pybind.cc 53.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

89
bool IsCompiledWithBrpc() {
90
#ifndef PADDLE_WITH_DISTRIBUTE
91 92
  return false;
#endif
93 94 95 96 97 98

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
99 100
}

Y
update  
Yancey1989 已提交
101
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
102
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
103 104 105 106 107 108
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
109 110 111 112 113
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

114
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
115 116 117
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
118
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
119
  m.doc() = "C++ core of PaddlePaddle";
120

121 122 123 124
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

125
  BindException(&m);
Y
Yu Yang 已提交
126

S
sneaxiy 已提交
127
  m.def(
S
sneaxiy 已提交
128
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
129 130 131 132
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
133 134 135
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

136 137 138 139 140 141 142
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
143
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
144 145
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
146
      .def("_run_backward",
X
Xin Pan 已提交
147
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
148
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
149
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
150
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
151
      .def("_grad_ivar",
M
minqiyang 已提交
152
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
153
           py::return_value_policy::reference)
M
minqiyang 已提交
154
      .def("_copy_to",
P
Paddle CI 已提交
155
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
156 157 158 159 160
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
161
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
162
      .def("_copy_to",
P
Paddle CI 已提交
163
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
164 165 166 167 168
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
169
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
170
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
171
           py::return_value_policy::reference)
172 173 174 175 176 177 178 179 180 181 182
      .def_property("name",
                    [](const imperative::VarBase &self) { return self.name_; },
                    [](imperative::VarBase &self, const std::string &name) {
                      self.name_ = name;
                    })
      .def_property("block",
                    [](const imperative::VarBase &self) { return self.block_; },
                    [](imperative::VarBase &self, framework::BlockDesc *block) {
                      self.block_ = block;
                    },
                    py::return_value_policy::reference)
183 184 185 186 187 188
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
189 190 191
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
192
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
193
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
194
            self.SetStopGradient(stop_gradient);
195
          });
196

197
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
198
      .def(py::init<>())
199 200 201 202
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
203 204 205 206 207 208 209
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
210
          py::return_value_policy::reference)
M
minqiyang 已提交
211 212 213 214 215 216 217 218 219 220
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
221 222 223 224 225 226
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
227 228 229 230 231 232 233
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
234 235
          py::return_value_policy::reference);

X
Xin Pan 已提交
236
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
237
  layer.def(py::init<>())
X
Xin Pan 已提交
238 239 240
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
241
      });
X
Xin Pan 已提交
242

X
polish  
Xin Pan 已提交
243
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
244
      .def(py::init<>())
X
Xin Pan 已提交
245 246
      .def_static(
          "apply",
X
Xin Pan 已提交
247
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
248 249 250 251
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
252 253 254 255 256
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
257

258 259
  BindTracer(&m);

260 261 262
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
263
      .def("_get_dims",
264
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
265
      .def("_set_dims",
Q
qijun 已提交
266
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
267
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
268
           })
Y
yuyang18 已提交
269
      .def("_set_layout",
D
dzhwinter 已提交
270 271 272
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
273
      .def("_alloc_float",
D
dzhwinter 已提交
274
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
275
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
276
           })
Y
yuyang18 已提交
277
      .def("_alloc_float",
Y
Yu Yang 已提交
278
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
279
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
280
           })
Y
yuyang18 已提交
281
      .def("_alloc_int",
Y
Yu Yang 已提交
282
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
283
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
284
           })
Y
yuyang18 已提交
285
      .def("_alloc_int",
D
dzhwinter 已提交
286
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
287
             self.mutable_data<int>(place);
Q
qijun 已提交
288
           })
Y
yuyang18 已提交
289
      .def("_alloc_int",
C
chengduoZH 已提交
290 291 292
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
293
      .def("_alloc_float",
C
chengduoZH 已提交
294 295 296
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
297 298
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
299
      .def("set", PyCPUTensorSetFromArray<double>)
300
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
301
      .def("set", PyCPUTensorSetFromArray<bool>)
302
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
303
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
304
      .def("set", PyCPUTensorSetFromArray<int8_t>)
305
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
306 307
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
308
      .def("set", PyCUDATensorSetFromArray<double>)
309
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
310
      .def("set", PyCUDATensorSetFromArray<bool>)
311
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
312
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
313
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
314 315 316 317 318 319
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
320
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
321
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
322
#endif
323
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
324 325 326 327
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
328
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
329
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
330

X
Xin Pan 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
344
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
345
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
346
     columns, hence [5, 2].
X
Xin Pan 已提交
347 348 349

