framework.py 71.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21
import traceback
22

23
import numpy as np
24

25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
38 39
import os
PADDLE_ON_MODEL_CE = os.environ.get('PADDLE_ON_MODEL_CE', None) is not None
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
47
]
Y
Yu Yang 已提交
48

49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
53 54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


120 121 122
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
123 124 125 126


def grad_var_name(var_name):
    """
127 128
    Returns:
        str: gradient name for a certain var name
129 130 131
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
132

133
def convert_np_dtype_to_dtype_(np_dtype):
134 135
    """
    Convert the data type in numpy to the data type in Paddle
136

137
    Args:
138
        np_dtype(np.dtype): the data type in numpy.
139

140 141
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
142 143

    """
144 145
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
146
        return core.VarDesc.VarType.FP32
147
    elif dtype == np.float64:
148
        return core.VarDesc.VarType.FP64
149
    elif dtype == np.float16:
150
        return core.VarDesc.VarType.FP16
151
    elif dtype == np.int32:
152
        return core.VarDesc.VarType.INT32
153
    elif dtype == np.int16:
154
        return core.VarDesc.VarType.INT16
155
    elif dtype == np.int64:
156
        return core.VarDesc.VarType.INT64
157
    elif dtype == np.bool:
158
        return core.VarDesc.VarType.BOOL
159 160
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
161 162
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
163 164
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
165
    else:
M
minqiyang 已提交
166
        raise ValueError("Not supported numpy dtype %s" % dtype)
167 168 169


def dtype_is_floating(dtype):
170 171 172
    """
    Check the data type is floating or not.
    Args:
173
        dtype(np.dtype|core.VarDesc.VarType): data type.
174 175 176 177 178
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
179
    if not isinstance(dtype, core.VarDesc.VarType):
180 181
        dtype = convert_np_dtype_to_dtype_(dtype)

182 183 184 185
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
186 187


188
def _debug_string_(proto, throw_on_error=True):
189 190 191 192 193 194 195 196 197 198 199
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
200
    error_fields = list()
201
    if not proto.IsInitialized(error_fields) and throw_on_error:
202 203
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
204 205 206
    return proto.__str__()


Y
Yu Yang 已提交
207
class Variable(object):
208
    """
209 210 211
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
212
    two variables in different blocks could have the same name.
213

214 215
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
216

217
    Most of a Variable's member variables can be setted to be None. It mean
218
    it is not available or will be specified later.
219 220

    Args:
221
        block(Block): The block that the variable belongs to.
222 223
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
224 225
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
226
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
227
            Some kinds of variable do not contain shape, just set it to None.
228 229 230
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
231
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
232
            series data.
233
            Default: None
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
256 257
    """

Y
Yu Yang 已提交
258 259
    def __init__(self,
                 block,
260
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
261 262 263 264
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
265
                 capacity=None,
Q
QI JUN 已提交
266
                 persistable=None,
F
fengjiayi 已提交
267
                 error_clip=None,
268
                 stop_gradient=False,
F
fengjiayi 已提交
269
                 is_data=False,
Y
Yu Yang 已提交
270
                 **kwargs):
Y
Yu Yang 已提交
271
        self.block = block
F
fengjiayi 已提交
272
        self.error_clip = error_clip
Y
Yu Yang 已提交
273 274

        if name is None:
Y
Yu Yang 已提交
275
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
276
        is_new_var = False
M
minqiyang 已提交
277
        name = cpt.to_text(name)
M
minqiyang 已提交
278
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
279 280

        if self.desc is None:
M
minqiyang 已提交
281
            self.desc = self.block.desc.var(cpt.to_bytes(name))
282
            is_new_var = True
Y
Yu Yang 已提交
283

284 285 286 287 288 289 290 291
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
292
        if shape is not None:
293
            if is_new_var:
294
                self.desc.set_shape(shape)
295 296 297 298 299 300 301 302
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
303
        if dtype is not None:
304
            if not isinstance(dtype, core.VarDesc.VarType):
305
                dtype = convert_np_dtype_to_dtype_(dtype)
306
            if is_new_var:
307
                self.desc.set_dtype(dtype)
308
            else:
309
                old_dtype = self.dtype
310
                if dtype != old_dtype:
311 312 313 314 315
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
316 317

        if lod_level is not None:
318
            if is_new_var:
319
                self.desc.set_lod_level(lod_level)
320 321 322 323 324 325 326
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
327 328 329 330 331 332 333 334 335 336 337
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

