ppo.py 16.3 KB
Newer Older
U
u010280923 已提交
1 2 3 4 5 6 7 8 9 10 11
import math
from pathlib import Path
import copy
from tqdm import tqdm
from functools import partial
from collections import deque, namedtuple
from random import randrange

from beartype import beartype
from beartype.typing import List, Optional, Callable, Deque

U
u010280923 已提交
12 13 14
from einops import rearrange, repeat
from einops.layers.torch import Rearrange

U
u010280923 已提交
15 16 17 18 19 20 21 22
import torch
from torch import nn
import torch.nn.functional as F

from torch.optim import Adam
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence

U
u010280923 已提交
23
import pytorch_lightning as pl
U
u010280923 已提交
24
from pytorch_lightning.utilities import rank_zero_info
U
u010280923 已提交
25 26
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
U
u010280923 已提交
27

U
u010280923 已提交
28 29 30 31
from src.model import RWKV
from src.rlhf.reward import RewardModel
from src.rlhf.optimizer import get_optimizer
from src.rlhf.utils import masked_mean, eval_decorator
U
u010280923 已提交
32

每日一练社区's avatar
fix bug  
每日一练社区 已提交
33
# actor critic
U
u010280923 已提交
34 35 36 37 38 39 40 41 42 43 44

PPOActionCriticReturn = namedtuple('PPOActionCriticReturn', [
    'actions',
    'sequence',
    'mask',
    'prompt_mask',
    'action_logits',
    'values'
])

@beartype
U
u010280923 已提交
45
class ActorCritic(nn.Module):
U
u010280923 已提交
46 47
    def __init__(
        self,
U
u010280923 已提交
48
        args,
U
u010280923 已提交
49 50
        actor: RWKV,
        critic: RWKV,
U
u010280923 已提交
51
        pooled_values = False
U
u010280923 已提交
52 53 54
    ):
        super().__init__()

U
u010280923 已提交
55
        self.actor = actor
U
u010280923 已提交
56
        self.critic = critic
U
u010280923 已提交
57 58 59

        self.pooled_values = pooled_values
        self.value_head = nn.Sequential(
U
u010280923 已提交
60
            nn.Linear(args.n_embd, 1),
U
u010280923 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            Rearrange('... 1 -> ...')
        )

        nn.init.zeros_(self.value_head[0].bias)
        nn.init.orthogonal_(self.value_head[0].weight, gain = math.sqrt(2))

    @torch.no_grad()
    @eval_decorator
    def generate(
        self,
        state,
        max_seq_len,
        eos_token = None,
        return_values = False,
        **kwargs
    ):
U
u010280923 已提交
77 78
        # 产生一条 response,相当于采取了一次 action
        actions = self.actor.generate(
U
u010280923 已提交
79 80
            max_seq_len,
            prompt = state,       
U
u010280923 已提交
81
            eos_token = eos_token
U
u010280923 已提交
82 83
        )

U
u010280923 已提交
84
        # 将 prompt (state) 和 response (action) 进行拼接
U
u010280923 已提交
85 86 87 88
        sequence = torch.cat((state, actions), dim = -1)
        action_len = actions.shape[-1]
        state_len = state.shape[-1]

U
u010280923 已提交
89
        # 构建 prompt_mask (state_mask) 和 response_mask (action_mask)
U
u010280923 已提交
90 91 92 93 94
        prompt_mask = torch.arange(sequence.shape[-1], device = state.device) < state_len
        prompt_mask = repeat(prompt_mask, 'n -> b n', b = sequence.shape[0])

        action_mask = ~prompt_mask

U
u010280923 已提交
95
        # 考虑 eos token
U
u010280923 已提交
96 97 98 99 100 101
        mask = None
        if exists(eos_token):
            mask = ((sequence == eos_token).cumsum(dim = -1) == 0)
            mask = F.pad(mask, (1, -1), value = True) # include eos token
            action_mask &= mask

U
u010280923 已提交
102 103
        # 将生成的 sequence 输入到 actor 中,得到 action_logits
        # 将生成的 sequence 输入到 critic 中,得到 value
U
u010280923 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        action_logits, value = self.forward(
            sequence,
            mask = action_mask,
            return_values = return_values
        )        

        return PPOActionCriticReturn(
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        )

    def forward(
        self,
        x,
        mask = None,
        return_values = True
    ):
U
u010280923 已提交
125
        action_logits, _ = self.actor(
U
u010280923 已提交
126
            x,
U
u010280923 已提交
127
            ppo_train = True
U
u010280923 已提交
128 129 130 131 132
        )

        if not return_values:
            return action_logits, None

U
u010280923 已提交
133
        _, critic_embeds = self.critic(
U
u010280923 已提交
134 135
            x,
            return_only_embedding = True,
U
u010280923 已提交
136
            ppo_train = True
U
u010280923 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        )