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
350 351
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
375 376
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
377 378 379 380 381 382 383 384 385 386 387 388 389 390
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
391
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
392 393 394 395 396
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
397
      .def("set_lod",
398
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
399
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
400
             LoD new_lod;
401 402
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
403 404
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
405
             self.set_lod(new_lod);
S
sneaxiy 已提交
406 407 408 409 410 411 412
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
428 429 430 431
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
432
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
433 434
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
435 436

           Args:
437
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
438
           )DOC")
439 440 441 442 443 444 445 446
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
447 448 449 450 451 452 453
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
454
      // Set above comments of set_lod.
455 456 457 458 459 460 461 462
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
463 464 465 466 467
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
468
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
482

Q
qijun 已提交
483 484 485 486 487 488 489 490 491 492 493
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
494 495
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
496 497
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
498 499 500 501 502 503 504 505 506
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
507
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
508
      .def("rows", [](SelectedRows &self) {
509 510 511 512 513
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
514
      });
Q
qijun 已提交
515

516
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
517 518 519

All parameter, weight, gradient are variables in Paddle.
)DOC")
520
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
521
      .def("set_int",
522 523
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
524 525 526 527 528 529 530
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
531
      .def("get_tensor",
532 533
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
534 535
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
536 537 538
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
539 540 541 542 543
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
544 545 546
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
547
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
548 549 550 551 552
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
553
#endif
Y
Refine  
Yu Yang 已提交
554 555 556 557 558
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
559
           py::return_value_policy::reference);
560

Y
Refine  
Yu Yang 已提交
561
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
562
      .def("start", &framework::ReaderHolder::Start)
563
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
564

S
sneaxiy 已提交
565 566 567 568
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
569 570
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
571
      .def("push",
S
sneaxiy 已提交
572
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
573
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
574
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
575
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
576
           })
S
sneaxiy 已提交
577 578 579 580
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
581

S
sneaxiy 已提交
582
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
583 584 585 586 587 588
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
589
        py::return_value_policy::copy);
S
sneaxiy 已提交
590

S
sneaxiy 已提交
591
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
611 612
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
613
      .def("var",
614
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
615
             return self.Var(name);
Y
Yu Yang 已提交
616
           },
S
sneaxiy 已提交
617 618
           py::arg("name"),
           R"DOC(
619
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
620

621
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
622
           current scope, the variable would be created. Otherwise,
623
           return the existing variable.
S
sneaxiy 已提交
624 625

           Args:
626 627
               name (str): the variable name.

S
sneaxiy 已提交
628
           Returns:
629
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
630 631 632 633
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
634
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
635
           its parent scope. Return None if not found.
636

S
sneaxiy 已提交
637 638
           Args:
               name (str): the variable name.
639

S
sneaxiy 已提交
640
           Returns:
641
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
642
           )DOC",
643
           py::return_value_policy::reference)
644
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
645 646 647 648 649 650
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
651
           py::return_value_policy::reference)
S
sneaxiy 已提交
652 653 654 655
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
656

S
sneaxiy 已提交
657 658 659 660 661 662
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
663 664
        R"DOC(
        Create a new scope.
665

S
sneaxiy 已提交
666 667 668
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
669 670
        py::return_value_policy::reference);

Y
Yu Yang 已提交
671 672
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
673 674
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
675 676 677 678 679 680 681 682 683 684
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
685 686
    return ret_values;
  });
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
703
  m.def("prune", [](const ProgramDesc &origin,
704
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
705
    ProgramDesc prog_with_targets(origin);
706
    for (const auto &t : targets) {
707
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
708
    }
709
    proto::ProgramDesc pruned_desc;
710
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
711
    return new ProgramDesc(pruned_desc);
712
  });
713 714 715 716
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
717 718 719
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
720 721
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
722
  // clang-format off
Y
Yu Yang 已提交
723
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
724 725
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
726
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
727 728 729
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
730
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
731
                      -> paddle::platform::DeviceContext* {
732
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
733
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
734
#else
Q
qijun 已提交
735
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
736
#endif
C
chengduoZH 已提交
737 738 739 740 741 742 743 744 745 746 747
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
748
// clang-format on
P
peizhilin 已提交
749
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
750 751
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
752
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
753 754 755 756 757 758 759 760 761 762 763 764
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
765 766 767 768 769
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
770
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
771

772 773
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
774 775 776 777 778
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
779
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
780

