ppo.py 16.3 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8 9 10 11
import math
from pathlib import Path
import copy
from tqdm import tqdm
from functools import partial
from collections import deque, namedtuple
from random import randrange

from beartype import beartype
from beartype.typing import List, Optional, Callable, Deque

U
u010280923 已提交
12 13 14
from einops import rearrange, repeat
from einops.layers.torch import Rearrange

U
u010280923 已提交
15 16 17 18 19 20 21 22
import torch
from torch import nn
import torch.nn.functional as F

from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence

U
u010280923 已提交
23
import pytorch_lightning as pl
U
u010280923 已提交
24
from pytorch_lightning.utilities import rank_zero_info
U
u010280923 已提交
25 26
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
U
u010280923 已提交
27

U
u010280923 已提交
28 29 30 31
from src.model import RWKV
from src.rlhf.reward import RewardModel
from src.rlhf.optimizer import get_optimizer
from src.rlhf.utils import masked_mean, eval_decorator
U
u010280923 已提交
32

每日一练社区's avatar
fix bug  
每日一练社区 已提交
33
# actor critic
U
u010280923 已提交
34 35 36 37 38 39 40 41 42 43 44

PPOActionCriticReturn = namedtuple('PPOActionCriticReturn', [
    'actions',
    'sequence',
    'mask',
    'prompt_mask',
    'action_logits',
    'values'
])

@beartype
U
u010280923 已提交
45
class ActorCritic(nn.Module):
U
u010280923 已提交
46 47
    def __init__(
        self,
U
u010280923 已提交
48
        args,
U
u010280923 已提交
49 50
        actor: RWKV,
        critic: RWKV,
U
u010280923 已提交
51
        pooled_values = False
U
u010280923 已提交
52 53 54
    ):
        super().__init__()

U
u010280923 已提交
55
        self.actor = actor
U
u010280923 已提交
56
        self.critic = critic
U
u010280923 已提交
57 58 59

        self.pooled_values = pooled_values
        self.value_head = nn.Sequential(
U
u010280923 已提交
60
            nn.Linear(args.n_embd, 1),
U
u010280923 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            Rearrange('... 1 -> ...')
        )

        nn.init.zeros_(self.value_head[0].bias)
        nn.init.orthogonal_(self.value_head[0].weight, gain = math.sqrt(2))

    @torch.no_grad()
    @eval_decorator
    def generate(
        self,
        state,
        max_seq_len,
        eos_token = None,
        return_values = False,
        **kwargs
    ):
U
u010280923 已提交
77 78
        # 产生一条 response,相当于采取了一次 action
        actions = self.actor.generate(
U
u010280923 已提交
79 80 81 82 83 84 85
            max_seq_len,
            prompt = state,       
            eos_token = eos_token,     
            use_tqdm = True,
            **kwargs
        )

U
u010280923 已提交
86
        # 将 prompt (state) 和 response (action) 进行拼接
U
u010280923 已提交
87 88 89 90
        sequence = torch.cat((state, actions), dim = -1)
        action_len = actions.shape[-1]
        state_len = state.shape[-1]

U
u010280923 已提交
91
        # 构建 prompt_mask (state_mask) 和 response_mask (action_mask)
U
u010280923 已提交
92 93 94 95 96
        prompt_mask = torch.arange(sequence.shape[-1], device = state.device) < state_len
        prompt_mask = repeat(prompt_mask, 'n -> b n', b = sequence.shape[0])

        action_mask = ~prompt_mask

U
u010280923 已提交
97
        # 考虑 eos token
U
u010280923 已提交
98 99 100 101 102 103
        mask = None
        if exists(eos_token):
            mask = ((sequence == eos_token).cumsum(dim = -1) == 0)
            mask = F.pad(mask, (1, -1), value = True) # include eos token
            action_mask &= mask

U
u010280923 已提交
104 105
        # 将生成的 sequence 输入到 actor 中,得到 action_logits
        # 将生成的 sequence 输入到 critic 中,得到 value
U
u010280923 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        action_logits, value = self.forward(
            sequence,
            mask = action_mask,
            return_values = return_values
        )        

        return PPOActionCriticReturn(
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        )

    def forward(
        self,
        x,
        mask = None,
        return_values = True
    ):
U
u010280923 已提交
127
        action_logits, _ = self.actor(
U
u010280923 已提交
128
            x,
U
u010280923 已提交
129
            ppo_train = True
U
u010280923 已提交
130 131 132 133 134
        )

        if not return_values:
            return action_logits, None

U
u010280923 已提交
135
        _, critic_embeds = self.critic(
U
u010280923 已提交
136 137
            x,
            return_only_embedding = True,
U
u010280923 已提交
138
            ppo_train = True
U
u010280923 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        )

