ppo.py 17.7 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8 9 10 11
import math
from pathlib import Path
import copy
from tqdm import tqdm
from functools import partial
from collections import deque, namedtuple
from random import randrange

from beartype import beartype
from beartype.typing import List, Optional, Callable, Deque

U
u010280923 已提交
12 13 14
from einops import rearrange, repeat
from einops.layers.torch import Rearrange

U
u010280923 已提交
15 16 17 18 19 20 21 22
import torch
from torch import nn
import torch.nn.functional as F

from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence

U
u010280923 已提交
23
from pytorch_lightning.utilities import rank_zero_info
U
u010280923 已提交
24 25
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
U
u010280923 已提交
26

U
u010280923 已提交
27 28 29 30
from src.model import RWKV
from src.rlhf.reward import RewardModel
from src.rlhf.optimizer import get_optimizer
from src.rlhf.utils import masked_mean, eval_decorator
U
u010280923 已提交
31 32 33

from accelerate import Accelerator

U
u010280923 已提交
34
# actor critic - rwkv with lora
U
u010280923 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48

PPOActionCriticReturn = namedtuple('PPOActionCriticReturn', [
    'actions',
    'sequence',
    'mask',
    'prompt_mask',
    'action_logits',
    'values'
])

@beartype
class ActorCritic(nn.Module):
    def __init__(
        self,
U
u010280923 已提交
49
        rwkv: RWKV,
U
u010280923 已提交
50 51
        critic: Optional[RWKV] = None,
        pooled_values = False
U
u010280923 已提交
52 53
    ):
        super().__init__()
U
u010280923 已提交
54
        self.actor = rwkv
U
u010280923 已提交
55

U
u010280923 已提交
56
        self.critic = critic
U
u010280923 已提交
57

U
u010280923 已提交
58 59
        if not exists(self.critic):
            self.critic = copy.deepcopy(rwkv)
U
u010280923 已提交
60 61 62

        self.pooled_values = pooled_values
        self.value_head = nn.Sequential(
U
u010280923 已提交
63
            nn.Linear(rwkv.dim, 1),
U
u010280923 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
            Rearrange('... 1 -> ...')
        )

        nn.init.zeros_(self.value_head[0].bias)
        nn.init.orthogonal_(self.value_head[0].weight, gain = math.sqrt(2))

    @torch.no_grad()
    @eval_decorator
    def generate(
        self,
        state,
        max_seq_len,
        eos_token = None,
        return_values = False,
        **kwargs
    ):
U
u010280923 已提交
80 81
        # 产生一条 response,相当于采取了一次 action
        actions = self.actor.generate(
U
u010280923 已提交
82 83 84 85 86 87 88 89
            max_seq_len,
            prompt = state,       
            eos_token = eos_token,     
            finetune_scope = self.actor_lora_scope,
            use_tqdm = True,
            **kwargs
        )

U
u010280923 已提交
90
        # 将 prompt (state) 和 response (action) 进行拼接
U
u010280923 已提交
91 92 93 94
        sequence = torch.cat((state, actions), dim = -1)
        action_len = actions.shape[-1]
        state_len = state.shape[-1]

U
u010280923 已提交
95
        # 构建 prompt_mask (state_mask) 和 response_mask (action_mask)
U
u010280923 已提交
96 97 98 99 100
        prompt_mask = torch.arange(sequence.shape[-1], device = state.device) < state_len
        prompt_mask = repeat(prompt_mask, 'n -> b n', b = sequence.shape[0])

        action_mask = ~prompt_mask

U
u010280923 已提交
101
        # 考虑 eos token
U
u010280923 已提交
102 103 104 105 106 107
        mask = None
        if exists(eos_token):
            mask = ((sequence == eos_token).cumsum(dim = -1) == 0)
            mask = F.pad(mask, (1, -1), value = True) # include eos token
            action_mask &= mask

