ppo.py 17.4 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8 9 10 11
import math
from pathlib import Path
import copy
from tqdm import tqdm
from functools import partial
from collections import deque, namedtuple
from random import randrange

from beartype import beartype
from beartype.typing import List, Optional, Callable, Deque

U
u010280923 已提交
12 13 14
from einops import rearrange, repeat
from einops.layers.torch import Rearrange

U
u010280923 已提交
15 16 17 18 19 20 21 22
import torch
from torch import nn
import torch.nn.functional as F

from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence

U
u010280923 已提交
23
from pytorch_lightning.utilities import rank_zero_info
U
u010280923 已提交
24 25
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
U
u010280923 已提交
26

U
u010280923 已提交
27 28 29 30
from src.model import RWKV
from src.rlhf.reward import RewardModel
from src.rlhf.optimizer import get_optimizer
from src.rlhf.utils import masked_mean, eval_decorator
U
u010280923 已提交
31

U
u010280923 已提交
32
# actor critic - rwkv with lora
U
u010280923 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46

PPOActionCriticReturn = namedtuple('PPOActionCriticReturn', [
    'actions',
    'sequence',
    'mask',
    'prompt_mask',
    'action_logits',
    'values'
])

@beartype
class ActorCritic(nn.Module):
    def __init__(
        self,
U
u010280923 已提交
47
        rwkv: RWKV,
U
u010280923 已提交
48
        args,
U
u010280923 已提交
49 50
        critic: Optional[RWKV] = None,
        pooled_values = False
U
u010280923 已提交
51 52
    ):
        super().__init__()
U
u010280923 已提交
53
        self.actor = rwkv
U
u010280923 已提交
54

U
u010280923 已提交
55
        self.critic = critic
U
u010280923 已提交
56

U
u010280923 已提交
57 58
        if not exists(self.critic):
            self.critic = copy.deepcopy(rwkv)
U
u010280923 已提交
59 60 61

        self.pooled_values = pooled_values
        self.value_head = nn.Sequential(
U
u010280923 已提交
62
            nn.Linear(args.n_embd, 1),
U
u010280923 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
            Rearrange('... 1 -> ...')
        )

        nn.init.zeros_(self.value_head[0].bias)
        nn.init.orthogonal_(self.value_head[0].weight, gain = math.sqrt(2))

    @torch.no_grad()
    @eval_decorator
    def generate(
        self,
        state,
        max_seq_len,
        eos_token = None,
        return_values = False,
        **kwargs
    ):
U
u010280923 已提交
79 80
        # 产生一条 response,相当于采取了一次 action
        actions = self.actor.generate(
U
u010280923 已提交
81 82 83 84 85 86 87 88
            max_seq_len,
            prompt = state,       
            eos_token = eos_token,     
            finetune_scope = self.actor_lora_scope,
            use_tqdm = True,
            **kwargs
        )

U
u010280923 已提交
89
        # 将 prompt (state) 和 response (action) 进行拼接
U
u010280923 已提交
90 91 92 93
        sequence = torch.cat((state, actions), dim = -1)
        action_len = actions.shape[-1]
        state_len = state.shape[-1]

U
u010280923 已提交
94
        # 构建 prompt_mask (state_mask) 和 response_mask (action_mask)
U
u010280923 已提交
95 96 97 98 99
        prompt_mask = torch.arange(sequence.shape[-1], device = state.device) < state_len
        prompt_mask = repeat(prompt_mask, 'n -> b n', b = sequence.shape[0])

        action_mask = ~prompt_mask

U
u010280923 已提交
100
        # 考虑 eos token
U
u010280923 已提交
101 102 103 104 105 106
        mask = None
        if exists(eos_token):
            mask = ((sequence == eos_token).cumsum(dim = -1) == 0)
            mask = F.pad(mask, (1, -1), value = True) # include eos token
            action_mask &= mask