338 339 340 341 342 343 344 345
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
346
        self.block.vars[name] = self
Y
Yu Yang 已提交
347
        self.op = None
348
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
349
        self.is_data = is_data
Y
Yu Yang 已提交
350

351
    def __str__(self):
352 353
        return self.to_string(True)

F
update  
fengjiayi 已提交
354
    def to_string(self, throw_on_error, with_details=False):
355 356 357 358
        """
        Get debug string.

        Args:
359 360
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
361
            with_details(bool): more details about variables and parameters
362 363
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
364

365 366
        Returns:
            str: The debug string.
367
        """
F
update  
fengjiayi 已提交
368 369
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
370
        protostr = self.desc.serialize_to_string()
371
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
372 373 374 375
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
376 377
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
378
        return res_str
379 380 381

    __repr__ = __str__

W
Wu Yi 已提交
382
    def _set_desc(self, input):
383 384 385 386 387 388 389 390 391
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
392 393
        self.desc = input

394 395 396 397
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
398 399 400 401
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

402 403
    @property
    def name(self):
M
minqiyang 已提交
404
        return cpt.to_text(self.desc.name())
405

T
typhoonzero 已提交
406 407 408 409
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

410 411 412
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
413
        return tuple(self.desc.shape())
414 415

    @property
416 417
    def dtype(self):
        return self.desc.dtype()
418 419 420

    @property
    def lod_level(self):
421
        return self.desc.lod_level()
Y
Yu Yang 已提交
422

423 424 425 426
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
427
    def _set_error_clip(self, error_clip):
428 429 430 431 432 433 434 435 436
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
437 438
        self.error_clip = error_clip

Y
Yu Yang 已提交
439

F
fengjiayi 已提交
440 441 442
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
443

444 445
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
446 447 448 449
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
450
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
451 452 453 454 455
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
456 457 458 459
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
460 461 462 463 464 465 466 467 468
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
469
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
470 471 472 473 474 475
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
476 477 478 479 480 481 482 483
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
484 485
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
486 487
        return self.op_proto_map[type]

488 489 490 491
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
492
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
Y
Yu Yang 已提交
493 494
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
495 496
        }

F
fengjiayi 已提交
497

Y
Yu Yang 已提交
498
class Operator(object):
499
    """
500 501 502 503 504 505 506
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
507
        type(str): The type of operator. Default None.
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
528
        Block.append_op or Block._prepend_op instead.
529 530 531 532 533 534 535 536 537 538

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
539
    """
540 541 542 543 544
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
545
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
546
    }
547

Y
Yu Yang 已提交
548 549
    def __init__(self,
                 block,
550
                 desc,
Y
Yu Yang 已提交
551 552 553 554 555
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
556
        self.desc = desc
G
gongweibao 已提交
557 558 559 560 561
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
562 563 564 565
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
566 567
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
568 569 570

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
571 572
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
573

G
gongweibao 已提交
574 575
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
576

577 578 579 580
        if not PADDLE_ON_MODEL_CE:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]
581

F
fengjiayi 已提交
582 583 584 585 586
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
587
        self.desc.set_type(type)
F
fengjiayi 已提交
588
        proto = OpProtoHolder.instance().get_op_proto(type)
589

590 591 592
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

593 594
        def find_name(var_list, name):
            for var_name in var_list:
595
                if var_list[var_name] is not None and var_name == name:
596 597
                    return True
            return False
598

599 600 601 602 603 604 605
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
606 607 608 609
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
610 611
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
612 613 614
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
615
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
616
                            in_arg_names.append(arg)
617 618
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
619
                        else:
M
minqiyang 已提交
620
                            in_arg_names.append(cpt.to_text(arg.name))
621
                    self.desc.set_input(in_proto.name, in_arg_names)
622 623
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
624

