** 2
    value_loss_2 = (values.flatten() - rewards) ** 2
    return torch.mean(torch.max(value_loss_1, value_loss_2))

# rlhf trainer

@beartype
class RLHFTrainer(nn.Module):
    def __init__(
        self,
        *,
        prompts: Optional[List[str]] = None,
        prompts_path: Optional[str] = None,
        prompt_token_ids: Optional[torch.Tensor] = None,
        tokenizer: Callable = None,
        palm: PaLM,
        reward_model: RewardModel,
        actor_critic: Optional[ActorCritic] = None,
        actor_lr = 1e-4,
        critic_lr = 1e-4,
        actor_wd = 0.,
        critic_wd = 0.,
        actor_adam_eps = 1e-7,
        critic_adam_eps = 1e-7,
        actor_lora = True,
        critic_lora = True,
        actor_lora_r = 8,
        critic_lora_r = 8,
        critic_pooled_values = True,
        actor_dropout = 0.,
        critic_dropout = 0.,
        betas = (0.9, 0.999),
        max_norm = None,
        eps_clip = 0.2,
        value_clip = 0.4,
        beta_s = .01,
        pad_value = 0.,
        minibatch_size = 16,
        epochs = 1,
        kl_div_loss_weight = 0.1, # between old action probs and new action probs - not sure what the right value is
        accelerate_kwargs: dict = {},
        use_lion = False
    ):
        super().__init__()

        self.accelerate = Accelerator(**accelerate_kwargs)

        # take care of prompts -> token ids

        assert (exists(prompts) + exists(prompts_path) + exists(prompt_token_ids)) == 1

        if exists(prompts_path):
            path = Path(prompts_path)
            prompts = path.read_text().split('\n')

        if exists(prompts):
            assert len(prompts) > 0, 'no prompts'
            assert exists(tokenizer), 'tokenizer must be passed in if raw text prompts are given'
            prompt_token_ids = tokenizer(prompts)

        self.pad_value = pad_value # token pad value
        self.num_prompts = prompt_token_ids.shape[0]
        self.register_buffer('prompt_token_ids', prompt_token_ids)

        # models

        self.palm = palm

        if not exists(actor_critic):
            actor_critic = ActorCritic(
                palm = palm,
                actor_lora = actor_lora,
                critic_lora = critic_lora,
                actor_lora_r = actor_lora_r,
                critic_lora_r = critic_lora_r,
                pooled_values = critic_pooled_values,
                actor_dropout = actor_dropout,
                critic_dropout = critic_dropout
            ).to(palm.device)

        self.actor_critic = actor_critic

        self.reward_model = reward_model.eval()

        # train hyperparameters

        self.epochs = epochs
        self.minibatch_size = minibatch_size
        self.max_norm = max_norm

        self.kl_div_loss_weight = kl_div_loss_weight

        # optimizers

        self.actor_optim = get_optimizer(actor_critic.actor_parameters(), lr = actor_lr, wd = actor_wd, betas = betas, eps = actor_adam_eps, use_lion = use_lion)
        self.critic_optim = get_optimizer(actor_critic.critic_parameters(), lr = critic_lr, wd = critic_wd, betas = betas, eps = critic_adam_eps, use_lion = use_lion)

        # ppo hyperparams

        self.eps_clip = eps_clip
        self.value_clip = value_clip
        self.beta_s = beta_s

        # prepare with accelerator

        (
            self.actor_critic,
            self.reward_model,
            self.actor_optim,
            self.critic_optim
        ) = self.accelerate.prepare(
            self.actor_critic,
            self.reward_model,
            self.actor_optim,
            self.critic_optim
        )


    def print(self, msg):
        return self.accelerate.print(msg)

    def save(self, filepath = './checkpoint.pt'):
        torch.save(self.actor_critic.state_dict(), filepath)

    def load(self, filepath = './checkpoint.pt'):
        state_dict = torch.load(filepath)
        self.actor_critic.load_state_dict(state_dict)

    @property
    def device(self):
        return self.accelerate.device

    @torch.no_grad()
    def generate(
        self,
        max_seq_len,
        *args,
        prompt,
        num_samples = 4,  # sample 4 per prompt and select the one with highest reward
        **kwargs
    ):
        assert prompt.ndim == 1, 'only one prompt allowed at a time for now'
        prompt = repeat(prompt, 'n -> b n', b = num_samples)

        actor_critic = self.accelerate.unwrap_model(self.actor_critic)
        reward_model = self.accelerate.unwrap_model(self.reward_model)

        actor_critic.eval()

        (
            actions,
            sequences,
            mask,
            prompt_mask,
            action_logits,
            _
        ) = actor_critic.generate(
            prompt,
            *args,
            max_seq_len = max_seq_len,
            return_values = False,
            **kwargs
        )

        rewards = reward_model(
            sequences,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )

        best_sequence_index = rewards.topk(1, dim = -1).indices

        best_sequence = sequences[best_sequence_index]
        best_sequence = rearrange(best_sequence, '1 ... -> ...')

        return best_sequence

    def learn(
        self,
        memories: Deque[Memory]
    ):
        # stack all data stored in the memories

        all_memories_stacked_and_padded = list(map(partial(pad_sequence_fixed, batch_first = True), zip(*memories)))

        # prepare dataloader for policy phase training

        dl = create_dataloader(all_memories_stacked_and_padded, self.minibatch_size, device = self.device)

        self.actor_critic.train()