        if self.pooled_values:
            critic_embeds = shift(critic_embeds, shift = 1, dim = -2)
            critic_embeds = masked_mean(critic_embeds, mask, dim = 1)

        values = self.value_head(critic_embeds)

        return action_logits, values

@beartype
class ExperienceDataset(Dataset):
    def __init__(
        self,
        data: List[torch.Tensor],
        device = None
    ):
        super().__init__()
        self.data = data
        self.device = device

    def __len__(self):
        return self.data[0].shape[0]

    def __getitem__(self, ind):
        return tuple(map(lambda t: t[ind].to(self.device), self.data))

def create_dataloader(data, batch_size, shuffle = True, device = None, **kwargs):
    ds = ExperienceDataset(data, device = device)
    return DataLoader(ds, batch_size = batch_size, shuffle = shuffle, **kwargs)

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def masked_normalize(t, eps = 1e-5, mask = None, dim = None):
    dim = default(dim, tuple(range(t.ndim)))
    kwargs = dict(dim = dim, keepdim = True)

    mean = masked_mean(t, mask = mask, **kwargs)
    mean_centered = t - mean
    var = masked_mean(mean_centered ** 2, mask = mask, **kwargs)

    return mean_centered * var.clamp(min = eps).rsqrt()

def pad_sequence_fixed(sequences, *args, **kwargs):
    first_el = sequences[0]
    has_no_dimension = first_el.ndim == 0

    # if no dimensions, add a single dimension
    if has_no_dimension:
        sequences = tuple(map(lambda t: t[None], sequences))

    out = pad_sequence(sequences, *args, **kwargs)

    if has_no_dimension:
        out = rearrange(out, '... 1 -> ...')

    return out

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def log_prob(prob, indices):
    assert prob.shape[:2] == indices.shape, f'preceding shapes of prob {prob.shape[:2]} and indices {indices.shape} must match'
    return log(prob.gather(-1, indices[..., None])).squeeze(-1)

def shift(t, value = 0, shift = 1, dim = -1):
    zeros = (0, 0) * (-dim - 1)
    return F.pad(t, (*zeros, shift, -shift), value = value)

def masked_entropy(prob, dim = -1, mask = None):
    entropies = (prob * log(prob)).sum(dim = -1)
    return masked_mean(entropies, mask = mask).mean()

def masked_kl_div(prob1, prob2, mask = None):
    """
    need to account for variable sequence lengths, therefore not using the built-in functional version
    """
    kl_divs = (prob1 * (log(prob2) - log(prob1))).sum(dim = -1)

    if not exists(mask):
        return kl_divs.mean()

    return masked_mean(kl_divs, mask).mean()

def clipped_value_loss(values, rewards, old_values, clip):
    value_clipped = old_values + (values - old_values).clamp(-clip, clip)
    value_loss_1 = (value_clipped.flatten() - rewards) ** 2
    value_loss_2 = (values.flatten() - rewards) ** 2
    return torch.mean(torch.max(value_loss_1, value_loss_2))

U
u010280923 已提交
233
# rlhf
U
u010280923 已提交
234 235

@beartype
U
u010280923 已提交
236
class RLHF(pl.LightningModule):
U
u010280923 已提交
237 238
    def __init__(
        self,
U
u010280923 已提交
239
        args,
U
u010280923 已提交
240 241
        actor: RWKV,
        critic: RWKV,
U
u010280923 已提交
242
        reward_model: RewardModel
U
u010280923 已提交
243 244 245
    ):
        super().__init__()

U
u010280923 已提交
246
        self.args = args
U
u010280923 已提交
247

U
u010280923 已提交
248 249
        # 使用 RWKV 初始化 actor_critic
        actor_critic = ActorCritic(
U
u010280923 已提交
250 251 252
            args=self.args,
            actor=actor,
            critic=critic,
U
u010280923 已提交
253
            pooled_values = args.critic_pooled_values
U
u010280923 已提交
254
        ).to(actor.device)
U
u010280923 已提交
255 256 257

        self.actor_critic = actor_critic

U
u010280923 已提交
258
        # 将 reward_model 设置为 evaluation 模式 
U
u010280923 已提交
259 260 261 262 263 264 265 266
        self.reward_model = reward_model.eval()

    def save(self, filepath = './checkpoint.pt'):
        torch.save(self.actor_critic.state_dict(), filepath)

