pybind.cc 41.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
39
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
41
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/platform/enforce.h"
43
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
44 45
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
46
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
X
Xin Pan 已提交
49
#include "paddle/fluid/pybind/imperative.h"
50 51
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
52
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
54

55
#include "paddle/fluid/string/to_string.h"
56

D
Dong Zhihong 已提交
57
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
58
#ifndef _WIN32
Y
Yi Wang 已提交
59
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
60
#endif
Y
Yi Wang 已提交
61 62
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
63 64
#endif

M
minqiyang 已提交
65 66
#include "pybind11/stl.h"

67 68 69 70
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
71 72 73
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

74
namespace paddle {
75
namespace pybind {
76
bool IsCompiledWithCUDA() {
77
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
78 79 80 81 82 83
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
84
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
85
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
86 87 88 89 90 91
  return true;
#else
  return false;
#endif
}

92
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
93 94 95
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
96
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
97
  m.doc() = "C++ core of PaddlePaddle";
98

99 100 101 102
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

103
  BindException(&m);
Y
Yu Yang 已提交
104

X
Xin Pan 已提交
105 106 107 108 109 110 111
  py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
      .def(py::init<>())
      .def("_run_backward",
           [](imperative::VarBase &self, framework::Scope *scope) {
             self.RunBackward(scope);
           })
      .def("_grad", &imperative::VarBase::Grad)
X
Xin Pan 已提交
112 113
      .def_property(
          "desc",
X
Xin Pan 已提交
114 115
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
X
Xin Pan 已提交
116 117 118 119
            self.var_desc_ = var_desc;
          },
          py::return_value_policy::reference);

X
Xin Pan 已提交
120
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
X
Xin Pan 已提交
121
      .def(py::init<>())
X
Xin Pan 已提交
122 123 124
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
X
Xin Pan 已提交
125 126 127
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
X
Xin Pan 已提交
128 129 130
          },
          py::return_value_policy::reference);

X
Xin Pan 已提交
131 132
  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
X
Xin Pan 已提交
133 134
      .def("forward",
           [](imperative::Layer &self,
X
Xin Pan 已提交
135
              const std::vector<imperative::VarBase> &inputs) {
X
Xin Pan 已提交
136 137
             return self.Forward(inputs);
           })
X
Xin Pan 已提交
138
      .def("backward", &imperative::Layer::Backward);
X
Xin Pan 已提交
139
  BindTracer(&m);
X
Xin Pan 已提交
140

141 142 143
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
144
      .def("_get_dims",
145
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
146
      .def("_set_dims",
Q
qijun 已提交
147
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
148
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
149
           })
Y
yuyang18 已提交
150
      .def("_set_layout",
D
dzhwinter 已提交
151 152 153
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
154
      .def("_alloc_float",
D
dzhwinter 已提交
155
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
156
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
157
           })
Y
yuyang18 已提交
158
      .def("_alloc_float",
Y
Yu Yang 已提交
159
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
160
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
161
           })
Y
yuyang18 已提交
162
      .def("_alloc_int",
Y
Yu Yang 已提交
163
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
164
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
165
           })
Y
yuyang18 已提交
166
      .def("_alloc_int",
D
dzhwinter 已提交
167
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
168
             self.mutable_data<int>(place);
Q
qijun 已提交
169
           })
Y
yuyang18 已提交
170
      .def("_alloc_int",
C
chengduoZH 已提交
171 172 173
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
174
      .def("_alloc_float",
C
chengduoZH 已提交
175 176 177
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
178 179
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
180
      .def("set", PyCPUTensorSetFromArray<double>)
181
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
182
      .def("set", PyCPUTensorSetFromArray<bool>)
183
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
184
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
185
      .def("set", PyCPUTensorSetFromArray<int8_t>)
186
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
187 188
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
189
      .def("set", PyCUDATensorSetFromArray<double>)
190
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
191
      .def("set", PyCUDATensorSetFromArray<bool>)
192
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
193
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
194
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
195 196 197 198 199 200
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
201
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
202
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
203
#endif
204
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
205 206 207 208 209
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
210

X
Xin Pan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
224
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
225
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
226
     columns, hence [5, 2].
X
Xin Pan 已提交
227 228 229

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
230 231
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
255 256
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
257 258 259 260 261 262 263 264 265 266 267 268 269 270
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
271
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
272 273 274 275 276
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
277
      .def("set_lod",
278
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
279
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
280
             LoD new_lod;
281 282
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
283 284
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
285
             self.set_lod(new_lod);
D
dangqingqing 已提交
286
           })
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
312
      // Set above comments of set_lod.
313 314 315 316 317 318 319 320 321 322 323 324 325
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
326 327
      });

Q
qijun 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
341 342 343 344 345 346 347 348 349
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
350
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
351
      .def("rows", [](SelectedRows &self) {
352 353 354 355 356
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
357
      });
Q
qijun 已提交
358

359
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
360 361 362

All parameter, weight, gradient are variables in Paddle.
)DOC")
363
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
364
      .def("set_int",
365 366
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
367 368 369 370 371 372 373
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
374
      .def("get_tensor",
375 376
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
377 378
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
379 380 381
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
382 383 384 385 386
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
387 388 389
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
390
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
391 392 393 394 395
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
396
#endif
Y
Refine  
Yu Yang 已提交
397 398 399 400 401
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
402
           py::return_value_policy::reference);
403

Y
Refine  
Yu Yang 已提交
404
  py::class_<framework::ReaderHolder>(m, "Reader", "")
405
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
406

S
sneaxiy 已提交
407 408 409 410
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
411 412
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
413
      .def("push",
S
sneaxiy 已提交
414
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
415
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
416
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
417
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
418
           })
S
sneaxiy 已提交
419 420 421 422
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
423

