framework.py 71.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21
import traceback
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
38 39
import os
PADDLE_ON_MODEL_CE = os.environ.get('PADDLE_ON_MODEL_CE', None) is not None
Y
Yu Yang 已提交
40

41
__all__ = [
42 43
    'Program',
    'Operator',
F
fengjiayi 已提交
44
    'Parameter',
45 46 47
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
48
    'get_var',
49
    'name_scope',
50
]
Y
Yu Yang 已提交
51

Q
qiaolongfei 已提交
52 53 54 55
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
56 57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
123 124 125
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
126 127 128 129


def grad_var_name(var_name):
    """
130 131
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
132 133 134
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
135

136
def convert_np_dtype_to_dtype_(np_dtype):
137 138
    """
    Convert the data type in numpy to the data type in Paddle
139

140
    Args:
141
        np_dtype(np.dtype): the data type in numpy.
142

143 144
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
145 146

    """
147 148
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
149
        return core.VarDesc.VarType.FP32
150
    elif dtype == np.float64:
151
        return core.VarDesc.VarType.FP64
152
    elif dtype == np.float16:
153
        return core.VarDesc.VarType.FP16
154
    elif dtype == np.int32:
155
        return core.VarDesc.VarType.INT32
156
    elif dtype == np.int16:
157
        return core.VarDesc.VarType.INT16
158
    elif dtype == np.int64:
159
        return core.VarDesc.VarType.INT64
160
    elif dtype == np.bool:
161
        return core.VarDesc.VarType.BOOL
162 163
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
164 165
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
166 167
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
168
    else:
M
minqiyang 已提交
169
        raise ValueError("Not supported numpy dtype %s" % dtype)
170 171 172


def dtype_is_floating(dtype):
173 174 175
    """
    Check the data type is floating or not.
    Args:
176
        dtype(np.dtype|core.VarDesc.VarType): data type.
177 178 179 180 181
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
182
    if not isinstance(dtype, core.VarDesc.VarType):
183 184
        dtype = convert_np_dtype_to_dtype_(dtype)

185 186 187 188
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
189 190


Y
Yang Yang(Tony) 已提交
191
def _debug_string_(proto, throw_on_error=True):
192 193 194 195 196 197 198 199 200 201 202
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
203
    error_fields = list()
Y
Yang Yang(Tony) 已提交
204
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
205 206
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
207 208 209
    return proto.__str__()


Y
Yu Yang 已提交
210
class Variable(object):
211
    """
212 213 214
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
215
    two variables in different blocks could have the same name.
216

217 218
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
219

220
    Most of a Variable's member variables can be setted to be None. It mean
221
    it is not available or will be specified later.
222 223

    Args:
224
        block(Block): The block that the variable belongs to.
225 226
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
227 228
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
229
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
230
            Some kinds of variable do not contain shape, just set it to None.
231 232 233
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
234
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
235
            series data.
236
            Default: None
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
259 260
    """

Y
Yu Yang 已提交
261 262
    def __init__(self,
                 block,
Y
Yu Yang 已提交
263
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
264 265 266 267
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
268
                 capacity=None,
Q
QI JUN 已提交
269
                 persistable=None,
F
fengjiayi 已提交
270
                 error_clip=None,
Y
Yu Yang 已提交
271
                 stop_gradient=False,
F
fengjiayi 已提交
272
                 is_data=False,
Y
Yu Yang 已提交
273
                 **kwargs):
Y
Yu Yang 已提交
274
        self.block = block
F
fengjiayi 已提交
275
        self.error_clip = error_clip
Y
Yu Yang 已提交
276 277

        if name is None:
Y
Yu Yang 已提交
278
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
279
        is_new_var = False
M
minqiyang 已提交
280
        name = cpt.to_text(name)
M
minqiyang 已提交
281
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
282 283

        if self.desc is None:
M
minqiyang 已提交
284
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
285
            is_new_var = True
Y
Yu Yang 已提交
286

