ppo.py 17.3 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8 9 10 11
import math
from pathlib import Path
import copy
from tqdm import tqdm
from functools import partial
from collections import deque, namedtuple
from random import randrange

from beartype import beartype
from beartype.typing import List, Optional, Callable, Deque

U
u010280923 已提交
12 13 14
from einops import rearrange, repeat
from einops.layers.torch import Rearrange

U
u010280923 已提交
15 16 17 18 19 20 21 22
import torch
from torch import nn
import torch.nn.functional as F

from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence

U
u010280923 已提交
23
from pytorch_lightning.utilities import rank_zero_info
U
u010280923 已提交
24 25
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
U
u010280923 已提交
26

U
u010280923 已提交
27 28 29 30
from src.model import RWKV
from src.rlhf.reward import RewardModel
from src.rlhf.optimizer import get_optimizer
from src.rlhf.utils import masked_mean, eval_decorator
U
u010280923 已提交
31

U
u010280923 已提交
32
# actor critic - rwkv with lora
U
u010280923 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46

PPOActionCriticReturn = namedtuple('PPOActionCriticReturn', [
    'actions',
    'sequence',
    'mask',
    'prompt_mask',
    'action_logits',
    'values'
])

@beartype
class ActorCritic(nn.Module):
    def __init__(
        self,
U
u010280923 已提交
47
        rwkv: RWKV,
U
u010280923 已提交
48 49
        critic: Optional[RWKV] = None,
        pooled_values = False
U
u010280923 已提交
50 51
    ):
        super().__init__()
U
u010280923 已提交
52
        self.actor = rwkv
U
u010280923 已提交
53

U
u010280923 已提交
54
        self.critic = critic
U
u010280923 已提交
55

U
u010280923 已提交
56 57
        if not exists(self.critic):
            self.critic = copy.deepcopy(rwkv)
U
u010280923 已提交
58 59 60

        self.pooled_values = pooled_values
        self.value_head = nn.Sequential(
U
u010280923 已提交
61
            nn.Linear(rwkv.dim, 1),
U
u010280923 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
            Rearrange('... 1 -> ...')
        )

        nn.init.zeros_(self.value_head[0].bias)
        nn.init.orthogonal_(self.value_head[0].weight, gain = math.sqrt(2))

    @torch.no_grad()
    @eval_decorator
    def generate(
        self,
        state,
        max_seq_len,
        eos_token = None,
        return_values = False,
        **kwargs
    ):
U
u010280923 已提交
78 79
        # 产生一条 response,相当于采取了一次 action
        actions = self.actor.generate(
U
u010280923 已提交
80 81 82 83 84 85 86 87
            max_seq_len,
            prompt = state,       
            eos_token = eos_token,     
            finetune_scope = self.actor_lora_scope,
            use_tqdm = True,
            **kwargs
        )

U
u010280923 已提交
88
        # 将 prompt (state) 和 response (action) 进行拼接
U
u010280923 已提交
89 90 91 92
        sequence = torch.cat((state, actions), dim = -1)
        action_len = actions.shape[-1]
        state_len = state.shape[-1]

U
u010280923 已提交
93
        # 构建 prompt_mask (state_mask) 和 response_mask (action_mask)
U
u010280923 已提交
94 95 96 97 98
        prompt_mask = torch.arange(sequence.shape[-1], device = state.device) < state_len
        prompt_mask = repeat(prompt_mask, 'n -> b n', b = sequence.shape[0])

        action_mask = ~prompt_mask

U
u010280923 已提交
99
        # 考虑 eos token
U
u010280923 已提交
100 101 102 103 104 105
        mask = None
        if exists(eos_token):
            mask = ((sequence == eos_token).cumsum(dim = -1) == 0)
            mask = F.pad(mask, (1, -1), value = True) # include eos token
            action_mask &= mask