U
u010280923 已提交
107 108
        # 将生成的 sequence 输入到 actor 中,得到 action_logits
        # 将生成的 sequence 输入到 critic 中,得到 value
U
u010280923 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        action_logits, value = self.forward(
            sequence,
            mask = action_mask,
            return_values = return_values
        )        

        return PPOActionCriticReturn(
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        )

    def forward(
        self,
        x,
        mask = None,
        return_values = True
    ):
U
u010280923 已提交
130
        action_logits, _ = self.actor(
U
u010280923 已提交
131
            x,
U
u010280923 已提交
132
            ppo_train = True
U
u010280923 已提交
133 134 135 136 137
        )

        if not return_values:
            return action_logits, None

U
u010280923 已提交
138
        _, critic_embeds = self.critic(
U
u010280923 已提交
139 140
            x,
            return_only_embedding = True,
U
u010280923 已提交
141
            ppo_train = True
U
u010280923 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        )

        if self.pooled_values:
            critic_embeds = shift(critic_embeds, shift = 1, dim = -2)
            critic_embeds = masked_mean(critic_embeds, mask, dim = 1)

        values = self.value_head(critic_embeds)

        return action_logits, values

# data

Memory = namedtuple('Memory', [
    'sequence',
    'prompt_mask',
    'mask',
    'action_prob',
    'action_log_prob',
    'reward',
    'value'
])

@beartype
class ExperienceDataset(Dataset):
    def __init__(
        self,
        data: List[torch.Tensor],
        device = None
    ):
        super().__init__()
        self.data = data
        self.device = device

    def __len__(self):
        return self.data[0].shape[0]

    def __getitem__(self, ind):
        return tuple(map(lambda t: t[ind].to(self.device), self.data))

def create_dataloader(data, batch_size, shuffle = True, device = None, **kwargs):
    ds = ExperienceDataset(data, device = device)
    return DataLoader(ds, batch_size = batch_size, shuffle = shuffle, **kwargs)

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def masked_normalize(t, eps = 1e-5, mask = None, dim = None):
    dim = default(dim, tuple(range(t.ndim)))
    kwargs = dict(dim = dim, keepdim = True)

    mean = masked_mean(t, mask = mask, **kwargs)
    mean_centered = t - mean
    var = masked_mean(mean_centered ** 2, mask = mask, **kwargs)

    return mean_centered * var.clamp(min = eps).rsqrt()

def pad_sequence_fixed(sequences, *args, **kwargs):
    first_el = sequences[0]
    has_no_dimension = first_el.ndim == 0

    # if no dimensions, add a single dimension
    if has_no_dimension:
        sequences = tuple(map(lambda t: t[None], sequences))

    out = pad_sequence(sequences, *args, **kwargs)

    if has_no_dimension:
        out = rearrange(out, '... 1 -> ...')

    return out

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def log_prob(prob, indices):
    assert prob.shape[:2] == indices.shape, f'preceding shapes of prob {prob.shape[:2]} and indices {indices.shape} must match'
    return log(prob.gather(-1, indices[..., None])).squeeze(-1)

def shift(t, value = 0, shift = 1, dim = -1):
    zeros = (0, 0) * (-dim - 1)
    return F.pad(t, (*zeros, shift, -shift), value = value)

def masked_entropy(prob, dim = -1, mask = None):
    entropies = (prob * log(prob)).sum(dim = -1)
    return masked_mean(entropies, mask = mask).mean()

def masked_kl_div(prob1, prob2, mask = None):
    """
    need to account for variable sequence lengths, therefore not using the built-in functional version
    """
    kl_divs = (prob1 * (log(prob2) - log(prob1))).sum(dim = -1)

    if not exists(mask):
        return kl_divs.mean()

    return masked_mean(kl_divs, mask).mean()

def clipped_value_loss(values, rewards, old_values, clip):
    value_clipped = old_values + (values - old_values).clamp(-clip, clip)
    value_loss_1 = (value_clipped.flatten() - rewards) ** 2
    value_loss_2 = (values.flatten() - rewards) ** 2
    return torch.mean(torch.max(value_loss_1, value_loss_2))