Y
Yu Yang 已提交
287 288 289 290 291 292 293 294
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
295
        if shape is not None:
Y
Yu Yang 已提交
296
            if is_new_var:
297
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
298 299 300 301 302 303 304 305
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
306
        if dtype is not None:
307
            if not isinstance(dtype, core.VarDesc.VarType):
308
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
309
            if is_new_var:
F
fengjiayi 已提交
310
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
311
            else:
F
fengjiayi 已提交
312
                old_dtype = self.dtype
Q
QI JUN 已提交
313
                if dtype != old_dtype:
Y
Yu Yang 已提交
314 315 316 317 318
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
319 320

        if lod_level is not None:
Y
Yu Yang 已提交
321
            if is_new_var:
322
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
323 324 325 326 327 328 329
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
330 331 332 333 334 335 336 337 338 339 340
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

341 342 343 344 345 346 347 348
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
349
        self.block.vars[name] = self
Y
Yu Yang 已提交
350
        self.op = None
Y
Yu Yang 已提交
351
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
352
        self.is_data = is_data
Y
Yu Yang 已提交
353

354
    def __str__(self):
Y
Yang Yang(Tony) 已提交
355 356
        return self.to_string(True)

F
update  
fengjiayi 已提交
357
    def to_string(self, throw_on_error, with_details=False):
358 359 360 361
        """
        Get debug string.

        Args:
362 363
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
364
            with_details(bool): more details about variables and parameters
365 366
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
367

368 369
        Returns:
            str: The debug string.
370
        """
F
update  
fengjiayi 已提交
371 372
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
373
        protostr = self.desc.serialize_to_string()
374
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
375 376 377 378
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
379 380
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
381
        return res_str
382 383 384

    __repr__ = __str__

W
Wu Yi 已提交
385
    def _set_desc(self, input):
386 387 388 389 390 391 392 393 394
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
395 396
        self.desc = input

397 398 399 400
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
401 402 403 404
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
405 406
    @property
    def name(self):
M
minqiyang 已提交
407
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
408

T
typhoonzero 已提交
409 410 411 412
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
413 414 415
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
416
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
417 418

    @property
F
fengjiayi 已提交
419 420
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
421 422 423

    @property
    def lod_level(self):
424
        return self.desc.lod_level()
Y
Yu Yang 已提交
425

Y
Yu Yang 已提交
426 427 428 429
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
430
    def _set_error_clip(self, error_clip):
431 432 433 434 435 436 437 438 439
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
440 441
        self.error_clip = error_clip

Y
Yu Yang 已提交
442

F
fengjiayi 已提交
443 444 445
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
446

447 448
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
449 450 451 452
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
453
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
454 455 456 457 458
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
459 460 461 462
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
463 464 465 466 467 468 469 470 471
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
472
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
473 474 475 476 477 478
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
479 480 481 482 483 484 485 486
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
487 488
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
489 490
        return self.op_proto_map[type]

491 492 493 494
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
495 496
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
497 498
        }

F
fengjiayi 已提交
499

Y
Yu Yang 已提交
500
class Operator(object):
501
    """
502 503 504 505 506 507 508
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
509
        type(str): The type of operator. Default None.
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
530
        Block.append_op or Block._prepend_op instead.
531 532 533 534 535 536 537 538 539 540

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
541
    """
542 543 544 545 546
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
547
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
548
    }
549

Y
Yu Yang 已提交
550 551
    def __init__(self,
                 block,
Y
Yu Yang 已提交
552
                 desc,
Y
Yu Yang 已提交
553 554 555 556 557
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
558
        self.desc = desc
G
gongweibao 已提交
559 560 561 562 563
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
564 565 566 567
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
568 569
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
570 571 572

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
573 574
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
575

G
gongweibao 已提交
576 577
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
578

579 580 581 582
        if not PADDLE_ON_MODEL_CE:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]
583

F
fengjiayi 已提交
584 585 586 587 588
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
589
        self.desc.set_type(type)
F
fengjiayi 已提交
590
        proto = OpProtoHolder.instance().get_op_proto(type)
591

592 593 594
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
595 596
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
597
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
598 599
                    return True
            return False
Q
QI JUN 已提交
600

