framework.py 202.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27

Y
Yu Yang 已提交
28
import numpy as np
29
import subprocess
S
sneaxiy 已提交
30
import multiprocessing
31
import sys
32
import logging
M
minqiyang 已提交
33
from .. import compat as cpt
34
from .proto import framework_pb2
35 36

from . import core
37
from . import unique_name
38 39
import paddle.version as fluid_version
import warnings
40
import functools
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
S
sneaxiy 已提交
51
    'cuda_pinned_places',
L
lujun 已提交
52
    'in_dygraph_mode',
C
chengduo 已提交
53
    'is_compiled_with_cuda',
54
    'is_compiled_with_xpu',
55
    'Variable',
56
    'load_op_library',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
245
# same base class.
246 247 248
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
249 250
            "'%s' should be called by imperative Varible in imperative mode, please run it in dygraph "
            "mode. You can turn off paddle.enable_static() if you are in static mode, or turn off "
251 252 253
            "ProgramTranslator if you are using @paddle.jit.to_static. If you have to run ProgramTranslator, "
            "please use other API to replace '%s'" % (func.__name__,
                                                      func.__name__))
254 255 256 257

    return __impl__


T
tangwei12 已提交
258 259
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


277 278
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
279
static_only = wrap_decorator(_static_only_)
280
fake_interface_only = wrap_decorator(_fake_interface_only_)
281 282


L
lujun 已提交
283 284
def _dygraph_tracer():
    return _dygraph_tracer_
285

W
Wu Yi 已提交
286

M
minqiyang 已提交
287
def _current_expected_place():
288 289 290
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
291 292 293 294 295 296 297 298 299 300 301
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
318 319


L
Leo Chen 已提交
320 321 322 323
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
324

L
Leo Chen 已提交
325 326 327 328 329 330 331 332 333 334 335 336
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
337
def _cpu_num():
338
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
339 340 341 342 343 344 345 346
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
347
        os.environ['CPU_NUM'] = str(1)
348
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
349 350 351 352 353 354 355 356 357 358
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
359 360


361 362 363 364 365 366 367 368 369
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
385 386 387 388
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

389
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
390 391 392 393

    Examples:
        .. code-block:: python

394 395
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
396 397 398 399
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
400
def cuda_places(device_ids=None):
L
lujun 已提交
401
    """
402 403 404 405
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
406
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
407 408

    If :code:`device_ids` is None, environment variable of
409
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
410
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
411
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
412
    If :code:`FLAGS_selected_gpus` is not set, all visible
413
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
414 415

    If :code:`device_ids` is not None, it should be the device
416
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
417
    the returned list would be 
C
Chen Weihang 已提交
418
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
419

420 421
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
422 423

    Returns:
C
Chen Weihang 已提交
424
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
425 426 427 428

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
429 430
            import paddle
            import paddle.static as static
T
tangwei12 已提交
431

C
Chen Weihang 已提交
432 433 434
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
435 436

    """
S
sneaxiy 已提交
437 438 439
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
440
        device_ids = _cuda_ids()
S
sneaxiy 已提交
441 442 443 444 445
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
484
def cpu_places(device_count=None):
L
lujun 已提交
485
    """
C
Chen Weihang 已提交
486
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
487

S
add doc  
sneaxiy 已提交
488 489
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
490 491
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
492 493
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
494

495 496
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
497 498

    Returns:
C
Chen Weihang 已提交
499
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
500 501 502 503

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
504 505
            import paddle
            import paddle.static as static
T
tangwei12 已提交
506

C
Chen Weihang 已提交
507 508 509
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
510 511
    """

S
sneaxiy 已提交
512 513 514 515 516 517
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
518
    """
519
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
520 521 522

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
523 524 525 526
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
527

528 529
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
530 531

    Returns:
532
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
533 534 535 536

    Examples:
        .. code-block:: python

537
            import paddle.fluid as fluid
L
lujun 已提交
538 539 540 541 542
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
543 544 545
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
546 547
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
548 549


550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
576
@signature_safe_contextmanager
577 578
def name_scope(prefix=None):
    """
579 580
    :api_attr: Static Graph

581
    Generate hierarchical name prefix for the operators in Static Graph.
582

T
Tao Luo 已提交
583 584 585
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
586
        Don't use it in dygraph, since it will cause memory leak.
587 588

    Args:
T
Tao Luo 已提交
589
        prefix(str, optional): prefix. Default is none.
590 591 592

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
593

594 595 596
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
597
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
598
             b = a + 1
599
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
600
                c = b * 1
601
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
602
                d = c / 1
603 604 605
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
606 607 608
                g = f - 1

          # Op are created in the default main program.  
609
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
625 626
    """
    # TODO(panyx0718): Only [0-9a-z].
627
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
628 629 630
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
631
        assert prefix, "namescope prefix can not be empty."
632 633
        global _name_scope
        _name_scope = _name_scope.child(prefix)
634 635 636 637
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
638 639 640 641 642 643 644 645 646 647 648 649