        # PPO training

        for _ in range(self.epochs):
            for (
                sequences,
                prompt_masks,
                masks,
                old_action_probs,
                old_log_probs,
                rewards,
                old_values
            ) in dl:
                action_masks = ~prompt_masks & masks

                action_logits, values = self.actor_critic(
                    sequences,
                    mask = action_masks
                )

                action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
                action_len = old_log_probs.shape[-1]

                action_probs = action_logits.softmax(dim = -1)
                action_log_probs = log_prob(action_probs, sequences)
                action_log_probs = action_log_probs[:, -action_len:]

                # calculate entropies, taking into account which part of the sequence is actually an action

                entropies = masked_entropy(action_probs, mask = action_masks)

                # calculate kl div between old action probs and new ones, taking into account which part of the sequence is action or not

                kl_div_loss = 0.

                if self.kl_div_loss_weight > 0:
                    kl_div_loss = masked_kl_div(action_probs, old_action_probs, mask = action_masks) * self.kl_div_loss_weight

                # handle non-pooled values

                normalize_kwargs = dict()

                if old_values.ndim == 2:
                    old_values, values = map(lambda t: shift(t, shift = 1, dim = -2), (old_values, values))

                    old_values = old_values[:, -action_len:]
                    values = values[:, -action_len:]
                    rewards = rearrange(rewards, 'b -> b 1')
                    normalize_kwargs = dict(dim = -1, mask = action_masks[:, -action_len:])

                if values.ndim < rewards.ndim:
                    values = rearrange(values, '... -> ... 1')

                # calculate clipped surrogate objective, classic PPO loss

                ratios = (action_log_probs - old_log_probs).exp()
                advantages = masked_normalize(rewards - old_values, **normalize_kwargs)

                if advantages.ndim == 1:
                    advantages = rearrange(advantages, 'b -> b 1')

                surr1 = ratios * advantages
                surr2 = ratios.clamp(1 - self.eps_clip, 1 + self.eps_clip) * advantages
                policy_loss = - torch.min(surr1, surr2) - self.beta_s * entropies

                # combine losses

                loss = policy_loss.mean() + kl_div_loss

                # update actor

                self.accelerate.backward(loss)

                self.print(f'policy_loss: {loss.item():.3f}')

                if exists(self.max_norm):
                    self.accelerator.clip_grad_norm_(self.actor_critic.actor_parameters(), self.max_norm)

                self.actor_optim.step()
                self.actor_optim.zero_grad()

                # calculate value loss and update value network separate from policy network

                value_loss = clipped_value_loss(values, rewards, old_values, self.value_clip)
                value_loss = value_loss.mean()

                self.print(f'critic_loss: {value_loss.item():.3f}')

                self.accelerate.backward(value_loss)

                if exists(self.max_norm):
                    self.accelerator.clip_grad_norm_(self.actor_critic.critic_parameters(), self.max_norm)

                self.critic_optim.step()
                self.critic_optim.zero_grad()

    def train(
        self,
        num_episodes = 50000,
        max_timesteps = 500,
        update_timesteps = 5000,
        max_batch_size = 16,
        max_seq_len = 2048,
        eos_token = None,
        temperature = 1.
    ):
        device = self.device

        time = 0
        memories = deque([])

        for eps in tqdm(range(num_episodes), desc = 'episodes'):
            for timestep in range(max_timesteps):
                time += 1

                # select a bunch of random states (prompts)
                # and get the action (sampled sequence from palm as well as the action probs)
                # also calculate the reward using reward model and store

                rand_prompt_index = randrange(0, self.num_prompts)

                state = self.prompt_token_ids[rand_prompt_index]

                # remove padding from state

                state_mask = state != self.pad_value
                state = state[state_mask]

                # get predicted sequence

                (
                    actions,
                    sequence,
                    mask,
                    prompt_mask,
                    action_logits,
                    value
                ) = self.actor_critic.generate(
                    rearrange(state, 'n -> 1 n'),
                    max_seq_len = max_seq_len,
                    eos_token = eos_token,
                    temperature = temperature,
                    return_values = True
                )
                action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token

                action_prob = action_logits.softmax(dim = -1)

                action_len = actions.shape[-1]
                action_log_prob = log_prob(action_prob, sequence)
                action_log_prob = action_log_prob[:, -action_len:]

                actions = rearrange(actions, '1 ... -> ...')

                # get reward as given by supervised trained reward model

                sequence = torch.cat((state, actions), dim = 0)

                prompt_length = len(state)
                prompt_mask = torch.arange(sequence.shape[-1], device = device) < prompt_length

                sequence = rearrange(sequence, 'n -> 1 n')
                prompt_mask = rearrange(prompt_mask, 'n -> 1 n')
                mask = rearrange(mask, 'n -> 1 n') if exists(mask) else torch.ones(sequence.shape, dtype = torch.bool, device = device)

                reward = self.reward_model(
                    sequence,
                    prompt_mask = prompt_mask,
                    mask = mask,
                    sample = True
                )

                detach_to_cpu_ = lambda t: rearrange(t.detach().cpu(), '1 ... -> ...')

                # store memory for learning

                memories.append(Memory(*map(detach_to_cpu_, (
                    sequence,
                    prompt_mask,
                    mask,
                    action_prob,
                    action_log_prob,
                    reward,
                    value
                ))))

                # learn from the stored memories

                if time % update_timesteps == 0:
                    self.learn(memories)
                    memories.clear()

        print('rlhf training complete')