Y
Yu Yang 已提交
625
        if outputs is not None:
626 627 628 629 630 631 632
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
633 634
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
635 636 637
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
638

F
fengjiayi 已提交
639
            for out_proto in proto.outputs:
640 641 642 643
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
644 645
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
646 647 648
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
649
                    out_arg_names.append(cpt.to_text(arg.name))
650 651
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
652

G
gongweibao 已提交
653 654
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
655
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
656
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
657
                attr_name = attr.name
G
gongweibao 已提交
658
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
659
                    continue
G
gongweibao 已提交
660
                attr_val = op_attrs[attr_name]
661 662
                self._update_desc_attr(attr_name, attr_val)

663
        self.desc.check_attrs()
W
Wu Yi 已提交
664
        if self._has_kernel(type):
665
            self.desc.infer_var_type(self.block.desc)
666
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
667

W
Wu Yi 已提交
668
    def _has_kernel(self, op_type):
669 670
        return op_type not in self.OP_WITHOUT_KERNEL_SET

671
    def to_string(self, throw_on_error):
672
        """
673 674
        Get debug string.

675
        Args:
676 677
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
678

679 680
        Returns:
            str: The debug string.
681 682

        """
683
        protostr = self.desc.serialize_to_string()
684
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
685 686 687 688
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
689 690 691

    __repr__ = __str__

F
fengjiayi 已提交
692 693 694 695 696
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
697
        """
698
        Get the input arguments according to the input parameter name.
699

700 701
        Args:
            name(str): The input parameter name.
702

703 704 705
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
706
        """
F
fengjiayi 已提交
707 708
        return self.desc.input(name)

W
Wu Yi 已提交
709
    def _rename_input(self, old_name, new_name):
710 711 712 713 714 715 716 717 718 719
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
720
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
721

W
Wu Yi 已提交
722
    def _rename_output(self, old_name, new_name):
723 724 725 726 727 728 729 730 731 732
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
733
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
734

F
fengjiayi 已提交
735 736 737 738
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
739 740 741 742 743 744 745 746
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
747
    def output(self, name):
748
        """
749
        Get output arguments by the output parameter name.
750

751 752
        Args:
            name(str): The output parameter name.
753

754 755 756
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
757
        """
F
fengjiayi 已提交
758 759 760 761 762 763
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

764 765 766 767 768 769 770 771
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
772
    def has_attr(self, name):
773
        """
774 775
        Whether this Operator has the attribute with name or not.

776
        Args:
777
            name(str): the attribute name.
778

779 780
        Returns:
            bool: True if has this attribute.
781 782

        """
F
fengjiayi 已提交
783 784 785
        return self.desc.has_attr(name)

    def attr_type(self, name):
786
        """
787
        Get the type of attribute by attribute's name.
788

789 790
        Args:
            name(str): the attribute name.
791

792 793
        Returns:
            core.AttrType: the attribute type.
794
        """
F
fengjiayi 已提交
795 796
        return self.desc.attr_type(name)

W
Wu Yi 已提交
797
    def _set_attr(self, name, val):
798 799 800 801 802 803 804 805 806 807
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
808 809 810 811 812 813 814 815 816 817 818 819 820
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
821 822
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
823 824
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
825
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
826 827 828 829
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
830
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
831

F
fengjiayi 已提交
832 833 834 835 836
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
837
        """
838 839
        Get the attribute by name.

840
        Args:
841
            name(str): the attribute name.
842

843 844
        Returns:
            bool|int|str|float|list: The attribute value. The return value
845 846
            can be any valid attribute type.
        """
F
fengjiayi 已提交
847
        return self.desc.attr(name)
Y
Yu Yang 已提交
848

W
Wu Yi 已提交
849
    def _block_attr_id(self, name):
850
        """
G
gongweibao 已提交
851
        Get the block attribute's id by name.
852

853 854
        Args:
            name(str): the attribute name.
855

856 857
        Returns:
            int: the block index.
858
        """
W
Wu Yi 已提交
859
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
860