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
650 651 652
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
653 654 655 656


def grad_var_name(var_name):
    """
657 658
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
659 660 661
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
662

663
def convert_np_dtype_to_dtype_(np_dtype):
664 665
    """
    Convert the data type in numpy to the data type in Paddle
666

667
    Args:
668
        np_dtype(np.dtype): the data type in numpy.
669

670 671
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
672 673

    """
674 675
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
676
        return core.VarDesc.VarType.FP32
677
    elif dtype == np.float64:
678
        return core.VarDesc.VarType.FP64
679
    elif dtype == np.float16:
680
        return core.VarDesc.VarType.FP16
681
    elif dtype == np.int32:
682
        return core.VarDesc.VarType.INT32
683
    elif dtype == np.int16:
684
        return core.VarDesc.VarType.INT16
685
    elif dtype == np.int64:
686
        return core.VarDesc.VarType.INT64
687
    elif dtype == np.bool:
688
        return core.VarDesc.VarType.BOOL
689
    elif dtype == np.uint16:
690 691 692
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
693 694
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
695 696
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
697 698 699 700
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
701
    else:
M
minqiyang 已提交
702
        raise ValueError("Not supported numpy dtype %s" % dtype)
703 704 705


def dtype_is_floating(dtype):
706 707 708
    """
    Check the data type is floating or not.
    Args:
709
        dtype(np.dtype|core.VarDesc.VarType): data type.
710 711 712 713 714
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
715
    if not isinstance(dtype, core.VarDesc.VarType):
716 717
        dtype = convert_np_dtype_to_dtype_(dtype)

718 719 720 721
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
722 723


Y
Yang Yang(Tony) 已提交
724
def _debug_string_(proto, throw_on_error=True):
725 726 727 728 729 730 731 732 733 734 735
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
736
    error_fields = list()
Y
Yang Yang(Tony) 已提交
737
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
738 739
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
740 741 742
    return proto.__str__()


743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
800
    target_block = default_main_program().current_block()
801 802 803 804 805 806 807 808 809 810 811

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
812
            })
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
852
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
853
                fill_constant([1], 1, force_cpu=True, out=temp_1)
854
                temp_end = target_block.create_var(dtype=slice_item.dtype)
855
                target_block.append_op(
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
895

896
    # starts
L
Leo Chen 已提交
897
    if contain_var(slice_start):
898 899 900 901 902 903 904 905
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
906 907 908 909
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
910 911 912 913 914 915 916
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
917 918 919
    else:
        attrs['ends'] = slice_end

920 921
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
922
        if contain_var(slice_step):
923 924 925 926 927 928 929
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
930 931
        else:
            attrs['strides'] = slice_step
932 933 934 935 936 937
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
938
        slice_out_var = target_block.create_var(
939 940 941
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

942
        target_block.append_op(
943 944 945 946 947 948 949
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
950
        strided_slice_out_var = target_block.create_var(
951 952 953
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
954
        target_block.append_op(
955 956 957 958 959 960 961 962
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
963
        reverse_out_var = target_block.create_var(
964 965 966
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
967
        target_block.append_op(
968 969 970 971 972 973 974 975 976 977 978
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
979
class Variable(object):
980
    """
J
Jiabin Yang 已提交
981
    **Notes**:
982
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
983

984 985
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
986 987 988
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
989
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
990 991
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
992

993
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
994
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
995

T
tianshuo78520a 已提交
996
    Most of a Variable's member variables can be set to be None. It mean
997
    it is not available or will be specified later.
998

999
    Examples:
1000 1001
        In Static Graph Mode:

1002 1003
        .. code-block:: python

1004
            import paddle.fluid as fluid
1005
            cur_program = fluid.Program()
1006 1007 1008 1009
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
1010
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1011 1012 1013 1014 1015 1016 1017 1018 1019

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1020 1021
    """

Y
Yu Yang 已提交
1022 1023
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1024
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1025 1026 1027 1028
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1029
                 capacity=None,
Q
QI JUN 已提交
1030
                 persistable=None,
F
fengjiayi 已提交
1031
                 error_clip=None,
Y
Yu Yang 已提交
1032
                 stop_gradient=False,
F
fengjiayi 已提交
1033
                 is_data=False,
H
Huihuang Zheng 已提交
1034
                 need_check_feed=False,
H
hong 已提交
1035
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1036
                 **kwargs):
Y
Yu Yang 已提交
1037 1038
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1039
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1040

Y
Yu Yang 已提交
1041
        if dtype is not None:
1042
            if not isinstance(dtype, core.VarDesc.VarType):
1043
                dtype = convert_np_dtype_to_dtype_(dtype)
1044

H
hong 已提交
1045 1046
        self.belong_to_optimizer = belong_to_optimizer

1047 1048 1049 1050 1051
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1052

1053 1054 1055
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1056

1057 1058 1059 1060 1061 1062 1063
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1064

1065
        if shape is not None:
1066
            if is_new_var:
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1108

1109 1110
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1111

1112 1113 1114 1115 1116 1117 1118
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1119