        if self.pooled_values:
            critic_embeds = shift(critic_embeds, shift = 1, dim = -2)
            critic_embeds = masked_mean(critic_embeds, mask, dim = 1)

        values = self.value_head(critic_embeds)

        return action_logits, values

@beartype
class ExperienceDataset(Dataset):
    def __init__(
        self,
        data: List[torch.Tensor],
        device = None
    ):
        super().__init__()
        self.data = data
        self.device = device

    def __len__(self):
        return self.data[0].shape[0]

    def __getitem__(self, ind):
        return tuple(map(lambda t: t[ind].to(self.device), self.data))

def create_dataloader(data, batch_size, shuffle = True, device = None, **kwargs):
    ds = ExperienceDataset(data, device = device)
    return DataLoader(ds, batch_size = batch_size, shuffle = shuffle, **kwargs)

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def masked_normalize(t, eps = 1e-5, mask = None, dim = None):
    dim = default(dim, tuple(range(t.ndim)))
    kwargs = dict(dim = dim, keepdim = True)

    mean = masked_mean(t, mask = mask, **kwargs)
    mean_centered = t - mean
    var = masked_mean(mean_centered ** 2, mask = mask, **kwargs)

    return mean_centered * var.clamp(min = eps).rsqrt()

def pad_sequence_fixed(sequences, *args, **kwargs):
    first_el = sequences[0]
    has_no_dimension = first_el.ndim == 0

    # if no dimensions, add a single dimension
    if has_no_dimension:
        sequences = tuple(map(lambda t: t[None], sequences))

    out = pad_sequence(sequences, *args, **kwargs)

    if has_no_dimension:
        out = rearrange(out, '... 1 -> ...')

    return out

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def log_prob(prob, indices):
    assert prob.shape[:2] == indices.shape, f'preceding shapes of prob {prob.shape[:2]} and indices {indices.shape} must match'
    return log(prob.gather(-1, indices[..., None])).squeeze(-1)

def shift(t, value = 0, shift = 1, dim = -1):
    zeros = (0, 0) * (-dim - 1)
    return F.pad(t, (*zeros, shift, -shift), value = value)

def masked_entropy(prob, dim = -1, mask = None):
    entropies = (prob * log(prob)).sum(dim = -1)
    return masked_mean(entropies, mask = mask).mean()

def masked_kl_div(prob1, prob2, mask = None):
    """
    need to account for variable sequence lengths, therefore not using the built-in functional version
    """
    kl_divs = (prob1 * (log(prob2) - log(prob1))).sum(dim = -1)

    if not exists(mask):
        return kl_divs.mean()

    return masked_mean(kl_divs, mask).mean()

def clipped_value_loss(values, rewards, old_values, clip):
    value_clipped = old_values + (values - old_values).clamp(-clip, clip)
    value_loss_1 = (value_clipped.flatten() - rewards) ** 2
    value_loss_2 = (values.flatten() - rewards) ** 2
    return torch.mean(torch.max(value_loss_1, value_loss_2))

U
u010280923 已提交
235
# rlhf
U
u010280923 已提交
236 237

@beartype
U
u010280923 已提交
238
class RLHF(pl.LightningModule):
U
u010280923 已提交
239 240
    def __init__(
        self,
U
u010280923 已提交
241
        args,
U
u010280923 已提交
242 243
        actor: RWKV,
        critic: RWKV,
U
u010280923 已提交
244
        reward_model: RewardModel
U
u010280923 已提交
245 246 247
    ):
        super().__init__()

U
u010280923 已提交
248
        self.args = args
U
u010280923 已提交
249

U
u010280923 已提交
250 251
        # 使用 RWKV 初始化 actor_critic
        actor_critic = ActorCritic(
U
u010280923 已提交
252 253 254
            args=self.args,
            actor=actor,
            critic=critic,
U
u010280923 已提交
255
            pooled_values = args.critic_pooled_values
U
u010280923 已提交
256
        ).to(actor.device)
U
u010280923 已提交
257 258 259

        self.actor_critic = actor_critic

U
u010280923 已提交
260
        # 将 reward_model 设置为 evaluation 模式 
U
u010280923 已提交
261 262 263 264 265 266 267 268
        self.reward_model = reward_model.eval()

    def save(self, filepath = './checkpoint.pt'):
        torch.save(self.actor_critic.state_dict(), filepath)