Y
Yang Yang(Tony) 已提交
601 602 603 604 605 606 607
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
608 609 610 611
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
612 613
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
614 615 616
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
617
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
618
                            in_arg_names.append(arg)
619 620
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
621
                        else:
M
minqiyang 已提交
622
                            in_arg_names.append(cpt.to_text(arg.name))
623
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
624 625
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
626

Y
Yu Yang 已提交
627
        if outputs is not None:
628 629 630 631 632 633 634
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
635 636
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
637 638 639
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
640

F
fengjiayi 已提交
641
            for out_proto in proto.outputs:
642 643 644 645
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
646 647
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
648 649 650
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
651
                    out_arg_names.append(cpt.to_text(arg.name))
652 653
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
654

G
gongweibao 已提交
655 656
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
657
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
658
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
659
                attr_name = attr.name
G
gongweibao 已提交
660
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
661
                    continue
G
gongweibao 已提交
662
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
663 664
                self._update_desc_attr(attr_name, attr_val)

665
        self.desc.check_attrs()
666
        if self.has_kernel(type):
Q
QI JUN 已提交
667
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
668
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
669

670 671 672
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
673
    def to_string(self, throw_on_error):
674
        """
675 676
        Get debug string.

677
        Args:
678 679
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
680

681 682
        Returns:
            str: The debug string.
683 684

        """
685
        protostr = self.desc.serialize_to_string()
686
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
687 688 689 690
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
691 692 693

    __repr__ = __str__

F
fengjiayi 已提交
694 695 696 697 698
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
699
        """
700
        Get the input arguments according to the input parameter name.
701

702 703
        Args:
            name(str): The input parameter name.
704

705 706 707
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
708
        """
F
fengjiayi 已提交
709 710
        return self.desc.input(name)

T
typhoonzero 已提交
711
    def rename_input(self, old_name, new_name):
712 713 714 715 716 717 718 719 720 721
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
722 723 724
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
725 726 727 728 729 730 731 732 733 734
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
735 736
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
737 738 739 740
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
741 742 743 744 745 746 747 748
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
749
    def output(self, name):
750
        """
751
        Get output arguments by the output parameter name.
752

753 754
        Args:
            name(str): The output parameter name.
755

756 757 758
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
759
        """
F
fengjiayi 已提交
760 761 762 763 764 765
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

766 767 768 769 770 771 772 773
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
774
    def has_attr(self, name):
775
        """
776 777
        Whether this Operator has the attribute with name or not.

778
        Args:
779
            name(str): the attribute name.
780

781 782
        Returns:
            bool: True if has this attribute.
783 784

        """
F
fengjiayi 已提交
785 786 787
        return self.desc.has_attr(name)

    def attr_type(self, name):
788
        """
789
        Get the type of attribute by attribute's name.
790

791 792
        Args:
            name(str): the attribute name.
793

794 795
        Returns:
            core.AttrType: the attribute type.
796
        """
F
fengjiayi 已提交
797 798
        return self.desc.attr_type(name)

Y
yuyang18 已提交
799
    def set_attr(self, name, val):
800 801 802 803 804 805 806 807 808 809
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
823 824
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
825 826
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
827
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
828 829 830 831 832
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
833

F
fengjiayi 已提交
834 835 836 837 838
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
839
        """
840 841
        Get the attribute by name.

842
        Args:
843
            name(str): the attribute name.
844

845 846
        Returns:
            bool|int|str|float|list: The attribute value. The return value
847 848
            can be any valid attribute type.
        """
F
fengjiayi 已提交
849
        return self.desc.attr(name)
Y
Yu Yang 已提交
850

G
gongweibao 已提交
851
    def block_attr_id(self, name):
852
        """
G
gongweibao 已提交
853
        Get the block attribute's id by name.
854

855 856
        Args:
            name(str): the attribute name.
857

858 859
        Returns:
            int: the block index.
860
        """
G
gongweibao 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
907

J
JiayiFeng 已提交
908
    def all_attrs(self):
F
fengjiayi 已提交
909
        """
910 911 912
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
913
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
914 915 916 917
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
918 919
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
920
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
921 922 923 924 925 926 927 928
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
929 930
        return attr_map