1120 1121 1122 1123
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1124

1125
    @fake_interface_only
1126 1127
    def detach(self):
        """
J
Jiabin Yang 已提交
1128
        **Notes**:
T
tianshuo78520a 已提交
1129
            **This API is ONLY available in Dygraph mode**
1130

1131
        Returns a new Variable, detached from the current graph.
1132

1133
        Returns:
J
Jiabin Yang 已提交
1134
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1135

1136

1137 1138 1139 1140 1141
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1142
                from paddle.fluid.dygraph import Linear
1143 1144 1145 1146
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1147
                    linear = Linear(32, 64)
1148
                    data = to_variable(data)
1149
                    x = linear(data)
1150 1151 1152
                    y = x.detach()

        """
1153
        pass
1154

1155
    @fake_interface_only
1156
    def numpy(self):
1157
        """
J
Jiabin Yang 已提交
1158
        **Notes**:
T
tianshuo78520a 已提交
1159
            **This API is ONLY available in Dygraph mode**
1160

J
Jiabin Yang 已提交
1161
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1162 1163 1164 1165 1166

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1167
            ndarray: dtype is same as current Variable
1168 1169 1170 1171 1172 1173

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1174
                from paddle.fluid.dygraph import Linear
1175 1176 1177 1178
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1179
                    linear = Linear(32, 64)
1180
                    data = to_variable(data)
1181
                    x = linear(data)
1182 1183 1184
                    print(x.numpy())

        """
1185
        pass
1186

1187
    @fake_interface_only
1188 1189
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1190
        **Notes**:
T
tianshuo78520a 已提交
1191
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1203
                from paddle.fluid.dygraph import Linear
1204 1205
                import numpy as np

1206
                data = np.ones([3, 1024], dtype='float32')
1207
                with fluid.dygraph.guard():
1208
                    linear = fluid.dygraph.Linear(1024, 4)
1209
                    t = to_variable(data)
1210
                    linear(t)  # call with default weight
1211
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1212 1213
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1214 1215

        """
1216
        pass
1217

1218
    @fake_interface_only
1219
    def backward(self, retain_graph=False):
1220
        """
J
Jiabin Yang 已提交
1221
        **Notes**:
T
tianshuo78520a 已提交
1222
            **This API is ONLY available in Dygraph mode**
1223

1224
        Run backward of current Graph which starts from current Tensor.
1225

J
Jiabin Yang 已提交
1226
        Args:
1227 1228 1229 1230
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1231

J
Jiabin Yang 已提交
1232 1233
        Returns:
            NoneType: None
1234 1235 1236 1237 1238

        Examples:
            .. code-block:: python

                import numpy as np
1239 1240
                import paddle
                paddle.disable_static()
1241 1242

                x = np.ones([2, 2], np.float32)
1243 1244 1245 1246 1247 1248 1249
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1250 1251
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1252
                loss.backward()
1253 1254

        """
1255
        pass
1256

1257
    @fake_interface_only
1258
    def gradient(self):
1259
        """
J
Jiabin Yang 已提交
1260
        **Notes**:
T
tianshuo78520a 已提交
1261
            **This API is ONLY available in Dygraph mode**
1262 1263 1264

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1265
        Returns:
1266
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1267 1268 1269 1270 1271 1272 1273

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1274
                # example1: return ndarray
1275 1276 1277 1278 1279 1280 1281 1282 1283
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1284
                    loss2.backward()
1285 1286
                    print(loss2.gradient())

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1300
        """
1301
        pass
1302

1303
    @fake_interface_only
1304
    def clear_gradient(self):
1305
        """
J
Jiabin Yang 已提交
1306
        **Notes**:
T
tianshuo78520a 已提交
1307
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1308 1309

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1310

J
Jiabin Yang 已提交
1311
        Clear  (set to ``0`` ) the Gradient of Current Variable
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1330
                    loss2.backward()
1331 1332 1333 1334 1335
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1336
        pass
X
Xin Pan 已提交
1337

1338
    def __str__(self):
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1355 1356
                import paddle
                import paddle.static as static
1357

1358 1359 1360
                paddle.enable_static()

                cur_program = static.Program()
1361 1362 1363 1364 1365 1366 1367
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
T
tangwei12 已提交
1368
            var_str = "{name} : paddle.{type}.shape{shape}.astype({dtype})". \
1369 1370
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
1371
            var_str = "{name} : paddle.{type})".\
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1386

F
update  
fengjiayi 已提交
1387
    def to_string(self, throw_on_error, with_details=False):
1388 1389 1390
        """
        Get debug string.