U
u010280923 已提交
108 109
        # 将生成的 sequence 输入到 actor 中,得到 action_logits
        # 将生成的 sequence 输入到 critic 中,得到 value
U
u010280923 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        action_logits, value = self.forward(
            sequence,
            mask = action_mask,
            return_values = return_values
        )        

        return PPOActionCriticReturn(
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        )

    def forward(
        self,
        x,
        mask = None,
        return_values = True
    ):
U
u010280923 已提交
131
        action_logits, _ = self.actor(
U
u010280923 已提交
132
            x,
U
u010280923 已提交
133
            ppo_train = True
U
u010280923 已提交
134 135 136 137 138
        )

        if not return_values:
            return action_logits, None

U
u010280923 已提交
139
        _, critic_embeds = self.critic(
U
u010280923 已提交
140 141
            x,
            return_only_embedding = True,
U
u010280923 已提交
142
            ppo_train = True
U
u010280923 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        )

        if self.pooled_values:
            critic_embeds = shift(critic_embeds, shift = 1, dim = -2)
            critic_embeds = masked_mean(critic_embeds, mask, dim = 1)

        values = self.value_head(critic_embeds)

        return action_logits, values

# data

Memory = namedtuple('Memory', [
    'sequence',
    'prompt_mask',
    'mask',
    'action_prob',
    'action_log_prob',
    'reward',
    'value'
])

@beartype
class ExperienceDataset(Dataset):
    def __init__(
        self,
        data: List[torch.Tensor],
        device = None
    ):
        super().__init__()
        self.data = data
        self.device = device

    def __len__(self):
        return self.data[0].shape[0]

    def __getitem__(self, ind):
        return tuple(map(lambda t: t[ind].to(self.device), self.data))

def create_dataloader(data, batch_size, shuffle = True, device = None, **kwargs):
    ds = ExperienceDataset(data, device = device)
    return DataLoader(ds, batch_size = batch_size, shuffle = shuffle, **kwargs)

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def masked_normalize(t, eps = 1e-5, mask = None, dim = None):
    dim = default(dim, tuple(range(t.ndim)))
    kwargs = dict(dim = dim, keepdim = True)

    mean = masked_mean(t, mask = mask, **kwargs)
    mean_centered = t - mean
    var = masked_mean(mean_centered ** 2, mask = mask, **kwargs)

    return mean_centered * var.clamp(min = eps).rsqrt()

def pad_sequence_fixed(sequences, *args, **kwargs):
    first_el = sequences[0]
    has_no_dimension = first_el.ndim == 0

    # if no dimensions, add a single dimension
    if has_no_dimension:
        sequences = tuple(map(lambda t: t[None], sequences))

    out = pad_sequence(sequences, *args, **kwargs)

    if has_no_dimension:
        out = rearrange(out, '... 1 -> ...')

    return out

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def log_prob(prob, indices):
    assert prob.shape[:2] == indices.shape, f'preceding shapes of prob {prob.shape[:2]} and indices {indices.shape} must match'
    return log(prob.gather(-1, indices[..., None])).squeeze(-1)

def shift(t, value = 0, shift = 1, dim = -1):
    zeros = (0, 0) * (-dim - 1)
    return F.pad(t, (*zeros, shift, -shift), value = value)

def masked_entropy(prob, dim = -1, mask = None):
    entropies = (prob * log(prob)).sum(dim = -1)
    return masked_mean(entropies, mask = mask).mean()

def masked_kl_div(prob1, prob2, mask = None):
    """
    need to account for variable sequence lengths, therefore not using the built-in functional version
    """
    kl_divs = (prob1 * (log(prob2) - log(prob1))).sum(dim = -1)

    if not exists(mask):
        return kl_divs.mean()

    return masked_mean(kl_divs, mask).mean()

def clipped_value_loss(values, rewards, old_values, clip):
    value_clipped = old_values + (values - old_values).clamp(-clip, clip)
    value_loss_1 = (value_clipped.flatten() - rewards) ** 2
    value_loss_2 = (values.flatten() - rewards) ** 2
    return torch.mean(torch.max(value_loss_1, value_loss_2))