Y
Yu Yang 已提交
931

Y
Yu Yang 已提交
932
class Block(object):
933 934 935 936 937 938 939 940 941 942 943 944 945 946
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
947
        use `Program._create_block()` to create a block.
948 949 950 951 952 953 954 955 956 957 958 959 960 961

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
962
    def __init__(self, program, idx):
Y
Yu Yang 已提交
963
        self.desc = program.desc.block(idx)
964
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
965
        self.ops = list()  # operator list
Y
Yu Yang 已提交
966
        self.program = program
967
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
968

969
    def __str__(self):
Y
Yang Yang(Tony) 已提交
970 971
        return self.to_string(True)

F
fengjiayi 已提交
972 973
    def to_string(self, throw_on_error, with_details=False):
        """
974 975
        Get debug string.

F
fengjiayi 已提交
976 977
        Args:
            throw_on_error(bool): raise exception when self is not initialized
978
                when throw_on_error is True.
F
update  
fengjiayi 已提交
979
            with_details(bool): more details about variables and parameters
980 981
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
982

983 984
        Returns:
            str: The debug string.
F
fengjiayi 已提交
985 986 987 988
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
989
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
990 991
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
992
            for var in list(self.vars.values()):
F
fengjiayi 已提交
993
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
994
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
995
            for op in self.ops:
F
fengjiayi 已提交
996 997
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
998 999 1000
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1001 1002
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1003 1004
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1005 1006 1007

    __repr__ = __str__

Y
Yu Yang 已提交
1008 1009
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1010
        return self.desc.parent
Y
Yu Yang 已提交
1011

Y
Yu Yang 已提交
1012 1013 1014 1015
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1016
    def _set_forward_block_idx(self, idx):
1017 1018 1019 1020 1021 1022 1023 1024 1025
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1026
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1027

Y
Yu Yang 已提交
1028 1029
    @property
    def idx(self):
Y
Yu Yang 已提交
1030
        return self.desc.id
Y
Yu Yang 已提交
1031

Q
Qiao Longfei 已提交
1032
    def var(self, name):
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1046
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1047 1048 1049
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1050 1051
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1052
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1053
        return v
Q
Qiao Longfei 已提交
1054

W
Wu Yi 已提交
1055
    def _var_recursive(self, name):
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1095

Q
Qiao Longfei 已提交
1096
    def all_parameters(self):
1097
        return list(self.iter_parameters())
1098

1099
    def iter_parameters(self):
M
minqiyang 已提交
1100
        return (item[1] for item in six.iteritems(self.vars)
1101
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1102

Y
Yu Yang 已提交
1103
    def create_var(self, *args, **kwargs):
1104
        var = Variable(block=self, *args, **kwargs)
1105 1106
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1107
        return var
Y
Yu Yang 已提交
1108

Q
Qiao Longfei 已提交
1109 1110 1111
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1112
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1113 1114
        """
        Rename variable in vars and ops' inputs and outputs
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1127
        """
M
minqiyang 已提交
1128 1129
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1130

T
typhoonzero 已提交
1131
        if not self.has_var(name):
1132
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1133 1134
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1135
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1136 1137 1138 1139 1140 1141 1142
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1143
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1144 1145 1146 1147
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1148
        orig_var_type = v.type
M
minqiyang 已提交
1149
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1150
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1151
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1152
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1153 1154 1155 1156
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1157
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1158 1159 1160 1161 1162 1163 1164
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1165
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1166 1167
            var = Variable(
                self,
T
typhoonzero 已提交
1168
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1169 1170 1171 1172
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1173
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1174 1175 1176
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1177
        self._sync_with_cpp()
1178
        return var
T
typhoonzero 已提交
1179

W
Wu Yi 已提交
1180 1181
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1182
        self.desc._remove_var(cpt.to_bytes(name))
1183 1184
        del self.vars[name]