J
Jiabin Yang 已提交
1391 1392 1393 1394 1395
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1396

1397 1398
        Returns:
            str: The debug string.
1399 1400 1401 1402 1403

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1404
                import paddle
1405

1406
                paddle.enable_static()
1407 1408 1409 1410 1411
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1412
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1413
                print("=============with detail===============")
1414
                print(new_variable.to_string(True, True))
1415
        """
F
update  
fengjiayi 已提交
1416 1417
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1418
        protostr = self.desc.serialize_to_string()
1419
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1420 1421 1422 1423
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1424 1425 1426
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1427
        return res_str
1428 1429 1430

    __repr__ = __str__

1431
    @property
1432
    def stop_gradient(self):
J
Jiabin Yang 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1448 1449
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1450 1451 1452
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1453 1454
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1455 1456 1457 1458
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1459
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1460 1461
                assert (out1.gradient() == 0).all()
        """
1462
        return self._stop_gradient
1463

1464 1465
    @stop_gradient.setter
    def stop_gradient(self, s):
1466
        self._stop_gradient = s
1467

1468 1469
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1491
        return self.desc.persistable()
1492

Y
Yu Yang 已提交
1493 1494
    @persistable.setter
    def persistable(self, p):
1495
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1496

Y
Yu Yang 已提交
1497 1498
    @property
    def name(self):
J
Jiabin Yang 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1515
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1516

1517 1518 1519 1520 1521 1522 1523 1524
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1537 1538
    @name.setter
    def name(self, new_name):
1539
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1540

Y
Yu Yang 已提交
1541 1542
    @property
    def shape(self):
J
Jiabin Yang 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1560
        # convert to tuple, make it as same as numpy API.
1561
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1562 1563

    @property
F
fengjiayi 已提交
1564
    def dtype(self):
J
Jiabin Yang 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1581
        return self.desc.dtype()
Y
Yu Yang 已提交
1582 1583 1584

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1606 1607 1608
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1609
        return self.desc.lod_level()
Y
Yu Yang 已提交
1610

Y
Yu Yang 已提交
1611 1612
    @property
    def type(self):
J
Jiabin Yang 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1629
        return self.desc.type()
Y
Yu Yang 已提交
1630

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1665
    def _set_error_clip(self, error_clip):
1666 1667 1668 1669 1670 1671 1672 1673 1674
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1675 1676
        self.error_clip = error_clip

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1717
            raise ValueError("slice step can not be zero")
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1793
    def _cloneVar(self, copy=False):
1794 1795
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1796 1797
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1798 1799 1800 1801
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1802
        new_var = self._cloneVar()
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1813
        new_var = self._cloneVar()
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1824
                return self._cloneVar(True)
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1843
                return self._cloneVar(True)
1844
            index = int(item)
1845
            if (index > 0 and index >= self.shape[axis]) \
1846 1847 1848 1849 1850 1851 1852
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1853
        return _getitem_impl_(self, item)
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
    def __setitem__(self, item, value):
        inputs = {'Input': self}

        # 1. Parse item
        if not isinstance(item, tuple):
            item = [item]

        axes = []
        starts = []
        ends = []
        max_integer = sys.maxsize
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step

                if start is None and end is None and step is None:
                    continue

                start = 0 if start is None else start
                step = 1 if step is None else step

                # TODO: support cases when step != 1
                if step != 1:
                    raise ValueError(
                        "When assign a value to a paddle.Tensor, only support step is 1, "
                        "but received step is {}.".format(step))
                end = max_integer if end is None else end
            else:
                start = slice_item
                end = slice_item + 1 if slice_item != -1 else max_integer
            axes.append(dim)
            starts.append(start)
            ends.append(end)

        attrs = {'axes': axes, 'starts': starts, 'ends': ends}

        # 2. Parse value
        dtype = self.dtype
        attrs['dtype'] = dtype

1897
        from .data_feeder import convert_dtype
1898 1899
        #  2.1 value is an integer of float
        if isinstance(value, (int, float)):
1900
            value = np.array([value]).astype(convert_dtype(dtype))
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

        #  2.2 value is a np.ndarray
        if isinstance(value, np.ndarray):
            shape = list(value.shape)
            if dtype == core.VarDesc.VarType.BOOL:
                value_name = "bool_values"
                values = [bool(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.FP32:
                value_name = "fp32_values"
                values = [float(v) for v in value.flat]
1911 1912 1913
            elif dtype == core.VarDesc.VarType.FP64:
                value_name = "fp64_values"
                values = [float(v) for v in value.flat]
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
            elif dtype == core.VarDesc.VarType.INT32:
                value_name = "int32_values"
                values = [int(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT64:
                value_name = "int64_values"
                values = [int(v) for v in value.flat]
            else:
                raise TypeError(
                    "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                    "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                    "received %s." % convert_dtype(dtype))
            attrs[value_name] = values
            attrs["shape"] = shape

        elif isinstance(value, Variable):
            inputs["ValueTensor"] = value
        else:
            raise TypeError(
                "Only support to assign an integer, float, numpy.ndarray or "
                "paddle.Tensor to a paddle.Tensor, but received {}".format(
                    type(value)))

        self.block.append_op(
            type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
        return self

Y
Yu Yang 已提交
1940

F
fengjiayi 已提交
1941 1942 1943
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1944

1945 1946
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1947 1948 1949 1950
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1951
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1952 1953 1954 1955 1956
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1957 1958 1959 1960
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1970
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1971 1972 1973 1974 1975 1976
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1977 1978 1979 1980 1981 1982 1983 1984
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1985 1986
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1987 1988
        return self.op_proto_map[type]