W
Wu Yi 已提交
861
    def _block_attr(self, name):
G
gongweibao 已提交
862 863 864 865 866 867 868 869 870 871
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
872
        id = self._block_attr_id(name)
G
gongweibao 已提交
873 874 875
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
876
    def _blocks_attr(self, name):
G
gongweibao 已提交
877 878 879 880 881 882 883 884 885 886
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
887
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
888 889 890 891 892
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
893
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
894 895 896 897 898 899 900 901 902 903
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
904
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
905

J
JiayiFeng 已提交
906
    def all_attrs(self):
F
fengjiayi 已提交
907
        """
908 909 910
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
911
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
912 913 914 915
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
916 917
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
918
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
919 920 921
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
922
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
923 924 925 926
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
927 928
        return attr_map

Y
Yu Yang 已提交
929

Y
Yu Yang 已提交
930
class Block(object):
931 932 933 934 935 936 937 938 939 940 941 942 943 944
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
945
        use `Program._create_block()` to create a block.
946 947 948 949 950 951 952 953 954 955 956 957 958 959

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
960
    def __init__(self, program, idx):
961
        self.desc = program.desc.block(idx)
962
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
963
        self.ops = list()  # operator list
Y
Yu Yang 已提交
964
        self.program = program
965
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
966

967
    def __str__(self):
968 969
        return self.to_string(True)

F
fengjiayi 已提交
970 971
    def to_string(self, throw_on_error, with_details=False):
        """
972 973
        Get debug string.

F
fengjiayi 已提交
974 975
        Args:
            throw_on_error(bool): raise exception when self is not initialized
976
                when throw_on_error is True.
F
update  
fengjiayi 已提交
977
            with_details(bool): more details about variables and parameters
978 979
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
980

981 982
        Returns:
            str: The debug string.
F
fengjiayi 已提交
983 984 985 986
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
987
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
988 989
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
990
            for var in list(self.vars.values()):
F
fengjiayi 已提交
991
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
992
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
993
            for op in self.ops:
F
fengjiayi 已提交
994 995
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
996 997 998
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
999 1000
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1001 1002
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1003 1004 1005

    __repr__ = __str__

Y
Yu Yang 已提交
1006 1007
    @property
    def parent_idx(self):
1008
        return self.desc.parent
Y
Yu Yang 已提交
1009

1010 1011 1012 1013
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1014
    def _set_forward_block_idx(self, idx):
1015 1016 1017 1018 1019 1020 1021 1022 1023
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1024
        self.desc._set_forward_block_idx(idx)
1025

Y
Yu Yang 已提交
1026 1027
    @property
    def idx(self):
1028
        return self.desc.id
Y
Yu Yang 已提交
1029

Q
Qiao Longfei 已提交
1030
    def var(self, name):
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1044
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1045 1046 1047
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
1048 1049
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1050
            raise ValueError("var %s not in this block" % name)
1051
        return v
Q
Qiao Longfei 已提交
1052

W
Wu Yi 已提交
1053
    def _var_recursive(self, name):
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1093

Q
Qiao Longfei 已提交
1094
    def all_parameters(self):
1095
        return list(self.iter_parameters())
1096

1097
    def iter_parameters(self):
M
minqiyang 已提交
1098
        return (item[1] for item in six.iteritems(self.vars)
1099
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1100

Y
Yu Yang 已提交
1101
    def create_var(self, *args, **kwargs):
1102
        var = Variable(block=self, *args, **kwargs)
1103 1104
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
1105
        return var
Y
Yu Yang 已提交
1106

Q
Qiao Longfei 已提交
1107 1108 1109
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1110
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1111 1112
        """
        Rename variable in vars and ops' inputs and outputs
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1125
        """
M
minqiyang 已提交
1126 1127
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1128

T
typhoonzero 已提交
1129
        if not self.has_var(name):
1130
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1131 1132
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1133
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1134 1135 1136 1137 1138 1139 1140
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1141
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1142 1143 1144 1145
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1146
        orig_var_type = v.type
M
minqiyang 已提交
1147
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1148
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1149
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1150
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1151 1152 1153 1154
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1155
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1156 1157 1158 1159 1160 1161 1162
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1163
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1164 1165
            var = Variable(
                self,
T
typhoonzero 已提交
1166
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1167 1168 1169 1170
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1171
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1172 1173 1174
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1175
        self._sync_with_cpp()
1176
        return var
T
typhoonzero 已提交
1177