    def load(self, filepath = './checkpoint.pt'):
        state_dict = torch.load(filepath)
        self.actor_critic.load_state_dict(state_dict)
U
u010280923 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    
    def configure_optimizers(self):
        args = self.args
        if args.layerwise_lr > 0:
            lr_1x = set()
            lr_2x = set()
            lr_3x = set()
            for n, p in self.named_parameters():
                if "time_mix" in n:
                    if args.my_pile_stage == 2:
                        lr_2x.add(n)
                    else:
                        lr_1x.add(n)
                elif "time_decay" in n:
                    if args.my_pile_stage == 2:
                        lr_3x.add(n)
                    else:
                        lr_2x.add(n)
                elif "time_first" in n:
                    lr_3x.add(n)
                else:
                    lr_1x.add(n)
            lr_1x = sorted(list(lr_1x))
            lr_2x = sorted(list(lr_2x))
            lr_3x = sorted(list(lr_3x))
            param_dict = {n: p for n, p in self.named_parameters()}
            if args.my_pile_stage == 2:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
                ]
            else:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
                ]
        else:
            optim_groups = [
                {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
            ]

        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
        return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            cfg = strategy.config["zero_optimization"]
            return cfg.get("offload_optimizer") or cfg.get("offload_param")
        return False
U
u010280923 已提交
322 323 324 325 326 327 328 329 330 331

    @torch.no_grad()
    def generate(
        self,
        max_seq_len,
        *args,
        prompt,
        num_samples = 4,  # sample 4 per prompt and select the one with highest reward
        **kwargs
    ):
U
u010280923 已提交
332 333 334
        ''' 未参与训练,仅推理时使用
        '''

U
u010280923 已提交
335 336 337
        assert prompt.ndim == 1, 'only one prompt allowed at a time for now'
        prompt = repeat(prompt, 'n -> b n', b = num_samples)

U
u010280923 已提交
338
        self.actor_critic.eval()
U
u010280923 已提交
339 340 341 342 343 344 345
        (
            actions,
            sequences,
            mask,
            prompt_mask,
            action_logits,
            _
U
u010280923 已提交
346
        ) = self.actor_critic.generate(
U
u010280923 已提交
347 348 349 350 351 352 353
            prompt,
            *args,
            max_seq_len = max_seq_len,
            return_values = False,
            **kwargs
        )

U
u010280923 已提交
354
        rewards = self.reward_model(
U
u010280923 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367
            sequences,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )

        best_sequence_index = rewards.topk(1, dim = -1).indices

        best_sequence = sequences[best_sequence_index]
        best_sequence = rearrange(best_sequence, '1 ... -> ...')

        return best_sequence

U
u010280923 已提交
368 369 370 371 372 373 374 375
    def training_step(self, batch, batch_idx):
        sequences, \
        prompt_masks, \
        masks, \
        old_action_probs, \
        old_log_probs, \
        rewards, \
        old_values = batch
U
u010280923 已提交
376 377

        # PPO training
U
u010280923 已提交
378
        action_masks = ~prompt_masks & masks
U
u010280923 已提交
379

U
u010280923 已提交
380 381 382 383
        action_logits, values = self.actor_critic(
            sequences,
            mask = action_masks
        )
U
u010280923 已提交
384

U
u010280923 已提交
385
        action_logits = shift(action_logits, shift=1, dim=-2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
386
        action_len = old_log_probs.shape[-1]
U
u010280923 已提交
387

U
u010280923 已提交
388 389 390
        action_probs = action_logits.softmax(dim = -1)
        action_log_probs = log_prob(action_probs, sequences)
        action_log_probs = action_log_probs[:, -action_len:]
U
u010280923 已提交
391

U
u010280923 已提交
392
        # calculate entropies, taking into account which part of the sequence is actually an action
U
u010280923 已提交
393

U
u010280923 已提交
394
        entropies = masked_entropy(action_probs, mask = action_masks)
U
u010280923 已提交
395

U
u010280923 已提交
396
        # calculate kl div between old action probs and new ones, taking into account which part of the sequence is action or not
U
u010280923 已提交
397

U
u010280923 已提交
398
        kl_div_loss = 0.
U
u010280923 已提交
399

U
u010280923 已提交
400 401
        if self.args.kl_div_loss_weight > 0:
            kl_div_loss = masked_kl_div(action_probs, old_action_probs, mask = action_masks) * self.args.kl_div_loss_weight
U
u010280923 已提交
402

U
u010280923 已提交
403
        # handle non-pooled values
U
u010280923 已提交
404

U
u010280923 已提交
405
        normalize_kwargs = dict()
U
u010280923 已提交
406

U
u010280923 已提交
407 408
        if old_values.ndim == 2:
            old_values, values = map(lambda t: shift(t, shift = 1, dim = -2), (old_values, values))
U
u010280923 已提交
409

U
u010280923 已提交
410 411 412 413
            old_values = old_values[:, -action_len:]
            values = values[:, -action_len:]
            rewards = rearrange(rewards, 'b -> b 1')
            normalize_kwargs = dict(dim = -1, mask = action_masks[:, -action_len:])
U
u010280923 已提交
414