U
u010280923 已提交
106 107
        # 将生成的 sequence 输入到 actor 中,得到 action_logits
        # 将生成的 sequence 输入到 critic 中,得到 value
U
u010280923 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        action_logits, value = self.forward(
            sequence,
            mask = action_mask,
            return_values = return_values
        )        

        return PPOActionCriticReturn(
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        )

    def forward(
        self,
        x,
        mask = None,
        return_values = True
    ):
U
u010280923 已提交
129
        action_logits, _ = self.actor(
U
u010280923 已提交
130
            x,
U
u010280923 已提交
131
            ppo_train = True
U
u010280923 已提交
132 133 134 135 136
        )

        if not return_values:
            return action_logits, None

U
u010280923 已提交
137
        _, critic_embeds = self.critic(
U
u010280923 已提交
138 139
            x,
            return_only_embedding = True,
U
u010280923 已提交
140
            ppo_train = True
U
u010280923 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        )

        if self.pooled_values:
            critic_embeds = shift(critic_embeds, shift = 1, dim = -2)
            critic_embeds = masked_mean(critic_embeds, mask, dim = 1)

        values = self.value_head(critic_embeds)

        return action_logits, values

# data

Memory = namedtuple('Memory', [
    'sequence',
    'prompt_mask',
    'mask',
    'action_prob',
    'action_log_prob',
    'reward',
    'value'
])

@beartype
class ExperienceDataset(Dataset):
    def __init__(
        self,
        data: List[torch.Tensor],
        device = None
    ):
        super().__init__()
        self.data = data
        self.device = device

    def __len__(self):
        return self.data[0].shape[0]

    def __getitem__(self, ind):
        return tuple(map(lambda t: t[ind].to(self.device), self.data))

def create_dataloader(data, batch_size, shuffle = True, device = None, **kwargs):
    ds = ExperienceDataset(data, device = device)
    return DataLoader(ds, batch_size = batch_size, shuffle = shuffle, **kwargs)

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def masked_normalize(t, eps = 1e-5, mask = None, dim = None):
    dim = default(dim, tuple(range(t.ndim)))
    kwargs = dict(dim = dim, keepdim = True)

    mean = masked_mean(t, mask = mask, **kwargs)
    mean_centered = t - mean
    var = masked_mean(mean_centered ** 2, mask = mask, **kwargs)

    return mean_centered * var.clamp(min = eps).rsqrt()

def pad_sequence_fixed(sequences, *args, **kwargs):
    first_el = sequences[0]
    has_no_dimension = first_el.ndim == 0

    # if no dimensions, add a single dimension
    if has_no_dimension:
        sequences = tuple(map(lambda t: t[None], sequences))

    out = pad_sequence(sequences, *args, **kwargs)

    if has_no_dimension:
        out = rearrange(out, '... 1 -> ...')

    return out

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def log_prob(prob, indices):
    assert prob.shape[:2] == indices.shape, f'preceding shapes of prob {prob.shape[:2]} and indices {indices.shape} must match'
    return log(prob.gather(-1, indices[..., None])).squeeze(-1)

def shift(t, value = 0, shift = 1, dim = -1):
    zeros = (0, 0) * (-dim - 1)
    return F.pad(t, (*zeros, shift, -shift), value = value)

def masked_entropy(prob, dim = -1, mask = None):
    entropies = (prob * log(prob)).sum(dim = -1)
    return masked_mean(entropies, mask = mask).mean()

def masked_kl_div(prob1, prob2, mask = None):
    """
    need to account for variable sequence lengths, therefore not using the built-in functional version
    """
    kl_divs = (prob1 * (log(prob2) - log(prob1))).sum(dim = -1)

    if not exists(mask):
        return kl_divs.mean()

    return masked_mean(kl_divs, mask).mean()

def clipped_value_loss(values, rewards, old_values, clip):
    value_clipped = old_values + (values - old_values).clamp(-clip, clip)
    value_loss_1 = (value_clipped.flatten() - rewards) ** 2
    value_loss_2 = (values.flatten() - rewards) ** 2
    return torch.mean(torch.max(value_loss_1, value_loss_2))