1989 1990
    def update_op_proto(self):
        op_protos = get_all_op_protos()
1991
        custom_op_names = []
1992 1993 1994
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
1995 1996 1997
                custom_op_names.append(proto.type)

        return custom_op_names
1998

1999 2000 2001 2002
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2003
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2004
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2005 2006
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2007 2008
        }

F
fengjiayi 已提交
2009

X
Xin Pan 已提交
2010
class Operator(object):
2011
    """
2012 2013 2014 2015 2016 2017 2018
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2019
        type(str): The type of operator. Default None.
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2040
        Block.append_op or Block._prepend_op instead.
2041 2042 2043 2044

    Examples:
        .. code-block:: python

2045
            import paddle.fluid as fluid
2046
            cur_program = fluid.Program()
2047 2048 2049 2050 2051
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2052
    """
2053
    OP_WITHOUT_KERNEL_SET = {
2054 2055
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2056 2057
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
T
tangwei12 已提交
2058 2059
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue',
        'heter_listen_and_serv'
2060
    }
2061

Y
Yu Yang 已提交
2062 2063
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2064
                 desc,
Y
Yu Yang 已提交
2065 2066 2067
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2068
                 attrs=None):
L
lujun 已提交
2069
        if in_dygraph_mode():
2070 2071
            if type is None:
                raise ValueError(
2072
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2073
            self._type = type
M
minqiyang 已提交
2074
            self.attrs = attrs if attrs else {}
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2089
                )] = self.block.program._op_role
2090 2091 2092

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2093 2094
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2095 2096 2097 2098 2099 2100 2101 2102

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2103
                    "`type` to initialized an Operator can not be None.")
2104 2105
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2106 2107 2108 2109 2110 2111 2112
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2113 2114 2115 2116 2117 2118 2119

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2151
                        if not isinstance(in_args, (list, tuple)):
2152 2153 2154 2155 2156 2157
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2158
                        for index, arg in enumerate(in_args):
2159 2160 2161 2162
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2163
                            elif isinstance(arg, (Variable, core.VarBase)):
2164
                                in_arg_names.append(cpt.to_text(arg.name))
2165
                            else:
2166 2167 2168 2169
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2170 2171
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2196 2197 2198 2199
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2200
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2201
                        if not in_dygraph_mode():
2202 2203 2204 2205
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2224
    def _has_kernel(self, op_type):
2225 2226
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2227
    def to_string(self, throw_on_error):
2228
        """
2229 2230
        Get debug string.

2231
        Args:
2232 2233
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2234

2235 2236
        Returns:
            str: The debug string.
2237 2238

        """
2239
        protostr = self.desc.serialize_to_string()
2240
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2241 2242
        return _debug_string_(proto, throw_on_error)

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2330 2331
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2332 2333 2334 2335 2336
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2337
    def __str__(self):
2338
        return self._to_readable_code()
2339 2340 2341

    __repr__ = __str__

F
fengjiayi 已提交
2342 2343
    @property
    def type(self):
2344
        return self.desc.type()
F
fengjiayi 已提交
2345 2346

    def input(self, name):
2347
        r"""
2348
        Get the input arguments according to the input parameter name.
2349

2350 2351
        Args:
            name(str): The input parameter name.
2352

2353 2354 2355
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2356
        """
F
fengjiayi 已提交
2357 2358
        return self.desc.input(name)

W
Wu Yi 已提交
2359
    def _rename_input(self, old_name, new_name):
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2370
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2371

W
Wu Yi 已提交
2372
    def _rename_output(self, old_name, new_name):
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2383
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2384

F
fengjiayi 已提交
2385 2386 2387 2388
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2389 2390 2391 2392 2393 2394 2395 2396
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2397
    def output(self, name):
2398
        r"""
2399
        Get output arguments by the output parameter name.
2400

2401 2402
        Args:
            name(str): The output parameter name.
2403

2404 2405 2406
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2407
        """
F
fengjiayi 已提交
2408 2409 2410 2411 2412 2413
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2414 2415 2416 2417 2418 2419 2420 2421
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2422
    def has_attr(self, name):
2423
        """
2424 2425
        Whether this Operator has the attribute with name or not.

2426
        Args:
2427
            name(str): the attribute name.
2428

2429 2430
        Returns:
            bool: True if has this attribute.
2431 2432

        """
F
fengjiayi 已提交
2433 2434 2435
        return self.desc.has_attr(name)

    def attr_type(self, name):
2436
        """
2437
        Get the type of attribute by attribute's name.
2438

2439 2440
        Args:
            name(str): the attribute name.
2441

2442 2443
        Returns:
            core.AttrType: the attribute type.
2444
        """
F
fengjiayi 已提交
2445 2446
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2447
    def _set_attr(self, name, val):
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2458 2459
        self._update_desc_attr(name, val)

2460 2461 2462
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2474 2475
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2476 2477
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2478
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2479 2480 2481 2482
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2483
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2484

F
fengjiayi 已提交
2485 2486 2487 2488 2489
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2490
        """
2491 2492
        Get the attribute by name.