U
u010280923 已提交
415 416
        if values.ndim < rewards.ndim:
            values = rearrange(values, '... -> ... 1')
U
u010280923 已提交
417

U
u010280923 已提交
418
        # calculate clipped surrogate objective, classic PPO loss
U
u010280923 已提交
419

U
u010280923 已提交
420 421
        ratios = (action_log_probs - old_log_probs).exp()
        advantages = masked_normalize(rewards - old_values, **normalize_kwargs)
U
u010280923 已提交
422

U
u010280923 已提交
423 424
        if advantages.ndim == 1:
            advantages = rearrange(advantages, 'b -> b 1')
U
u010280923 已提交
425

U
u010280923 已提交
426 427 428
        surr1 = ratios * advantages
        surr2 = ratios.clamp(1 - self.args.eps_clip, 1 + self.args.eps_clip) * advantages
        policy_loss = - torch.min(surr1, surr2) - self.args.beta_s * entropies
U
u010280923 已提交
429

U
u010280923 已提交
430 431
        # actor loss (也称为 policy loss, 是最终要使用模型的 loss)
        actor_loss = policy_loss.mean() + kl_div_loss
U
u010280923 已提交
432

U
u010280923 已提交
433 434 435 436
        # critic loss (也称为 value loss)
        # update value network separate from policy network
        critic_loss = clipped_value_loss(values, rewards, old_values, self.args.value_clip)
        critic_loss = critic_loss.mean()
U
u010280923 已提交
437

U
u010280923 已提交
438
        return {'actor_loss': actor_loss.item(), 'critic_loss': critic_loss.item()}
U
u010280923 已提交
439

U
u010280923 已提交
440 441 442 443
    def make_experience(self, prompts, eos_token=None, temperature=1):
        ''' 通过与 environment 交互产生训练数据
        '''
        
U
u010280923 已提交
444 445
        device = self.device

U
u010280923 已提交
446 447 448 449
        # select a bunch of random states (prompts)
        # and get the action (sampled sequence from rwkv as well as the action probs)
        # also calculate the reward using reward model and store
        # 随机挑选一条 prompt
U
u010280923 已提交
450 451
        rand_prompt_index = randrange(0, len(prompts))
        state = prompts[rand_prompt_index]
U
u010280923 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

        # remove padding from state
        state_mask = state != self.args.pad_value
        state = state[state_mask]

        # get predicted sequence
        # 与 environment 进行交互,其中返回的:
        #   action 是 response,
        #   sequence 是 prompt + response, 
        (
            actions,
            sequence,
            mask,
            prompt_mask,
            action_logits,
            value
        ) = self.actor_critic.generate(
            rearrange(state, 'n -> 1 n'),
            max_seq_len = self.args.ctx_len,
            eos_token = eos_token,
            temperature = temperature,
            return_values = True
        )
        action_logits = shift(action_logits, shift = 1, dim = -2) # need to shift along sequence dimension by 1, since actions start from the last prompt (state) token
U
u010280923 已提交
476

U
u010280923 已提交
477
        action_prob = action_logits.softmax(dim = -1)
U
u010280923 已提交
478

U
u010280923 已提交
479 480 481
        action_len = actions.shape[-1]
        action_log_prob = log_prob(action_prob, sequence)
        action_log_prob = action_log_prob[:, -action_len:]
U
u010280923 已提交
482

U
u010280923 已提交
483
        actions = rearrange(actions, '1 ... -> ...')
U
u010280923 已提交
484

U
u010280923 已提交
485 486
        # get reward as given by supervised trained reward model
        sequence = torch.cat((state, actions), dim = 0)
U
u010280923 已提交
487

U
u010280923 已提交
488 489
        prompt_length = len(state)
        prompt_mask = torch.arange(sequence.shape[-1], device = device) < prompt_length
U
u010280923 已提交
490

U
u010280923 已提交
491 492 493
        sequence = rearrange(sequence, 'n -> 1 n')
        prompt_mask = rearrange(prompt_mask, 'n -> 1 n')
        mask = rearrange(mask, 'n -> 1 n') if exists(mask) else torch.ones(sequence.shape, dtype = torch.bool, device = device)
U
u010280923 已提交
494

U
u010280923 已提交
495 496 497 498 499 500
        reward = self.reward_model(
            sequence,
            prompt_mask = prompt_mask,
            mask = mask,
            sample = True
        )
U
u010280923 已提交
501

U
u010280923 已提交
502 503 504 505 506 507 508 509 510
        return (
            sequence,
            prompt_mask,
            mask,
            action_prob,
            action_log_prob,
            reward,
            value
        )