U
u010280923 已提交
249
# rlhf
U
u010280923 已提交
250 251

@beartype
U
u010280923 已提交
252
class RLHF(nn.Module):
U
u010280923 已提交
253 254
    def __init__(
        self,
U
u010280923 已提交
255
        args
U
u010280923 已提交
256 257 258
    ):
        super().__init__()

U
u010280923 已提交
259
        self.args = args
U
u010280923 已提交
260

U
u010280923 已提交
261 262
        # 加载 RWKV 模型
        rwkv = RWKV(args)
U
u010280923 已提交
263

U
u010280923 已提交
264 265 266
        if len(args.load_sft_model) == 0:
            rank_zero_info(f"SFT must load model, please input ")
            exit(1)
U
u010280923 已提交
267

U
u010280923 已提交
268 269 270 271 272 273
        rank_zero_info(f"########## Loading {args.load_sft_model}... ##########")
        try:
            load_dict = torch.load(args.load_sft_model, map_location="cpu")
        except:
            rank_zero_info(f"Bad checkpoint {args.load_sft_model}")
            exit(1)
U
u010280923 已提交
274

U
u010280923 已提交
275 276 277 278 279 280
        if args.load_partial == 1:
            load_keys = load_dict.keys()
            for k in rwkv.state_dict():
                if k not in load_keys:
                    load_dict[k] = rwkv.state_dict()[k]
        rwkv.load_state_dict(load_dict)
U
u010280923 已提交
281

U
u010280923 已提交
282
        self.rwkv = rwkv
U
u010280923 已提交
283

U
u010280923 已提交
284 285 286
        # 使用 RWKV 初始化 actor_critic
        actor_critic = ActorCritic(
            rwkv = self.rwkv,
U
u010280923 已提交
287
            pooled_values = args.critic_pooled_values
U
u010280923 已提交
288
        ).to(self.rwkv.device)
U
u010280923 已提交
289 290 291

        self.actor_critic = actor_critic

U
u010280923 已提交
292 293 294
        # 加载 reward_model,并将 reward_model 设置为 evaluation 模式 
        reward_model = RewardModel(args)
        reward_model.load(args.load_rm_model)
U
u010280923 已提交
295 296 297 298 299 300 301 302
        self.reward_model = reward_model.eval()

    def save(self, filepath = './checkpoint.pt'):
        torch.save(self.actor_critic.state_dict(), filepath)

    def load(self, filepath = './checkpoint.pt'):
        state_dict = torch.load(filepath)
        self.actor_critic.load_state_dict(state_dict)
U
u010280923 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    
    def configure_optimizers(self):
        args = self.args
        if args.layerwise_lr > 0:
            lr_1x = set()
            lr_2x = set()
            lr_3x = set()
            for n, p in self.named_parameters():
                if "time_mix" in n:
                    if args.my_pile_stage == 2:
                        lr_2x.add(n)
                    else:
                        lr_1x.add(n)
                elif "time_decay" in n:
                    if args.my_pile_stage == 2:
                        lr_3x.add(n)
                    else:
                        lr_2x.add(n)
                elif "time_first" in n:
                    lr_3x.add(n)
                else:
                    lr_1x.add(n)
            lr_1x = sorted(list(lr_1x))
            lr_2x = sorted(list(lr_2x))
            lr_3x = sorted(list(lr_3x))
            param_dict = {n: p for n, p in self.named_parameters()}
            if args.my_pile_stage == 2:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
                ]
            else:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
                ]
        else:
            optim_groups = [
                {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
            ]

        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
        return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            cfg = strategy.config["zero_optimization"]
            return cfg.get("offload_optimizer") or cfg.get("offload_param")
        return False
U
u010280923 已提交
358 359 360 361 362 363 364 365 366 367