Y
Yu Yang 已提交
1185 1186
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1187
        param = Parameter(global_block, *args, **kwargs)
1188
        if 'initializer' in kwargs:
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1209
        return param
Y
Yu Yang 已提交
1210

Y
Yu Yang 已提交
1211
    def append_op(self, *args, **kwargs):
1212 1213 1214 1215 1216 1217
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1218
        op_desc = self.desc.append_op()
1219
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1220 1221 1222
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1223
    def _insert_op(self, index, *args, **kwargs):
1224 1225 1226 1227 1228 1229 1230 1231 1232
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1233 1234
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1235 1236 1237 1238
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1239
    def _remove_op(self, index):
1240 1241 1242 1243 1244 1245 1246 1247 1248
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1249 1250
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1251 1252
        del self.ops[index]

W
Wu Yi 已提交
1253
    def _slice_ops(self, start, end):
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1264
        return self.ops[start:end]
Y
Yancey1989 已提交
1265

W
Wu Yi 已提交
1266 1267
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1268
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1269
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1270 1271
        return op

W
Wu Yi 已提交
1272
    def _sync_with_cpp(self):
1273
        """
1274 1275
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1276
        """
Q
Qiao Longfei 已提交
1277 1278 1279 1280 1281
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1282
        # sync variables removed from c++ end
1283
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1284
            if not self.desc.find_var(cpt.to_bytes(var)):
1285 1286
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1287
        # sync operators from cpp
1288 1289 1290 1291
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1308 1309 1310 1311 1312

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1313
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1314 1315 1316 1317 1318 1319 1320

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1334 1335 1336 1337
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1338
    def _copy_param_info_from(self, other):
1339
        """
1340 1341
        Copy the information of parameters from the other block.

1342
        Args:
1343 1344 1345 1346 1347
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1348 1349 1350 1351 1352

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1353 1354
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1355
        for p in other.iter_parameters():
1356 1357 1358
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1359
                raise ValueError("_copy_param_info_from should be invoked with "
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1372
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1373
                error_clip=p.error_clip,
1374 1375 1376
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1377
    def _clone_variable(self, var):
1378 1379
        """
        Clone a variable into current block.
1380

1381 1382 1383 1384
        Args:
            var: the variable to be cloned.

        Returns:
1385
            Variable: the new  variable cloned from 'var' in current block.
1386 1387
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1388 1389 1390 1391 1392
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1393 1394
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1395
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1396 1397 1398 1399 1400 1401
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1402 1403
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1404 1405 1406 1407 1408 1409 1410
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1411 1412
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1413
        return ret_var
1414

Y
Yu Yang 已提交
1415 1416

class Program(object):
D
dzhwinter 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1428
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1429 1430

    Returns:
Y
yuyang18 已提交
1431
        A empty program.
D
dzhwinter 已提交
1432 1433

    Examples:
Y
yuyang18 已提交
1434 1435 1436 1437 1438 1439
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1440 1441 1442

    """

1443 1444
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1445 1446
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1447
        self._seed = 0
Y
yuyang18 已提交
1448
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1449
        self._op_role_var = []
T
tangwei12 已提交
1450 1451 1452 1453

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1454
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1455 1456
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1457 1458 1459

    @property
    def op_role(self):
Y
yuyang18 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1473 1474 1475 1476 1477 1478 1479 1480
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1481 1482 1483 1484 1485 1486 1487
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1488 1489 1490 1491
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1492
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1493 1494

    @contextlib.contextmanager
W
Wu Yi 已提交
1495
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1496 1497 1498 1499 1500 1501 1502
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1503
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1504 1505 1506 1507

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1508
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1509 1510
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1511 1512
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1513 1514 1515 1516
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1517
        yield
Y
yuyang18 已提交
1518
        self._op_role_var = []
Y
yuyang18 已提交
1519
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    @contextlib.contextmanager
    def _lr_schedule_guard(self):
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.