C
chengduoZH 已提交
781
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
782
      .def("__init__",
S
sneaxiy 已提交
783
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
784 785 786
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
787
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
788
           })
S
sneaxiy 已提交
789 790 791 792 793 794 795
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
796 797
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
798 799
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
800 801 802 803
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
804 805 806 807 808 809
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
810 811 812 813 814
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
815
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
816
             self = gpu_place;
C
chengduoZH 已提交
817 818
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
819 820
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
821
      });
Y
Yu Yang 已提交
822

Y
Yu Yang 已提交
823 824 825
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
826
                    proto::OpDesc desc;
Y
Yu Yang 已提交
827 828 829 830 831
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
832
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
833
                  })
834
      .def("run",
835
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
836 837 838
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
839
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
840 841 842 843 844
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
845 846 847 848 849 850 851
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
852 853
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
854
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
855
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
856 857 858 859
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
860

F
fengjiayi 已提交
861
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
862
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
863
      .def("close", &Executor::Close)
S
sneaxiy 已提交
864 865 866 867 868
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
869

D
dzhwinter 已提交
870
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
871
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
872 873
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
874

875
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
876
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
877
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
878 879 880 881 882 883
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
884

885
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
886
  m.def("get_fetch_variable", framework::GetFetchVariable);
887
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
888

X
Xin Pan 已提交
889 890
  m.def("_is_program_version_supported", IsProgramVersionSupported);

891 892 893 894 895
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
896

Y
Yu Yang 已提交
897 898 899 900 901 902 903 904 905
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
906
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
907 908
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
909 910 911 912 913 914 915 916 917 918
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
919 920 921 922 923 924 925
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
926

D
dzhwinter 已提交
927 928 929
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
930
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
931
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
932
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
933

P
peizhilin 已提交
934
#ifndef _WIN32
D
dangqingqing 已提交
935 936 937
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
938
#endif
P
peizhilin 已提交
939
#endif
Y
Yu Yang 已提交
940

941 942 943 944
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
945
      .value("kAll", platform::ProfilerState::kAll)
946 947 948 949 950 951 952 953 954 955 956 957 958
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
959
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
960
  m.def("reset_profiler", platform::ResetProfiler);
961
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
962 963 964
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
965

966 967
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
968
      .def("has", &ir::Pass::Has)
969 970 971
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
972
           })
973
      .def(
974
          "set",
975 976 977
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
978 979
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
980 981 982 983
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
984
        optim_graph.release();
F
flame 已提交
985
      });
986

X
fix  
Xin Pan 已提交
987 988
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1003
  // -- python binds for parallel executor.
Y
yuyang18 已提交
1004
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1005 1006 1007 1008
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1020 1021 1022

        )DOC");

Y
yuyang18 已提交
1023
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1024 1025 1026 1027 1028
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1039
      .def_property(
1040 1041 1042 1043
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1044 1045 1046 1047
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1048 1049 1050 1051 1052
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1053 1054 1055 1056
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1057 1058 1059 1060 1061 1062 1063
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1075 1076 1077 1078 1079 1080
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1081

Y
yuyang18 已提交
1082
  exec_strategy.def_property(
Y
yuyang18 已提交
1083 1084 1085 1086 1087 1088 1089
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1090 1091
      });

C
chengduo 已提交
1092 1093 1094 1095
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1107
)DOC");
Y
yuyang18 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1124
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1125
            self.reduce_ = strategy;
C
chengduo 已提交
1126 1127 1128 1129 1130 1131 1132
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1133 1134 1135 1136 1137
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1138
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1139
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1140 1141 1142 1143 1144 1145
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1146 1147 1148 1149
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1150
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1151
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1152 1153 1154 1155
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1156 1157 1158 1159 1160 1161
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1162
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1172
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1173 1174
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1175
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1176 1177 1178 1179 1180 1181
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1194 1195 1196 1197 1198 1199
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1200
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1201 1202 1203 1204 1205
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1220 1221 1222 1223
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1224 1225 1226 1227
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1228
      .def_property(
D
dzhwinter 已提交
1229 1230 1231
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1232
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1233
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1234 1235 1236 1237 1238
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1239 1240 1241

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1242
                  const std::string &, Scope *, std::vector<Scope *> &,
1243
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1244 1245 1246 1247
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1248 1249 1250 1251 1252
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1253 1254 1255 1256
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1257 1258 1259 1260 1261 1262
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1263

1264
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1265
  BindAsyncExecutor(&m);
F
flame 已提交
1266 1267
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1268
  BindInferenceApi(&m);
L
Luo Tao 已提交
1269
}
1270
}  // namespace pybind
1271
}  // namespace paddle