U
u010280923 已提交
250
# rlhf
U
u010280923 已提交
251 252

@beartype
U
u010280923 已提交
253
class RLHF(pl.LightningModule):
U
u010280923 已提交
254 255
    def __init__(
        self,
U
u010280923 已提交
256
        args
U
u010280923 已提交
257 258 259
    ):
        super().__init__()

U
u010280923 已提交
260
        self.args = args
U
u010280923 已提交
261

U
u010280923 已提交
262 263
        # 加载 RWKV 模型
        rwkv = RWKV(args)
U
u010280923 已提交
264

U
u010280923 已提交
265 266 267
        if len(args.load_sft_model) == 0:
            rank_zero_info(f"SFT must load model, please input ")
            exit(1)
U
u010280923 已提交
268

U
u010280923 已提交
269 270 271 272 273 274
        rank_zero_info(f"########## Loading {args.load_sft_model}... ##########")
        try:
            load_dict = torch.load(args.load_sft_model, map_location="cpu")
        except:
            rank_zero_info(f"Bad checkpoint {args.load_sft_model}")
            exit(1)
U
u010280923 已提交
275

U
u010280923 已提交
276 277 278 279 280 281
        if args.load_partial == 1:
            load_keys = load_dict.keys()
            for k in rwkv.state_dict():
                if k not in load_keys:
                    load_dict[k] = rwkv.state_dict()[k]
        rwkv.load_state_dict(load_dict)
U
u010280923 已提交
282

U
u010280923 已提交
283
        self.rwkv = rwkv
U
u010280923 已提交
284

U
u010280923 已提交
285 286 287
        # 使用 RWKV 初始化 actor_critic
        actor_critic = ActorCritic(
            rwkv = self.rwkv,
U
u010280923 已提交
288
            args = self.args,
U
u010280923 已提交
289
            pooled_values = args.critic_pooled_values
U
u010280923 已提交
290
        ).to(self.rwkv.device)
U
u010280923 已提交
291 292 293

        self.actor_critic = actor_critic

U
u010280923 已提交
294 295 296
        # 加载 reward_model,并将 reward_model 设置为 evaluation 模式 
        reward_model = RewardModel(args)
        reward_model.load(args.load_rm_model)
U
u010280923 已提交
297 298 299 300 301 302 303 304
        self.reward_model = reward_model.eval()

    def save(self, filepath = './checkpoint.pt'):
        torch.save(self.actor_critic.state_dict(), filepath)

    def load(self, filepath = './checkpoint.pt'):
        state_dict = torch.load(filepath)
        self.actor_critic.load_state_dict(state_dict)
U
u010280923 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    
    def configure_optimizers(self):
        args = self.args
        if args.layerwise_lr > 0:
            lr_1x = set()
            lr_2x = set()
            lr_3x = set()
            for n, p in self.named_parameters():
                if "time_mix" in n:
                    if args.my_pile_stage == 2:
                        lr_2x.add(n)
                    else:
                        lr_1x.add(n)
                elif "time_decay" in n:
                    if args.my_pile_stage == 2:
                        lr_3x.add(n)
                    else:
                        lr_2x.add(n)
                elif "time_first" in n:
                    lr_3x.add(n)
                else:
                    lr_1x.add(n)
            lr_1x = sorted(list(lr_1x))
            lr_2x = sorted(list(lr_2x))
            lr_3x = sorted(list(lr_3x))
            param_dict = {n: p for n, p in self.named_parameters()}
            if args.my_pile_stage == 2:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
                ]
            else:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
                ]
        else:
            optim_groups = [
                {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
            ]

        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
        return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            cfg = strategy.config["zero_optimization"]
            return cfg.get("offload_optimizer") or cfg.get("offload_param")
        return False
U
u010280923 已提交
360 361 362 363 364 365 366 367 368 369