2493
        Args:
2494
            name(str): the attribute name.
2495

2496 2497
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2498 2499
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2500
        return self.desc.attr(name)
Y
Yu Yang 已提交
2501

W
Wu Yi 已提交
2502
    def _block_attr_id(self, name):
2503
        """
G
gongweibao 已提交
2504
        Get the block attribute's id by name.
2505

2506 2507
        Args:
            name(str): the attribute name.
2508

2509 2510
        Returns:
            int: the block index.
2511
        """
W
Wu Yi 已提交
2512
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2513

W
Wu Yi 已提交
2514
    def _block_attr(self, name):
G
gongweibao 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2525
        id = self._block_attr_id(name)
G
gongweibao 已提交
2526 2527 2528
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2529
    def _blocks_attr(self, name):
G
gongweibao 已提交
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2540
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2541 2542 2543 2544 2545
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2546
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2557
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2558

J
JiayiFeng 已提交
2559
    def all_attrs(self):
F
fengjiayi 已提交
2560
        """
2561 2562 2563
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2564
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2565 2566 2567 2568
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2569 2570
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2571
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2572 2573 2574
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2575
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2576 2577 2578 2579
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2580 2581
        return attr_map

2582 2583 2584
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2585 2586 2587 2588

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2589 2590 2591
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2592 2593 2594 2595 2596 2597 2598 2599

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2600 2601
            return False

2602 2603 2604 2605 2606 2607
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2608

Y
Yu Yang 已提交
2609
class Block(object):
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2624
        use `Program._create_block()` to create a block.
2625 2626 2627 2628

    Examples:
        .. code-block:: python

2629 2630 2631
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2632 2633 2634 2635 2636 2637 2638 2639 2640
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2641
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2642
        self.desc = program.desc.block(idx)
2643
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2644
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2645
        self.program = program
2646
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2647

2648
    def __str__(self):
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2695

F
fengjiayi 已提交
2696 2697
    def to_string(self, throw_on_error, with_details=False):
        """
2698 2699
        Get debug string.

F
fengjiayi 已提交
2700 2701
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2702
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2703
            with_details(bool): more details about variables and parameters
2704 2705
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2706

2707 2708
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2709 2710 2711 2712
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2713
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2714 2715
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2716
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2717
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2718
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2719
            for op in self.ops:
F
fengjiayi 已提交
2720 2721
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2722 2723 2724
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2725 2726
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2727 2728
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2729 2730 2731

    __repr__ = __str__

Y
Yu Yang 已提交
2732 2733
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2734
        return self.desc.parent
Y
Yu Yang 已提交
2735

Y
Yu Yang 已提交
2736 2737 2738 2739
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2740
    def _set_forward_block_idx(self, idx):
2741 2742 2743 2744 2745 2746 2747 2748 2749
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2750
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2751

2752 2753 2754 2755 2756 2757 2758 2759
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2760 2761
    @property
    def idx(self):
Y
Yu Yang 已提交
2762
        return self.desc.id
Y
Yu Yang 已提交
2763

Q
Qiao Longfei 已提交
2764
    def var(self, name):
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2778
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2779 2780 2781
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2782 2783
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2784
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2785
        return v
Q
Qiao Longfei 已提交
2786

X
Xin Pan 已提交
2787
    def _find_var_recursive(self, name):
2788 2789 2790 2791 2792 2793 2794
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2795
            Variable: the Variable with the giving name. Or None if not found.
2796
        """
Y
Yu Yang 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2821
        return None
Y
Yu Yang 已提交
2822

X
Xin Pan 已提交
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2842

Q
Qiao Longfei 已提交
2843
    def all_parameters(self):
2844
        return list(self.iter_parameters())
2845

2846
    def iter_parameters(self):
M
minqiyang 已提交
2847
        return (item[1] for item in six.iteritems(self.vars)
2848
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2849

Y
Yu Yang 已提交
2850
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2851 2852 2853
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2854 2855 2856
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2857
        return var
Y
Yu Yang 已提交
2858

Q
Qiao Longfei 已提交
2859 2860 2861
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2862
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2863 2864
        """
        Rename variable in vars and ops' inputs and outputs
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2877
        """
M
minqiyang 已提交
2878 2879
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2880

T
typhoonzero 已提交
2881
        if not self.has_var(name):
2882
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2883 2884
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2885
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2886 2887 2888 2889 2890 2891
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2892
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2893 2894 2895 2896
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2897
        orig_var_type = v.type
M
minqiyang 已提交
2898
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2899
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2900
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2901
        if var_type == "Parameter":
L
Leo Chen 已提交
2902 2903
            if in_dygraph_mode():
                var = ParamBase(
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2914 2915
                var = Parameter(
                    self,
2916 2917 2918 2919 2920 2921 2922 2923 2924
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2925
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2926 2927
            var = Variable(
                self,
T
typhoonzero 已提交
2928
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2929 2930 2931 2932
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2933
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2934 2935 2936
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2937
        self._sync_with_cpp()
2938
        return var
T
typhoonzero 已提交
2939