    @torch.no_grad()
    def generate(
        self,
        max_seq_len,
        *args,
        prompt,
        num_samples = 4,  # sample 4 per prompt and select the one with highest reward
        **kwargs
    ):
U
u010280923 已提交
368 369 370
        ''' 未参与训练,仅推理时使用
        '''

U
u010280923 已提交
371 372 373
        assert prompt.ndim == 1, 'only one prompt allowed at a time for now'
        prompt = repeat(prompt, 'n -> b n', b = num_samples)

U
u010280923 已提交
374
        self.actor_critic.eval()
U
u010280923 已提交
375 376 377 378 379 380 381
        (
            actions,
            sequences,
            mask,
            prompt_mask,
            action_logits,
            _
U
u010280923 已提交
382
        ) = self.actor_critic.generate(
U
u010280923 已提交
383 384 385 386 387 388 389
            prompt,
            *args,
            max_seq_len = max_seq_len,
            return_values = False,
            **kwargs
        )

U
u010280923 已提交
390
        rewards = self.reward_model(
U
u010280923 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403
            sequences,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )

        best_sequence_index = rewards.topk(1, dim = -1).indices

        best_sequence = sequences[best_sequence_index]
        best_sequence = rearrange(best_sequence, '1 ... -> ...')

        return best_sequence

U
u010280923 已提交
404 405 406 407 408 409 410 411
    def training_step(self, batch, batch_idx):
        sequences, \
        prompt_masks, \
        masks, \
        old_action_probs, \
        old_log_probs, \
        rewards, \
        old_values = batch
U
u010280923 已提交
412 413

        # PPO training
U
u010280923 已提交
414
        action_masks = ~prompt_masks & masks
U
u010280923 已提交
415

U
u010280923 已提交
416 417 418 419
        action_logits, values = self.actor_critic(
            sequences,
            mask = action_masks
        )
U
u010280923 已提交
420

U
u010280923 已提交
421
        action_logits = shift(action_logits, shift=1, dim=-2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
422
        action_len = old_log_probs.shape[-1]
U
u010280923 已提交
423

U
u010280923 已提交
424 425 426
        action_probs = action_logits.softmax(dim = -1)
        action_log_probs = log_prob(action_probs, sequences)
        action_log_probs = action_log_probs[:, -action_len:]
U
u010280923 已提交
427

U
u010280923 已提交
428
        # calculate entropies, taking into account which part of the sequence is actually an action
U
u010280923 已提交
429

U
u010280923 已提交
430
        entropies = masked_entropy(action_probs, mask = action_masks)
U
u010280923 已提交
431

U
u010280923 已提交
432
        # calculate kl div between old action probs and new ones, taking into account which part of the sequence is action or not
U
u010280923 已提交
433

U
u010280923 已提交
434
        kl_div_loss = 0.
U
u010280923 已提交
435

U
u010280923 已提交
436 437
        if self.args.kl_div_loss_weight > 0:
            kl_div_loss = masked_kl_div(action_probs, old_action_probs, mask = action_masks) * self.args.kl_div_loss_weight
U
u010280923 已提交
438

U
u010280923 已提交
439
        # handle non-pooled values
U
u010280923 已提交
440

U
u010280923 已提交
441
        normalize_kwargs = dict()
U
u010280923 已提交
442

U
u010280923 已提交
443 444
        if old_values.ndim == 2:
            old_values, values = map(lambda t: shift(t, shift = 1, dim = -2), (old_values, values))
U
u010280923 已提交
445

U
u010280923 已提交
446 447 448 449
            old_values = old_values[:, -action_len:]
            values = values[:, -action_len:]
            rewards = rearrange(rewards, 'b -> b 1')
            normalize_kwargs = dict(dim = -1, mask = action_masks[:, -action_len:])
U
u010280923 已提交
450

U
u010280923 已提交
451 452
        if values.ndim < rewards.ndim:
            values = rearrange(values, '... -> ... 1')
U
u010280923 已提交
453

U
u010280923 已提交
454
        # calculate clipped surrogate objective, classic PPO loss
U
u010280923 已提交
455