W
Wu Yi 已提交
1178 1179
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1180
        self.desc._remove_var(cpt.to_bytes(name))
1181 1182
        del self.vars[name]

Y
Yu Yang 已提交
1183 1184
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1185
        param = Parameter(global_block, *args, **kwargs)
1186
        if 'initializer' in kwargs:
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1207
        return param
Y
Yu Yang 已提交
1208

Y
Yu Yang 已提交
1209
    def append_op(self, *args, **kwargs):
1210 1211 1212 1213 1214 1215
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
1216
        op_desc = self.desc.append_op()
1217
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1218 1219 1220
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1221
    def _insert_op(self, index, *args, **kwargs):
1222 1223 1224 1225 1226 1227 1228 1229 1230
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1231 1232
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1233 1234 1235 1236
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1237
    def _remove_op(self, index):
1238 1239 1240 1241 1242 1243 1244 1245 1246
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1247 1248
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1249 1250
        del self.ops[index]

W
Wu Yi 已提交
1251
    def _slice_ops(self, start, end):
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1262
        return self.ops[start:end]
1263

W
Wu Yi 已提交
1264 1265
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1266
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1267
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1268 1269
        return op

W
Wu Yi 已提交
1270
    def _sync_with_cpp(self):
1271
        """
1272 1273
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1274
        """
Q
Qiao Longfei 已提交
1275 1276 1277 1278 1279
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1280
        # sync variables removed from c++ end
1281
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1282
            if not self.desc.find_var(cpt.to_bytes(var)):
1283 1284
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1285
        # sync operators from cpp
1286 1287 1288 1289
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1306 1307 1308 1309 1310

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1311
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1312 1313 1314 1315 1316 1317 1318

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1332 1333 1334 1335
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1336
    def _copy_param_info_from(self, other):
1337
        """
1338 1339
        Copy the information of parameters from the other block.

1340
        Args:
1341 1342 1343 1344 1345
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1346 1347 1348 1349 1350

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1351 1352
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1353
        for p in other.iter_parameters():
1354 1355 1356
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1357
                raise ValueError("_copy_param_info_from should be invoked with "
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1370
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1371
                error_clip=p.error_clip,
1372 1373 1374
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1375
    def _clone_variable(self, var):
1376 1377
        """
        Clone a variable into current block.
1378

1379 1380 1381 1382
        Args:
            var: the variable to be cloned.

        Returns:
1383
            Variable: the new  variable cloned from 'var' in current block.
1384 1385
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1386 1387 1388 1389 1390
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1391 1392
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1393
                name=var.name, persistable=var.persistable, type=var.type)
1394 1395 1396 1397 1398 1399
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1400 1401
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1402 1403 1404 1405 1406 1407 1408
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1409 1410
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1411
        return ret_var
1412

Y
Yu Yang 已提交
1413 1414

class Program(object):
D
dzhwinter 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1426
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1427 1428

    Returns:
Y
yuyang18 已提交
1429
        A empty program.
D
dzhwinter 已提交
1430 1431

    Examples:
Y
yuyang18 已提交
1432 1433 1434 1435 1436 1437
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1438 1439 1440

    """

1441 1442
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1443 1444
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1445
        self._seed = 0
Y
yuyang18 已提交
1446
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1447
        self._op_role_var = []
1448 1449 1450 1451

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1452
        self._slice_vars_and_attrs = []
1453 1454
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1455 1456 1457

    @property
    def op_role(self):
Y
yuyang18 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1471 1472 1473 1474 1475 1476 1477 1478
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1479 1480 1481 1482 1483 1484 1485
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1486 1487 1488 1489
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1490
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1491 1492

    @contextlib.contextmanager
W
Wu Yi 已提交
1493
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1494 1495 1496 1497 1498 1499 1500
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1501
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1502 1503 1504 1505

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1506
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1507 1508
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1509 1510
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1511 1512 1513 1514
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1515
        yield
Y
yuyang18 已提交
1516
        self._op_role_var = []
Y
yuyang18 已提交
1517
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    @contextlib.contextmanager
    def _lr_schedule_guard(self):
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.