2940 2941 2942
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2943
        self.desc._remove_var(cpt.to_bytes(name))
2944 2945
        del self.vars[name]

Y
Yu Yang 已提交
2946 2947
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2948
        param = None
L
Leo Chen 已提交
2949
        if in_dygraph_mode():
2950
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2951 2952
        else:
            param = Parameter(global_block, *args, **kwargs)
2953 2954 2955 2956 2957 2958
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2959
        if 'initializer' in kwargs:
2960 2961 2962 2963 2964

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2965
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2966
                        # are treated as initialization ops that cause error.
2967
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
2968 2969 2970 2971 2972
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
2973
                            continue
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2985
                # TODO already inited, do nothing, should log a warning
2986 2987 2988
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2989
        return param
Y
Yu Yang 已提交
2990

Y
Yu Yang 已提交
2991
    def append_op(self, *args, **kwargs):
2992 2993 2994 2995 2996 2997
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2998
        if in_dygraph_mode():
2999
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3000
            type = kwargs.get("type", None)
3001 3002 3003
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3004
                type=type,
M
minqiyang 已提交
3005 3006
                inputs=None,
                outputs=None,
3007
                attrs=attrs)
3008

M
minqiyang 已提交
3009 3010 3011
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3012
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3013 3014

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3015
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3016 3017
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3018
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3019
        else:
3020 3021 3022 3023 3024 3025 3026 3027 3028
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
3029
            self.ops.append(op)
M
minqiyang 已提交
3030

3031 3032
        return op

W
Wu Yi 已提交
3033
    def _insert_op(self, index, *args, **kwargs):
3034 3035 3036 3037 3038 3039 3040 3041 3042
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3043 3044
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
3045 3046 3047 3048
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3066 3067 3068 3069 3070 3071 3072 3073 3074
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3075 3076
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3077
        self.desc._remove_op(index, index + 1)
3078 3079
        del self.ops[index]

W
Wu Yi 已提交
3080
    def _slice_ops(self, start, end):
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3091
        return self.ops[start:end]
Y
Yancey1989 已提交
3092

W
Wu Yi 已提交
3093
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3094
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3095 3096
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3097
            op = Operator(
J
Jiabin Yang 已提交
3098
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3099

J
Jiabin Yang 已提交
3100
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3101
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3102 3103
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3104
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3105
        else:
3106 3107 3108 3109 3110 3111 3112 3113
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3114
            self.ops.insert(0, op)
3115

Y
Yu Yang 已提交
3116 3117
        return op

W
Wu Yi 已提交
3118
    def _sync_with_cpp(self):
3119
        """
3120 3121
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3122
        """
Q
Qiao Longfei 已提交
3123 3124 3125 3126 3127
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3128
        # sync variables removed from c++ end
3129
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3130
            if not self.desc.find_var(cpt.to_bytes(var)):
3131 3132
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3133
        # sync operators from cpp
3134 3135 3136 3137
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3154 3155 3156 3157 3158

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3159
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3160 3161 3162 3163 3164 3165 3166

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3180 3181 3182 3183
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3184
    def _copy_param_info_from(self, other):
3185
        """
3186 3187
        Copy the information of parameters from the other block.

3188
        Args:
3189 3190 3191 3192 3193
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3194 3195 3196 3197 3198

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3199 3200
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3201
        for p in other.iter_parameters():
3202 3203 3204
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3205 3206
                # if the Parameter is pruned, v may be None
                continue
3207
            assert isinstance(v, Variable)
3208
            new_p = None
L
Leo Chen 已提交
3209 3210
            if in_dygraph_mode():
                new_p = ParamBase(
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3222 3223
                new_p = Parameter(
                    block=self,
3224 3225 3226
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3227 3228
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3229 3230 3231 3232 3233 3234
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3235 3236
            self.vars[new_p.name] = new_p

3237
    def _clone_variable(self, var, force_persistable=True):
3238 3239
        """
        Clone a variable into current block.
3240

3241 3242
        Args:
            var: the variable to be cloned.
3243 3244 3245
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3246 3247

        Returns:
3248
            Variable: the new  variable cloned from 'var' in current block.
3249 3250
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3251 3252 3253 3254 3255
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3256 3257
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3258
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3259 3260 3261 3262 3263 3264
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3265
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3266 3267
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3268 3269 3270 3271 3272 3273 3274
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3275
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3276 3277
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3278
        return ret_var
3279

Y
Yu Yang 已提交
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3376
    def remove_input_by_id(self, node_id):
3377 3378 3379 3380 3381 3382
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3383
        self.node.remove_input(node_id)
3384

3385
    def remove_input(self, node):
3386 3387 3388 3389
        """
        Remove a node from inputs.

        Args:
3390
            node(IrNode): the node being removed.
3391
        """
3392
        self.node.remove_input(node.node)
3393

3394
    def append_input(self, node):
3395 3396 3397 3398
        """
        Append a node in inputs.