    def load(self, filepath = './checkpoint.pt'):
        state_dict = torch.load(filepath)
        self.actor_critic.load_state_dict(state_dict)
U
u010280923 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    
    def configure_optimizers(self):
        args = self.args
        if args.layerwise_lr > 0:
            lr_1x = set()
            lr_2x = set()
            lr_3x = set()
            for n, p in self.named_parameters():
                if "time_mix" in n:
                    if args.my_pile_stage == 2:
                        lr_2x.add(n)
                    else:
                        lr_1x.add(n)
                elif "time_decay" in n:
                    if args.my_pile_stage == 2:
                        lr_3x.add(n)
                    else:
                        lr_2x.add(n)
                elif "time_first" in n:
                    lr_3x.add(n)
                else:
                    lr_1x.add(n)
            lr_1x = sorted(list(lr_1x))
            lr_2x = sorted(list(lr_2x))
            lr_3x = sorted(list(lr_3x))
            param_dict = {n: p for n, p in self.named_parameters()}
            if args.my_pile_stage == 2:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
                ]
            else:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
                ]
        else:
            optim_groups = [
                {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
            ]

        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
        return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            cfg = strategy.config["zero_optimization"]
            return cfg.get("offload_optimizer") or cfg.get("offload_param")
        return False
U
u010280923 已提交
324 325 326 327 328 329 330 331 332 333

    @torch.no_grad()
    def generate(
        self,
        max_seq_len,
        *args,
        prompt,
        num_samples = 4,  # sample 4 per prompt and select the one with highest reward
        **kwargs
    ):
U
u010280923 已提交
334 335 336
        ''' 未参与训练,仅推理时使用
        '''

U
u010280923 已提交
337 338 339
        assert prompt.ndim == 1, 'only one prompt allowed at a time for now'
        prompt = repeat(prompt, 'n -> b n', b = num_samples)

U
u010280923 已提交
340
        self.actor_critic.eval()
U
u010280923 已提交
341 342 343 344 345 346 347
        (
            actions,
            sequences,
            mask,
            prompt_mask,
            action_logits,
            _
U
u010280923 已提交
348
        ) = self.actor_critic.generate(
U
u010280923 已提交
349 350 351 352 353 354 355
            prompt,
            *args,
            max_seq_len = max_seq_len,
            return_values = False,
            **kwargs
        )

U
u010280923 已提交
356
        rewards = self.reward_model(
U
u010280923 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369
            sequences,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )

        best_sequence_index = rewards.topk(1, dim = -1).indices

        best_sequence = sequences[best_sequence_index]
        best_sequence = rearrange(best_sequence, '1 ... -> ...')

        return best_sequence

U
u010280923 已提交
370 371 372 373 374 375 376 377
    def training_step(self, batch, batch_idx):
        sequences, \
        prompt_masks, \
        masks, \
        old_action_probs, \
        old_log_probs, \
        rewards, \
        old_values = batch
U
u010280923 已提交
378 379

        # PPO training
U
u010280923 已提交
380
        action_masks = ~prompt_masks & masks
U
u010280923 已提交
381

U
u010280923 已提交
382 383 384 385
        action_logits, values = self.actor_critic(
            sequences,
            mask = action_masks
        )
U
u010280923 已提交
386

U
u010280923 已提交
387
        action_logits = shift(action_logits, shift=1, dim=-2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
388
        action_len = old_log_probs.shape[-1]
U
u010280923 已提交
389

U
u010280923 已提交
390 391 392
        action_probs = action_logits.softmax(dim = -1)
        action_log_probs = log_prob(action_probs, sequences)
        action_log_probs = action_log_probs[:, -action_len:]
U
u010280923 已提交
393

U
u010280923 已提交
394
        # calculate entropies, taking into account which part of the sequence is actually an action
U
u010280923 已提交
395

U
u010280923 已提交
396
        entropies = masked_entropy(action_probs, mask = action_masks)
U
u010280923 已提交
397

U
u010280923 已提交
398
        # calculate kl div between old action probs and new ones, taking into account which part of the sequence is action or not
U
u010280923 已提交
399

U
u010280923 已提交
400
        kl_div_loss = 0.
U
u010280923 已提交
401

U
u010280923 已提交
402 403
        if self.args.kl_div_loss_weight > 0:
            kl_div_loss = masked_kl_div(action_probs, old_action_probs, mask = action_masks) * self.args.kl_div_loss_weight
U
u010280923 已提交
404

U
u010280923 已提交
405
        # handle non-pooled values
U
u010280923 已提交
406

U
u010280923 已提交
407
        normalize_kwargs = dict()
U
u010280923 已提交
408

U
u010280923 已提交
409 410
        if old_values.ndim == 2:
            old_values, values = map(lambda t: shift(t, shift = 1, dim = -2), (old_values, values))
U
u010280923 已提交
411