U
u010280923 已提交
251
# rlhf
U
u010280923 已提交
252 253

@beartype
U
u010280923 已提交
254
class RLHF(nn.Module):
U
u010280923 已提交
255 256
    def __init__(
        self,
U
u010280923 已提交
257 258
        args,
        accelerate_kwargs: dict = {}
U
u010280923 已提交
259 260 261
    ):
        super().__init__()

U
u010280923 已提交
262
        self.args = args
U
u010280923 已提交
263

U
u010280923 已提交
264
        self.accelerate = Accelerator(**accelerate_kwargs)
U
u010280923 已提交
265

U
u010280923 已提交
266 267
        # 加载 RWKV 模型
        rwkv = RWKV(args)
U
u010280923 已提交
268

U
u010280923 已提交
269 270 271
        if len(args.load_sft_model) == 0:
            rank_zero_info(f"SFT must load model, please input ")
            exit(1)
U
u010280923 已提交
272

U
u010280923 已提交
273 274 275 276 277 278
        rank_zero_info(f"########## Loading {args.load_sft_model}... ##########")
        try:
            load_dict = torch.load(args.load_sft_model, map_location="cpu")
        except:
            rank_zero_info(f"Bad checkpoint {args.load_sft_model}")
            exit(1)
U
u010280923 已提交
279

U
u010280923 已提交
280 281 282 283 284 285
        if args.load_partial == 1:
            load_keys = load_dict.keys()
            for k in rwkv.state_dict():
                if k not in load_keys:
                    load_dict[k] = rwkv.state_dict()[k]
        rwkv.load_state_dict(load_dict)
U
u010280923 已提交
286

U
u010280923 已提交
287
        self.rwkv = rwkv
U
u010280923 已提交
288

U
u010280923 已提交
289 290 291
        # 使用 RWKV 初始化 actor_critic
        actor_critic = ActorCritic(
            rwkv = self.rwkv,
U
u010280923 已提交
292
            pooled_values = args.critic_pooled_values
U
u010280923 已提交
293
        ).to(self.rwkv.device)
U
u010280923 已提交
294 295 296

        self.actor_critic = actor_critic

U
u010280923 已提交
297 298 299
        # 加载 reward_model,并将 reward_model 设置为 evaluation 模式 
        reward_model = RewardModel(args)
        reward_model.load(args.load_rm_model)
U
u010280923 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        self.reward_model = reward_model.eval()

    def print(self, msg):
        return self.accelerate.print(msg)

    def save(self, filepath = './checkpoint.pt'):
        torch.save(self.actor_critic.state_dict(), filepath)

    def load(self, filepath = './checkpoint.pt'):
        state_dict = torch.load(filepath)
        self.actor_critic.load_state_dict(state_dict)

    @property
    def device(self):
        return self.accelerate.device
U
u010280923 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    
    def configure_optimizers(self):
        args = self.args
        if args.layerwise_lr > 0:
            lr_1x = set()
            lr_2x = set()
            lr_3x = set()
            for n, p in self.named_parameters():
                if "time_mix" in n:
                    if args.my_pile_stage == 2:
                        lr_2x.add(n)
                    else:
                        lr_1x.add(n)
                elif "time_decay" in n:
                    if args.my_pile_stage == 2:
                        lr_3x.add(n)
                    else:
                        lr_2x.add(n)
                elif "time_first" in n:
                    lr_3x.add(n)
                else:
                    lr_1x.add(n)
            lr_1x = sorted(list(lr_1x))
            lr_2x = sorted(list(lr_2x))
            lr_3x = sorted(list(lr_3x))
            param_dict = {n: p for n, p in self.named_parameters()}
            if args.my_pile_stage == 2:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
                ]
            else:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
                ]
        else:
            optim_groups = [
                {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
            ]

        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
        return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            cfg = strategy.config["zero_optimization"]
            return cfg.get("offload_optimizer") or cfg.get("offload_param")
        return False
U
u010280923 已提交
370 371 372 373 374 375 376 377 378 379