        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
        self._op_role_var = []
        self._current_role = OpRole.Forward

1543
    def __str__(self):
Y
yuyang18 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
1553 1554
        return self.to_string(True)

F
fengjiayi 已提交
1555 1556 1557
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1558

F
fengjiayi 已提交
1559
        Args:
Y
yuyang18 已提交
1560 1561
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1562

Y
yuyang18 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1583 1584
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1585 1586
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1587

W
Wu Yi 已提交
1588
    def _get_desc(self):
Y
yuyang18 已提交
1589 1590 1591 1592 1593 1594 1595
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1596 1597
        return self.desc

X
version  
Xin Pan 已提交
1598 1599 1600
    def _version(self):
        return self.desc._version()

1601
    def clone(self, for_test=False):
Y
yuyang18 已提交
1602 1603 1604
        """
        Create a new, duplicated program.

1605

Y
yuyang18 已提交
1606 1607 1608 1609
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1610

Y
yuyang18 已提交
1611 1612 1613 1614
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
1615 1616 1617 1618 1619
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1620 1621

        Args:
Y
yuyang18 已提交
1622 1623
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1624

D
dzhwinter 已提交
1625
        Returns:
Y
yuyang18 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1679 1680
        """
        if for_test:
X
Xin Pan 已提交
1681
            p = self._inference_optimize(prune_read_op=False)
1682
        else:
1683
            p = Program()
G
gongweibao 已提交
1684 1685
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1686
            p.desc = core.ProgramDesc(self.desc)
1687 1688 1689
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1690 1691 1692 1693

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1694
            p._sync_with_cpp()
1695

W
Wu Yi 已提交
1696
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1697
        p._copy_data_info_from(self)
1698
        return p
1699

W
Wu Yi 已提交
1700
    def _prune(self, targets):
Y
yuyang18 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1716 1717 1718 1719 1720 1721
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1722 1723
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1724
                    # and we need to find the current op that generate this
1725 1726 1727 1728 1729 1730 1731 1732
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1733
                    t = t.op
1734 1735 1736 1737
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1738
                else:
1739 1740
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1741 1742 1743 1744

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
1745 1746 1747
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1748
        res._sync_with_cpp()
1749 1750
        return res

X
Xin Pan 已提交
1751
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1752
        """
F
fengjiayi 已提交
1753 1754 1755 1756 1757
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1758
        3. change the :code:`is_test`
Y
yuyang18 已提交
1759 1760 1761
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1762
        Args:
X
Xin Pan 已提交
1763 1764
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1765

Y
yuyang18 已提交
1766 1767 1768 1769 1770 1771
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1772
        res = Program()
1773
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1774 1775 1776 1777

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1778
        if prune_read_op:
1779 1780 1781 1782 1783 1784 1785 1786 1787
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1788
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1789 1790

        # change all `is_test` attributes to True
1791
        for i in six.moves.range(res.desc.num_blocks()):
1792
            block = res.desc.block(i)
1793
            for j in six.moves.range(block.op_size()):
1794 1795
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1796
                    op._set_attr('is_test', True)
1797 1798 1799
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1800
        res._sync_with_cpp()
1801 1802
        return res

1803 1804
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1805 1806 1807 1808 1809 1810 1811
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1812
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1813 1814 1815 1816

        Returns:
            Program: A deserialized program desc.
        """
1817 1818
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1819
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1820
        p._sync_with_cpp()
1821
        return p
1822

D
dzhwinter 已提交
1823 1824
    @property
    def random_seed(self):
Y
yuyang18 已提交
1825 1826 1827 1828 1829 1830
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1831 1832
        return self._seed

1833 1834
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1835 1836 1837
        """
        The number of blocks in this program.
        """
1838 1839
        return self.desc.num_blocks()

D
dzhwinter 已提交
1840 1841 1842 1843 1844 1845
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

1846
    def __repr__(self):
1847
        return self.__str__()
1848

Y
Yu Yang 已提交
1849
    def global_block(self):
Y
yuyang18 已提交
1850 1851 1852
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1853 1854
        return self.blocks[0]