U
u010280923 已提交
412 413 414 415
            old_values = old_values[:, -action_len:]
            values = values[:, -action_len:]
            rewards = rearrange(rewards, 'b -> b 1')
            normalize_kwargs = dict(dim = -1, mask = action_masks[:, -action_len:])
U
u010280923 已提交
416

U
u010280923 已提交
417 418
        if values.ndim < rewards.ndim:
            values = rearrange(values, '... -> ... 1')
U
u010280923 已提交
419

U
u010280923 已提交
420
        # calculate clipped surrogate objective, classic PPO loss
U
u010280923 已提交
421

U
u010280923 已提交
422 423
        ratios = (action_log_probs - old_log_probs).exp()
        advantages = masked_normalize(rewards - old_values, **normalize_kwargs)
U
u010280923 已提交
424

U
u010280923 已提交
425 426
        if advantages.ndim == 1:
            advantages = rearrange(advantages, 'b -> b 1')
U
u010280923 已提交
427

U
u010280923 已提交
428 429 430
        surr1 = ratios * advantages
        surr2 = ratios.clamp(1 - self.args.eps_clip, 1 + self.args.eps_clip) * advantages
        policy_loss = - torch.min(surr1, surr2) - self.args.beta_s * entropies
U
u010280923 已提交
431

U
u010280923 已提交
432 433
        # actor loss (也称为 policy loss, 是最终要使用模型的 loss)
        actor_loss = policy_loss.mean() + kl_div_loss
U
u010280923 已提交
434

U
u010280923 已提交
435 436 437 438
        # critic loss (也称为 value loss)
        # update value network separate from policy network
        critic_loss = clipped_value_loss(values, rewards, old_values, self.args.value_clip)
        critic_loss = critic_loss.mean()
U
u010280923 已提交
439

U
u010280923 已提交
440
        return {'actor_loss': actor_loss.item(), 'critic_loss': critic_loss.item()}
U
u010280923 已提交
441

U
u010280923 已提交
442 443 444 445
    def make_experience(self, prompts, eos_token=None, temperature=1):
        ''' 通过与 environment 交互产生训练数据
        '''
        
U
u010280923 已提交
446 447
        device = self.device

U
u010280923 已提交
448 449 450 451
        # select a bunch of random states (prompts)
        # and get the action (sampled sequence from rwkv as well as the action probs)
        # also calculate the reward using reward model and store
        # 随机挑选一条 prompt
U
u010280923 已提交
452 453
        rand_prompt_index = randrange(0, len(prompts))
        state = prompts[rand_prompt_index]
U
u010280923 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

        # remove padding from state
        state_mask = state != self.args.pad_value
        state = state[state_mask]

        # get predicted sequence
        # 与 environment 进行交互,其中返回的:
        #   action 是 response,
        #   sequence 是 prompt + response, 
        (
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        ) = self.actor_critic.generate(
            rearrange(state, 'n -> 1 n'),
            max_seq_len = self.args.ctx_len,
            eos_token = eos_token,
            temperature = temperature,
            return_values = True
        )
        action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
478

U
u010280923 已提交
479
        action_prob = action_logits.softmax(dim = -1)
U
u010280923 已提交
480

U
u010280923 已提交
481 482 483
        action_len = actions.shape[-1]
        action_log_prob = log_prob(action_prob, sequence)
        action_log_prob = action_log_prob[:, -action_len:]
U
u010280923 已提交
484

U
u010280923 已提交
485
        actions = rearrange(actions, '1 ... -> ...')
U
u010280923 已提交
486

U
u010280923 已提交
487 488
        # get reward as given by supervised trained reward model
        sequence = torch.cat((state, actions), dim = 0)
U
u010280923 已提交
489

U
u010280923 已提交
490 491
        prompt_length = len(state)
        prompt_mask = torch.arange(sequence.shape[-1], device = device) < prompt_length
U
u010280923 已提交
492

U
u010280923 已提交
493 494 495
        sequence = rearrange(sequence, 'n -> 1 n')
        prompt_mask = rearrange(prompt_mask, 'n -> 1 n')
        mask = rearrange(mask, 'n -> 1 n') if exists(mask) else torch.ones(sequence.shape, dtype = torch.bool, device = device)
U
u010280923 已提交
496

U
u010280923 已提交
497 498 499 500 501 502
        reward = self.reward_model(
            sequence,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )
U
u010280923 已提交
503

U
u010280923 已提交
504 505 506 507 508 509 510 511 512
        return (
            sequence,
            prompt_mask,
            mask,
            action_prob,
            action_log_prob,
            reward,
            value
        )