U
u010280923 已提交
456 457
        ratios = (action_log_probs - old_log_probs).exp()
        advantages = masked_normalize(rewards - old_values, **normalize_kwargs)
U
u010280923 已提交
458

U
u010280923 已提交
459 460
        if advantages.ndim == 1:
            advantages = rearrange(advantages, 'b -> b 1')
U
u010280923 已提交
461

U
u010280923 已提交
462 463 464
        surr1 = ratios * advantages
        surr2 = ratios.clamp(1 - self.args.eps_clip, 1 + self.args.eps_clip) * advantages
        policy_loss = - torch.min(surr1, surr2) - self.args.beta_s * entropies
U
u010280923 已提交
465

U
u010280923 已提交
466 467
        # actor loss (也称为 policy loss, 是最终要使用模型的 loss)
        actor_loss = policy_loss.mean() + kl_div_loss
U
u010280923 已提交
468

U
u010280923 已提交
469 470 471 472
        # critic loss (也称为 value loss)
        # update value network separate from policy network
        critic_loss = clipped_value_loss(values, rewards, old_values, self.args.value_clip)
        critic_loss = critic_loss.mean()
U
u010280923 已提交
473

U
u010280923 已提交
474
        return {'actor_loss': actor_loss.item(), 'critic_loss': critic_loss.item()}
U
u010280923 已提交
475 476


U
u010280923 已提交
477 478 479 480
    def make_experience(self, prompts, eos_token=None, temperature=1):
        ''' 通过与 environment 交互产生训练数据
        '''
        
U
u010280923 已提交
481 482
        device = self.device

U
u010280923 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        # select a bunch of random states (prompts)
        # and get the action (sampled sequence from rwkv as well as the action probs)
        # also calculate the reward using reward model and store
        # 随机挑选一条 prompt
        rand_prompt_index = randrange(0, self.num_prompts)
        state = self.prompt_token_ids[rand_prompt_index]

        # remove padding from state
        state_mask = state != self.args.pad_value
        state = state[state_mask]

        # get predicted sequence
        # 与 environment 进行交互,其中返回的:
        #   action 是 response,
        #   sequence 是 prompt + response, 
        (
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        ) = self.actor_critic.generate(
            rearrange(state, 'n -> 1 n'),
            max_seq_len = self.args.ctx_len,
            eos_token = eos_token,
            temperature = temperature,
            return_values = True
        )
        action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
513

U
u010280923 已提交
514
        action_prob = action_logits.softmax(dim = -1)
U
u010280923 已提交
515

U
u010280923 已提交
516 517 518
        action_len = actions.shape[-1]
        action_log_prob = log_prob(action_prob, sequence)
        action_log_prob = action_log_prob[:, -action_len:]
U
u010280923 已提交
519

U
u010280923 已提交
520
        actions = rearrange(actions, '1 ... -> ...')
U
u010280923 已提交
521

U
u010280923 已提交
522 523
        # get reward as given by supervised trained reward model
        sequence = torch.cat((state, actions), dim = 0)
U
u010280923 已提交
524

U
u010280923 已提交
525 526
        prompt_length = len(state)
        prompt_mask = torch.arange(sequence.shape[-1], device = device) < prompt_length
U
u010280923 已提交
527

U
u010280923 已提交
528 529 530
        sequence = rearrange(sequence, 'n -> 1 n')
        prompt_mask = rearrange(prompt_mask, 'n -> 1 n')
        mask = rearrange(mask, 'n -> 1 n') if exists(mask) else torch.ones(sequence.shape, dtype = torch.bool, device = device)
U
u010280923 已提交
531

U
u010280923 已提交
532 533 534 535 536 537
        reward = self.reward_model(
            sequence,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )
U
u010280923 已提交
538

U
u010280923 已提交
539 540 541 542 543 544 545 546 547
        return (
            sequence,
            prompt_mask,
            mask,
            action_prob,
            action_log_prob,
            reward,
            value
        )