    @torch.no_grad()
    def generate(
        self,
        max_seq_len,
        *args,
        prompt,
        num_samples = 4,  # sample 4 per prompt and select the one with highest reward
        **kwargs
    ):
U
u010280923 已提交
370 371 372
        ''' 未参与训练,仅推理时使用
        '''

U
u010280923 已提交
373 374 375
        assert prompt.ndim == 1, 'only one prompt allowed at a time for now'
        prompt = repeat(prompt, 'n -> b n', b = num_samples)

U
u010280923 已提交
376
        self.actor_critic.eval()
U
u010280923 已提交
377 378 379 380 381 382 383
        (
            actions,
            sequences,
            mask,
            prompt_mask,
            action_logits,
            _
U
u010280923 已提交
384
        ) = self.actor_critic.generate(
U
u010280923 已提交
385 386 387 388 389 390 391
            prompt,
            *args,
            max_seq_len = max_seq_len,
            return_values = False,
            **kwargs
        )

U
u010280923 已提交
392
        rewards = self.reward_model(
U
u010280923 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405
            sequences,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )

        best_sequence_index = rewards.topk(1, dim = -1).indices

        best_sequence = sequences[best_sequence_index]
        best_sequence = rearrange(best_sequence, '1 ... -> ...')

        return best_sequence

U
u010280923 已提交
406 407 408 409 410 411 412 413
    def training_step(self, batch, batch_idx):
        sequences, \
        prompt_masks, \
        masks, \
        old_action_probs, \
        old_log_probs, \
        rewards, \
        old_values = batch
U
u010280923 已提交
414 415

        # PPO training
U
u010280923 已提交
416
        action_masks = ~prompt_masks & masks
U
u010280923 已提交
417

U
u010280923 已提交
418 419 420 421
        action_logits, values = self.actor_critic(
            sequences,
            mask = action_masks
        )
U
u010280923 已提交
422

U
u010280923 已提交
423
        action_logits = shift(action_logits, shift=1, dim=-2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
424
        action_len = old_log_probs.shape[-1]
U
u010280923 已提交
425

U
u010280923 已提交
426 427 428
        action_probs = action_logits.softmax(dim = -1)
        action_log_probs = log_prob(action_probs, sequences)
        action_log_probs = action_log_probs[:, -action_len:]
U
u010280923 已提交
429

U
u010280923 已提交
430
        # calculate entropies, taking into account which part of the sequence is actually an action
U
u010280923 已提交
431

U
u010280923 已提交
432
        entropies = masked_entropy(action_probs, mask = action_masks)
U
u010280923 已提交
433

U
u010280923 已提交
434
        # calculate kl div between old action probs and new ones, taking into account which part of the sequence is action or not
U
u010280923 已提交
435

U
u010280923 已提交
436
        kl_div_loss = 0.
U
u010280923 已提交
437

U
u010280923 已提交
438 439
        if self.args.kl_div_loss_weight > 0:
            kl_div_loss = masked_kl_div(action_probs, old_action_probs, mask = action_masks) * self.args.kl_div_loss_weight
U
u010280923 已提交
440

U
u010280923 已提交
441
        # handle non-pooled values
U
u010280923 已提交
442

U
u010280923 已提交
443
        normalize_kwargs = dict()
U
u010280923 已提交
444

U
u010280923 已提交
445 446
        if old_values.ndim == 2:
            old_values, values = map(lambda t: shift(t, shift = 1, dim = -2), (old_values, values))
U
u010280923 已提交
447

U
u010280923 已提交
448 449 450 451
            old_values = old_values[:, -action_len:]
            values = values[:, -action_len:]
            rewards = rearrange(rewards, 'b -> b 1')
            normalize_kwargs = dict(dim = -1, mask = action_masks[:, -action_len:])
U
u010280923 已提交
452

U
u010280923 已提交
453 454
        if values.ndim < rewards.ndim:
            values = rearrange(values, '... -> ... 1')
U
u010280923 已提交
455

U
u010280923 已提交
456
        # calculate clipped surrogate objective, classic PPO loss
U
u010280923 已提交
457