Q
Qiao Longfei 已提交
1855
    def block(self, index):
Y
yuyang18 已提交
1856 1857 1858 1859 1860 1861 1862 1863
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1864 1865
        return self.blocks[index]

Y
Yu Yang 已提交
1866
    def current_block(self):
Y
yuyang18 已提交
1867 1868 1869 1870
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1871 1872
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1873
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1884
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1885 1886 1887
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1888 1889 1890 1891
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1892
    def _rollback(self):
Y
yuyang18 已提交
1893 1894 1895 1896 1897
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1898 1899
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1900
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1911 1912 1913
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1914
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1915

W
Wu Yi 已提交
1916
    def _copy_param_info_from(self, other):
1917
        """
1918
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1919

Y
yuyang18 已提交
1920 1921 1922
        Notes: This is a very low level API. Users should not invoke it
        directly.

1923 1924 1925 1926 1927 1928 1929
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1930
            raise TypeError("_copy_param_info_from should be invoked with "
1931 1932 1933
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1934
            raise ValueError("_copy_param_info_from should be invoked with two "
1935
                             "program, with represent the same topology")
W
Wu Yi 已提交
1936
        self.global_block()._copy_param_info_from(other.global_block())
1937

W
Wu Yi 已提交
1938
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
1939 1940
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1941

Y
yuyang18 已提交
1942 1943 1944
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1945 1946 1947 1948 1949 1950 1951
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1952
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1953 1954 1955
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1956
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1957
                             "program, with represent the same topology")
1958
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1959 1960 1961
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1962
    def list_vars(self):
Y
yuyang18 已提交
1963 1964 1965 1966 1967 1968
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1969
        for each_block in self.blocks:
1970
            for each_var in list(each_block.vars.values()):
1971 1972
                yield each_var

Y
Yu Yang 已提交
1973

Y
Yu Yang 已提交
1974
class Parameter(Variable):
1975
    """
1976
    Parameter is derived from Variable. A parameter is a persistable
1977
    Variable, and will be updated by optimizers after each iteration.
1978
    The training of a neural network is essentially the updating of
1979 1980
    its parameters.

1981
    Relative to a general Variable, a Parameter has several its own
1982 1983
    member variables:

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1996 1997
    """

Y
Yu Yang 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2008 2009 2010

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2011 2012 2013 2014
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2015 2016
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2017
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
2018

W
wanghaoshuang 已提交
2019
        self.do_model_average = kwargs.get('do_model_average', None)
2020

F
fengjiayi 已提交
2021 2022 2023
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2024 2025 2026
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2027

F
update  
fengjiayi 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2042
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2043
            for attr_name in additional_attr:
2044 2045
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2046 2047
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2048 2049 2050 2051
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2052

Y
Yu Yang 已提交
2053
# program is a global instance.
2054 2055
_main_program_ = Program()
_startup_program_ = Program()
2056

2057

2058
def default_startup_program():
2059
    """
Y
yuyang18 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2069

2070 2071 2072
    Returns:
        Program: startup program
    """
2073
    return _startup_program_
2074

2075

2076
def default_main_program():
2077
    """
Y
yuyang18 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2087

2088 2089 2090
    Returns:
        Program: main program
    """
2091
    return _main_program_
2092 2093 2094 2095 2096


def switch_main_program(program):
    """
    Switch the main program to a new program.
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2112
    Switch the startup program to a new program
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2128 2129 2130
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2131

2132
    Examples:
Y
yuyang18 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2143

2144
    Examples:
Y
yuyang18 已提交
2145 2146 2147 2148 2149 2150

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2151

2152
    Args:
Y
yuyang18 已提交
2153
        main_program(Program): New main program inside `with` statement.
2154
        startup_program(Program): New startup program inside `with` statement.
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
2168 2169


W
Wu Yi 已提交
2170
def _get_var(name, program=None):
2171
    """
Y
yuyang18 已提交
2172
    Get a variable by name from the global block of a program.
2173

2174 2175 2176
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2177
        If None, default_global_program() will be used.
2178 2179 2180 2181 2182 2183 2184

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2185
    assert isinstance(program, Program)
2186 2187

    return program.global_block().var(name)
新手
引导
客服 返回
顶部