    @torch.no_grad()
    def generate(
        self,
        max_seq_len,
        *args,
        prompt,
        num_samples = 4,  # sample 4 per prompt and select the one with highest reward
        **kwargs
    ):
U
u010280923 已提交
380 381 382
        ''' 未参与训练,仅推理时使用
        '''

U
u010280923 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        assert prompt.ndim == 1, 'only one prompt allowed at a time for now'
        prompt = repeat(prompt, 'n -> b n', b = num_samples)

        actor_critic = self.accelerate.unwrap_model(self.actor_critic)
        reward_model = self.accelerate.unwrap_model(self.reward_model)

        actor_critic.eval()

        (
            actions,
            sequences,
            mask,
            prompt_mask,
            action_logits,
            _
        ) = actor_critic.generate(
            prompt,
            *args,
            max_seq_len = max_seq_len,
            return_values = False,
            **kwargs
        )

        rewards = reward_model(
            sequences,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )

        best_sequence_index = rewards.topk(1, dim = -1).indices

        best_sequence = sequences[best_sequence_index]
        best_sequence = rearrange(best_sequence, '1 ... -> ...')

        return best_sequence

U
u010280923 已提交
420 421 422 423 424 425 426 427
    def training_step(self, batch, batch_idx):
        sequences, \
        prompt_masks, \
        masks, \
        old_action_probs, \
        old_log_probs, \
        rewards, \
        old_values = batch
U
u010280923 已提交
428 429

        # PPO training
U
u010280923 已提交
430
        action_masks = ~prompt_masks & masks
U
u010280923 已提交
431

U
u010280923 已提交
432 433 434 435
        action_logits, values = self.actor_critic(
            sequences,
            mask = action_masks
        )
U
u010280923 已提交
436

U
u010280923 已提交
437
        action_logits = shift(action_logits, shift=1, dim=-2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
438
        action_len = old_log_probs.shape[-1]
U
u010280923 已提交
439

U
u010280923 已提交
440 441 442
        action_probs = action_logits.softmax(dim = -1)
        action_log_probs = log_prob(action_probs, sequences)
        action_log_probs = action_log_probs[:, -action_len:]
U
u010280923 已提交
443

U
u010280923 已提交
444
        # calculate entropies, taking into account which part of the sequence is actually an action
U
u010280923 已提交
445

U
u010280923 已提交
446
        entropies = masked_entropy(action_probs, mask = action_masks)
U
u010280923 已提交
447

U
u010280923 已提交
448
        # calculate kl div between old action probs and new ones, taking into account which part of the sequence is action or not
U
u010280923 已提交
449

U
u010280923 已提交
450
        kl_div_loss = 0.
U
u010280923 已提交
451

U
u010280923 已提交
452 453
        if self.args.kl_div_loss_weight > 0:
            kl_div_loss = masked_kl_div(action_probs, old_action_probs, mask = action_masks) * self.args.kl_div_loss_weight
U
u010280923 已提交
454

U
u010280923 已提交
455
        # handle non-pooled values
U
u010280923 已提交
456

U
u010280923 已提交
457
        normalize_kwargs = dict()
U
u010280923 已提交
458

U
u010280923 已提交
459 460
        if old_values.ndim == 2:
            old_values, values = map(lambda t: shift(t, shift = 1, dim = -2), (old_values, values))
U
u010280923 已提交
461

U
u010280923 已提交
462 463 464 465
            old_values = old_values[:, -action_len:]
            values = values[:, -action_len:]
            rewards = rearrange(rewards, 'b -> b 1')
            normalize_kwargs = dict(dim = -1, mask = action_masks[:, -action_len:])
U
u010280923 已提交
466

U
u010280923 已提交
467 468
        if values.ndim < rewards.ndim:
            values = rearrange(values, '... -> ... 1')
U
u010280923 已提交
469

U
u010280923 已提交
470
        # calculate clipped surrogate objective, classic PPO loss
U
u010280923 已提交
471