U
u010280923 已提交
458 459
        ratios = (action_log_probs - old_log_probs).exp()
        advantages = masked_normalize(rewards - old_values, **normalize_kwargs)
U
u010280923 已提交
460

U
u010280923 已提交
461 462
        if advantages.ndim == 1:
            advantages = rearrange(advantages, 'b -> b 1')
U
u010280923 已提交
463

U
u010280923 已提交
464 465 466
        surr1 = ratios * advantages
        surr2 = ratios.clamp(1 - self.args.eps_clip, 1 + self.args.eps_clip) * advantages
        policy_loss = - torch.min(surr1, surr2) - self.args.beta_s * entropies
U
u010280923 已提交
467

U
u010280923 已提交
468 469
        # actor loss (也称为 policy loss, 是最终要使用模型的 loss)
        actor_loss = policy_loss.mean() + kl_div_loss
U
u010280923 已提交
470

U
u010280923 已提交
471 472 473 474
        # critic loss (也称为 value loss)
        # update value network separate from policy network
        critic_loss = clipped_value_loss(values, rewards, old_values, self.args.value_clip)
        critic_loss = critic_loss.mean()
U
u010280923 已提交
475

U
u010280923 已提交
476
        return {'actor_loss': actor_loss.item(), 'critic_loss': critic_loss.item()}
U
u010280923 已提交
477 478


U
u010280923 已提交
479 480 481 482
    def make_experience(self, prompts, eos_token=None, temperature=1):
        ''' 通过与 environment 交互产生训练数据
        '''
        
U
u010280923 已提交
483 484
        device = self.device

U
u010280923 已提交
485 486 487 488
        # select a bunch of random states (prompts)
        # and get the action (sampled sequence from rwkv as well as the action probs)
        # also calculate the reward using reward model and store
        # 随机挑选一条 prompt
U
u010280923 已提交
489 490
        rand_prompt_index = randrange(0, len(prompts))
        state = prompts[rand_prompt_index]
U
u010280923 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

        # remove padding from state
        state_mask = state != self.args.pad_value
        state = state[state_mask]

        # get predicted sequence
        # 与 environment 进行交互,其中返回的:
        #   action 是 response,
        #   sequence 是 prompt + response, 
        (
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        ) = self.actor_critic.generate(
            rearrange(state, 'n -> 1 n'),
            max_seq_len = self.args.ctx_len,
            eos_token = eos_token,
            temperature = temperature,
            return_values = True
        )
        action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
515

U
u010280923 已提交
516
        action_prob = action_logits.softmax(dim = -1)
U
u010280923 已提交
517

U
u010280923 已提交
518 519 520
        action_len = actions.shape[-1]
        action_log_prob = log_prob(action_prob, sequence)
        action_log_prob = action_log_prob[:, -action_len:]
U
u010280923 已提交
521

U
u010280923 已提交
522
        actions = rearrange(actions, '1 ... -> ...')
U
u010280923 已提交
523

U
u010280923 已提交
524 525
        # get reward as given by supervised trained reward model
        sequence = torch.cat((state, actions), dim = 0)
U
u010280923 已提交
526

U
u010280923 已提交
527 528
        prompt_length = len(state)
        prompt_mask = torch.arange(sequence.shape[-1], device = device) < prompt_length
U
u010280923 已提交
529

U
u010280923 已提交
530 531 532
        sequence = rearrange(sequence, 'n -> 1 n')
        prompt_mask = rearrange(prompt_mask, 'n -> 1 n')
        mask = rearrange(mask, 'n -> 1 n') if exists(mask) else torch.ones(sequence.shape, dtype = torch.bool, device = device)
U
u010280923 已提交
533

U
u010280923 已提交
534 535 536 537 538 539
        reward = self.reward_model(
            sequence,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )
U
u010280923 已提交
540

U
u010280923 已提交
541 542 543 544 545 546 547 548 549
        return (
            sequence,
            prompt_mask,
            mask,
            action_prob,
            action_log_prob,
            reward,
            value
        )