S
sneaxiy 已提交
424
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
425
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
426
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
427
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
428 429 430 431 432 433
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
434 435
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
436
              return holder->GetQueue();
S
sneaxiy 已提交
437
            },
S
sneaxiy 已提交
438
        py::return_value_policy::copy);
S
sneaxiy 已提交
439

Q
Qiao Longfei 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
460
      .def("var",
461
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
462
             return self.Var(name);
Y
Yu Yang 已提交
463
           },
464
           py::return_value_policy::reference)
465
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
466
      .def(py::init<>())
467
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
468
           py::return_value_policy::reference)
Y
Yu Yang 已提交
469
      .def("drop_kids", &Scope::DropKids);
470

Y
Yu Yang 已提交
471 472
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
473 474
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
475 476 477 478 479 480 481 482 483 484
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
485 486
    return ret_values;
  });
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
503
  m.def("prune", [](const ProgramDesc &origin,
504
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
505
    ProgramDesc prog_with_targets(origin);
506
    for (const auto &t : targets) {
507
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
508
    }
509
    proto::ProgramDesc pruned_desc;
510
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
511
    return new ProgramDesc(pruned_desc);
512
  });
513 514 515 516
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
517 518 519
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
520 521
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
522
  // clang-format off
Y
Yu Yang 已提交
523
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
524 525
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
526
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
527 528 529
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
530
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
531
                      -> paddle::platform::DeviceContext* {
532
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
533
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
534
#else
Q
qijun 已提交
535
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
536
#endif
C
chengduoZH 已提交
537 538 539 540 541 542 543 544 545 546 547
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
548
// clang-format on
P
peizhilin 已提交
549
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
550 551
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
552
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
553
      .def(py::init<int>())
D
dzhwinter 已提交
554
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
555

556 557 558
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
559

C
chengduoZH 已提交
560 561 562 563
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
564 565 566 567 568 569 570
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
571
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
572
             self = gpu_place;
C
chengduoZH 已提交
573 574
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
575 576
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
577
      });
Y
Yu Yang 已提交
578

Y
Yu Yang 已提交
579 580 581
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
582
                    proto::OpDesc desc;
Y
Yu Yang 已提交
583 584 585 586 587
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
588
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
589
                  })
590
      .def("run",
591
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
592 593 594
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
595
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
596 597 598 599 600
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
601 602 603 604 605 606 607
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
608 609
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
610
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
611
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
612 613 614 615
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
616

F
fengjiayi 已提交
617
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
618
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
619
      .def("close", &Executor::Close)
S
sneaxiy 已提交
620 621 622 623 624
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
625

D
dzhwinter 已提交
626
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
627
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
628 629
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
630

631
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
632
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
633 634 635 636 637 638
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
639

640
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
641
  m.def("get_fetch_variable", framework::GetFetchVariable);
X
Xin Pan 已提交
642
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
643

X
Xin Pan 已提交
644 645
  m.def("_is_program_version_supported", IsProgramVersionSupported);

646 647 648 649 650
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
651

Y
Yu Yang 已提交
652 653 654 655 656 657 658 659 660
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
661
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
662 663
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
680 681 682
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
683
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
684
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
685
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
686

P
peizhilin 已提交
687
#ifndef _WIN32
D
dangqingqing 已提交
688 689 690
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
691
#endif
P
peizhilin 已提交
692
#endif
Y
Yu Yang 已提交
693

694 695 696 697
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
698
      .value("kAll", platform::ProfilerState::kAll)
699 700 701 702 703 704 705 706 707 708 709 710 711
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
712
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
713
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
714

715 716
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
717 718 719 720 721
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
722 723 724
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
725

X
fix  
Xin Pan 已提交
726 727
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
728 729 730 731 732 733 734 735 736 737 738 739 740 741
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
742
  // -- python binds for parallel executor.
Y
yuyang18 已提交
743
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
744 745 746 747
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
748 749 750 751 752 753 754 755 756 757 758
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
759 760 761

        )DOC");

Y
yuyang18 已提交
762
  exec_strategy.def(py::init())
Y
yuyang18 已提交
763 764 765 766 767
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
768 769 770 771 772 773 774 775 776 777
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
778
      .def_property(
779 780 781 782
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
783 784 785 786
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
787 788 789 790 791
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
792 793 794 795
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
796 797 798 799 800 801 802
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
803 804 805 806 807 808 809 810 811 812 813
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
814 815 816 817 818 819
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
820

Y
yuyang18 已提交
821
  exec_strategy.def_property(
Y
yuyang18 已提交
822 823 824 825 826 827 828
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
829 830
      });

C
chengduo 已提交
831 832 833 834
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
835 836 837 838 839 840 841 842 843 844 845
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
846
)DOC");
Y
yuyang18 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
863
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
864
            self.reduce_ = strategy;
C
chengduo 已提交
865 866 867 868 869 870 871
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
872 873 874 875 876
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
877
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
878
            self.gradient_scale_ = strategy;
C
chengduo 已提交
879 880 881 882 883 884
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
885 886 887 888
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
889
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
890
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
891 892 893 894
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
895 896 897
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
898
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
899
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
900 901
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
902 903 904 905 906 907
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
908
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
909 910 911 912 913 914 915 916 917
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
918
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
919 920 921
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
922 923 924 925 926 927
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
C
chengduo 已提交
928 929 930 931 932 933
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
934
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
935 936 937 938 939
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
940
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
941
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
942 943 944 945 946
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
947 948 949 950

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
951
                  const std::string &, Scope *, std::vector<Scope *> &,
952 953
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
954 955 956 957
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
958 959 960 961 962
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
963 964 965 966
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
967 968 969 970 971 972
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
973

974
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
975
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
976
}
977
}  // namespace pybind
978
}  // namespace paddle