U
u010280923 已提交
472 473
        ratios = (action_log_probs - old_log_probs).exp()
        advantages = masked_normalize(rewards - old_values, **normalize_kwargs)
U
u010280923 已提交
474

U
u010280923 已提交
475 476
        if advantages.ndim == 1:
            advantages = rearrange(advantages, 'b -> b 1')
U
u010280923 已提交
477

U
u010280923 已提交
478 479 480
        surr1 = ratios * advantages
        surr2 = ratios.clamp(1 - self.args.eps_clip, 1 + self.args.eps_clip) * advantages
        policy_loss = - torch.min(surr1, surr2) - self.args.beta_s * entropies
U
u010280923 已提交
481

U
u010280923 已提交
482 483
        # actor loss (也称为 policy loss, 是最终要使用模型的 loss)
        actor_loss = policy_loss.mean() + kl_div_loss
U
u010280923 已提交
484

U
u010280923 已提交
485 486 487 488
        # critic loss (也称为 value loss)
        # update value network separate from policy network
        critic_loss = clipped_value_loss(values, rewards, old_values, self.args.value_clip)
        critic_loss = critic_loss.mean()
U
u010280923 已提交
489

U
u010280923 已提交
490
        return {'actor_loss': actor_loss.item(), 'critic_loss': critic_loss.item()}
U
u010280923 已提交
491 492


U
u010280923 已提交
493 494 495 496
    def make_experience(self, prompts, eos_token=None, temperature=1):
        ''' 通过与 environment 交互产生训练数据
        '''
        
U
u010280923 已提交
497 498
        device = self.device

U
u010280923 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        # select a bunch of random states (prompts)
        # and get the action (sampled sequence from rwkv as well as the action probs)
        # also calculate the reward using reward model and store
        # 随机挑选一条 prompt
        rand_prompt_index = randrange(0, self.num_prompts)
        state = self.prompt_token_ids[rand_prompt_index]

        # remove padding from state
        state_mask = state != self.args.pad_value
        state = state[state_mask]

        # get predicted sequence
        # 与 environment 进行交互,其中返回的:
        #   action 是 response,
        #   sequence 是 prompt + response, 
        (
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        ) = self.actor_critic.generate(
            rearrange(state, 'n -> 1 n'),
            max_seq_len = self.args.ctx_len,
            eos_token = eos_token,
            temperature = temperature,
            return_values = True
        )
        action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
529

U
u010280923 已提交
530
        action_prob = action_logits.softmax(dim = -1)
U
u010280923 已提交
531

U
u010280923 已提交
532 533 534
        action_len = actions.shape[-1]
        action_log_prob = log_prob(action_prob, sequence)
        action_log_prob = action_log_prob[:, -action_len:]
U
u010280923 已提交
535

U
u010280923 已提交
536
        actions = rearrange(actions, '1 ... -> ...')
U
u010280923 已提交
537

U
u010280923 已提交
538 539
        # get reward as given by supervised trained reward model
        sequence = torch.cat((state, actions), dim = 0)
U
u010280923 已提交
540

U
u010280923 已提交
541 542
        prompt_length = len(state)
        prompt_mask = torch.arange(sequence.shape[-1], device = device) < prompt_length
U
u010280923 已提交
543

U
u010280923 已提交
544 545 546
        sequence = rearrange(sequence, 'n -> 1 n')
        prompt_mask = rearrange(prompt_mask, 'n -> 1 n')
        mask = rearrange(mask, 'n -> 1 n') if exists(mask) else torch.ones(sequence.shape, dtype = torch.bool, device = device)
U
u010280923 已提交
547

U
u010280923 已提交
548 549 550 551 552 553
        reward = self.reward_model(
            sequence,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )
U
u010280923 已提交
554

U
u010280923 已提交
555 556 557 558 559 560 561 562 563
        return (
            sequence,
            prompt_mask,
            mask,
            action_prob,
            action_log_prob,
            reward,
            value
        )