        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
        self._op_role_var = []
        self._current_role = OpRole.Forward

1545
    def __str__(self):
Y
yuyang18 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1555 1556
        return self.to_string(True)

F
fengjiayi 已提交
1557 1558 1559
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1560

F
fengjiayi 已提交
1561
        Args:
Y
yuyang18 已提交
1562 1563
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1564

Y
yuyang18 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1585 1586
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1587 1588
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1589

W
Wu Yi 已提交
1590
    def _get_desc(self):
Y
yuyang18 已提交
1591 1592 1593 1594 1595 1596 1597
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1598 1599
        return self.desc

X
version  
Xin Pan 已提交
1600 1601 1602
    def _version(self):
        return self.desc._version()

1603
    def clone(self, for_test=False):
Y
yuyang18 已提交
1604 1605 1606
        """
        Create a new, duplicated program.

1607

Y
yuyang18 已提交
1608 1609 1610 1611
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1612

Y
yuyang18 已提交
1613 1614 1615 1616
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1617 1618 1619 1620 1621
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1622 1623

        Args:
Y
yuyang18 已提交
1624 1625
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1626

D
dzhwinter 已提交
1627
        Returns:
Y
yuyang18 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1681 1682
        """
        if for_test:
X
Xin Pan 已提交
1683
            p = self._inference_optimize(prune_read_op=False)
1684
        else:
1685
            p = Program()
G
gongweibao 已提交
1686 1687
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1688
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1689 1690 1691
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1692 1693 1694 1695

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1696
            p._sync_with_cpp()
1697

W
Wu Yi 已提交
1698
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1699
        p._copy_data_info_from(self)
Y
Yu Yang 已提交
1700
        return p
1701

W
Wu Yi 已提交
1702
    def _prune(self, targets):
Y
yuyang18 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1718 1719 1720 1721 1722 1723
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1724 1725
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1726
                    # and we need to find the current op that generate this
1727 1728 1729 1730 1731 1732 1733 1734
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1735
                    t = t.op
1736 1737 1738 1739
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1740
                else:
1741 1742
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1743 1744 1745 1746

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1747 1748 1749
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1750
        res._sync_with_cpp()
1751 1752
        return res

X
Xin Pan 已提交
1753
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1754
        """
F
fengjiayi 已提交
1755 1756 1757 1758 1759
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1760
        3. change the :code:`is_test`
Y
yuyang18 已提交
1761 1762 1763
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1764
        Args:
X
Xin Pan 已提交
1765 1766
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1767

Y
yuyang18 已提交
1768 1769 1770 1771 1772 1773
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1774
        res = Program()
1775
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1776 1777 1778 1779

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1780
        if prune_read_op:
1781 1782 1783 1784 1785 1786 1787 1788 1789
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1790
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1791 1792

        # change all `is_test` attributes to True
M
minqiyang 已提交
1793
        for i in six.moves.range(res.desc.num_blocks()):
1794
            block = res.desc.block(i)
M
minqiyang 已提交
1795
            for j in six.moves.range(block.op_size()):
1796 1797 1798
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1799 1800 1801
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1802
        res._sync_with_cpp()
1803 1804
        return res

1805 1806
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1807 1808 1809 1810 1811 1812 1813
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1814
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1815 1816 1817 1818

        Returns:
            Program: A deserialized program desc.
        """
1819 1820
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1821
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1822
        p._sync_with_cpp()
1823
        return p
Y
Yu Yang 已提交
1824

D
dzhwinter 已提交
1825 1826
    @property
    def random_seed(self):
Y
yuyang18 已提交
1827 1828 1829 1830 1831 1832
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1833 1834
        return self._seed

Q
qiaolongfei 已提交
1835 1836
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1837 1838 1839
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1840 1841
        return self.desc.num_blocks()

D
dzhwinter 已提交
1842 1843 1844 1845 1846 1847
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1848
    def __repr__(self):
1849
        return self.__str__()
1850

Y
Yu Yang 已提交
1851
    def global_block(self):
Y
yuyang18 已提交
1852 1853 1854
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1855 1856
        return self.blocks[0]

Q
Qiao Longfei 已提交
1857
    def block(self, index):
Y
yuyang18 已提交
1858 1859 1860 1861 1862 1863 1864 1865
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1866 1867
        return self.blocks[index]

Y
Yu Yang 已提交
1868
    def current_block(self):
Y
yuyang18 已提交
1869 1870 1871 1872
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1873 1874
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1875
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1886
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1887 1888 1889
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1890 1891 1892 1893
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1894
    def _rollback(self):
Y
yuyang18 已提交
1895 1896 1897 1898 1899
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1900 1901
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1902
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1913 1914 1915
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1916
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1917

W
Wu Yi 已提交
1918
    def _copy_param_info_from(self, other):
1919
        """
1920
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1921

Y
yuyang18 已提交
1922 1923 1924
        Notes: This is a very low level API. Users should not invoke it
        directly.

1925 1926 1927 1928 1929 1930 1931
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1932
            raise TypeError("_copy_param_info_from should be invoked with "
1933 1934 1935
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1936
            raise ValueError("_copy_param_info_from should be invoked with two "
1937
                             "program, with represent the same topology")
W
Wu Yi 已提交
1938
        self.global_block()._copy_param_info_from(other.global_block())
1939

W
Wu Yi 已提交
1940
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
1941 1942
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1943

Y
yuyang18 已提交
1944 1945 1946
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1947 1948 1949 1950 1951 1952 1953
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1954
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1955 1956 1957
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1958
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1959
                             "program, with represent the same topology")
1960
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1961 1962 1963
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1964
    def list_vars(self):
Y
yuyang18 已提交
1965 1966 1967 1968 1969 1970
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1971
        for each_block in self.blocks:
1972
            for each_var in list(each_block.vars.values()):
1973 1974
                yield each_var

Y
Yu Yang 已提交
1975

Y
Yu Yang 已提交
1976
class Parameter(Variable):
1977
    """
1978
    Parameter is derived from Variable. A parameter is a persistable
1979
    Variable, and will be updated by optimizers after each iteration.
1980
    The training of a neural network is essentially the updating of
1981 1982
    its parameters.

1983
    Relative to a general Variable, a Parameter has several its own
1984 1985
    member variables:

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1998 1999
    """

Y
Yu Yang 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2010 2011 2012

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2013 2014 2015 2016
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2017 2018
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2019
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2020

W
wanghaoshuang 已提交
2021
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2022

F
fengjiayi 已提交
2023 2024 2025
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2026 2027 2028
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2029

F
update  
fengjiayi 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2044
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2045
            for attr_name in additional_attr:
2046 2047
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2048 2049
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2050 2051 2052 2053
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2054

Y
Yu Yang 已提交
2055
# program is a global instance.
Y
Yu Yang 已提交
2056 2057
_main_program_ = Program()
_startup_program_ = Program()
2058

2059

2060
def default_startup_program():
Y
Yu Yang 已提交
2061
    """
Y
yuyang18 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2071

Y
Yu Yang 已提交
2072 2073 2074
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2075
    return _startup_program_
2076

2077

2078
def default_main_program():
Y
Yu Yang 已提交
2079
    """
Y
yuyang18 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2089

Y
Yu Yang 已提交
2090 2091 2092
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2093
    return _main_program_
Y
Yu Yang 已提交
2094 2095 2096 2097 2098


def switch_main_program(program):
    """
    Switch the main program to a new program.
2099

Y
Yu Yang 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2114
    Switch the startup program to a new program
Y
Yu Yang 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2130 2131 2132
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2133

Y
Yu Yang 已提交
2134
    Examples:
Y
yuyang18 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2145

Y
Yu Yang 已提交
2146
    Examples:
Y
yuyang18 已提交
2147 2148 2149 2150 2151 2152

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2153

Y
Yu Yang 已提交
2154
    Args:
Y
yuyang18 已提交
2155
        main_program(Program): New main program inside `with` statement.
2156
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2170 2171 2172 2173


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2174
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2175

X
xuwei06 已提交
2176 2177 2178
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2179
        If None, default_global_program() will be used.
X
xuwei06 已提交
2180 2181 2182 2183 2184 2185 2186

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2187
    assert isinstance(program, Program)
X
xuwei06 已提交
2188 2189

    return program.global_block().var(name)