        Args:
3399
            node(IrNode): the node being appended.
3400
        """
3401
        self.node.append_input(node.node)
3402 3403 3404 3405 3406 3407 3408 3409

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3410
    def remove_output_by_id(self, node_id):
3411 3412 3413 3414 3415 3416
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3417
        self.node.remove_output(node_id)
3418

3419
    def remove_output(self, node):
3420 3421 3422 3423
        """
        Remove a node from outputs.

        Args:
3424
            node(IrNode): the node being removed.
3425
        """
3426
        self.node.remove_output(node.node)
3427

3428
    def append_output(self, node):
3429 3430 3431 3432
        """
        Append a node in outputs.

        Args:
3433
            node(IrNode): the node being appended.
3434
        """
3435
        self.node.append_output(node.node)
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3483
            "The node variable description can not be None."
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3494
            "The node variable description can not be None."
3495 3496
        return self.node.var().persistable()

3497 3498 3499 3500 3501 3502 3503 3504
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3505
            "The node variable description can not be None."
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3516
            "The node variable description can not be None."
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3527
            "The node variable description can not be None."
3528 3529
        return self.node.var().shape()

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3577
            "The node operator description can not be None."
3578 3579
        self.node.op()._rename_input(old_input_name, new_input_name)

3580 3581 3582 3583 3584 3585 3586 3587 3588
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3589
            "The node operator description can not be None."
3590 3591
        self.node.op()._rename_output(old_output_name, new_output_name)

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3603
            "The node operator description can not be None."
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3617
            "The node operator description can not be None."
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3628
            "The node operator description can not be None."
3629 3630
        return self.node.op().set_type(new_type)

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3646
            "The node operator description can not be None."
3647 3648 3649 3650
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3651
                all(isinstance(v, Block) for v in val):
3652 3653
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3654
                isinstance(val, core.ProgramDesc):
3655 3656 3657 3658
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3659 3660 3661 3662 3663 3664 3665 3666
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3667
            "The node operator description can not be None."
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3678
            "The node operator description can not be None."
3679 3680
        return self.node.op().output_arg_names()

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3702 3703
class IrGraph(object):
    """
3704
    Python IrGraph. Beneath it is a core.Graph, which is used for
3705
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3706 3707
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3708 3709 3710 3711
    """

    def __init__(self, graph, for_test=False):
        """
3712 3713
        Construct an IrGraph using core.Graph.

3714 3715 3716 3717 3718 3719 3720 3721 3722
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3723 3724 3725 3726
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3727 3728 3729
        Warns:
            The method only clones the graph structure, not its attributes.

3730 3731 3732
        Returns:
            IrGraph: A new and duplicated graph.
        """
3733
        g = self.graph.clone()
3734 3735
        return IrGraph(g, self._for_test)

3736
    def is_test(self):
3737 3738 3739
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3740 3741
        return self._for_test

W
WangZhen 已提交
3742
    def all_nodes(self):
3743 3744 3745
        """
        Return all nodes included in the graph as a set.
        """
3746
        return {IrNode(node) for node in self.graph.nodes()}
3747

3748
    def all_var_nodes(self):
3749 3750 3751
        """
        Return all variable nodes included in the graph as a set.
        """
3752
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3753

3754
    def all_persistable_nodes(self):
3755 3756 3757
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3758 3759 3760 3761 3762
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3763
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3764

3765
    def all_op_nodes(self):
3766 3767 3768
        """
        Return all operator nodes included in the graph as a set.
        """
3769
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3770

3771
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3783
            IrVarNode: the created persistable variable node.
3784
        """
3785 3786 3787 3788 3789
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3790
        return IrVarNode(self.graph.create_var_node(var_desc))
3791 3792

    def create_var_node(self, name, var_type, shape, var_dtype):
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3804
            IrVarNode: the created variable node.
3805 3806
        """

3807 3808 3809 3810
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3811
        return IrVarNode(self.graph.create_var_node(var_desc))
3812

3813 3814 3815 3816 3817 3818
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3819
    def create_var_node_from_desc(self, var_desc):
3820 3821 3822 3823 3824 3825 3826 3827
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3828
            IrVarNode: the created variable node.
3829
        """
3830
        return IrVarNode(self.graph.create_var_node(var_desc))
3831 3832

    def create_op_node(self, op_type, attrs, inputs, outputs):
3833 3834 3835 3836 3837 3838 3839
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3840
            outputs(dict): the outputs of the operator node.
3841 3842

        Returns:
3843
            IrOpNode: the created operator node.
3844
        """
3845 3846
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3847
        for attr, value in six.iteritems(attrs):
3848
            self._update_desc_attr(op_desc, attr, value)
3849
        for input_name, var_nodes in six.iteritems(inputs):
3850 3851 3852 3853
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3854
        for output_name, var_nodes in six.iteritems(outputs):
3855 3856 3857 3858
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3859
        return IrOpNode(self.graph.create_op_node(op_desc))
3860 3861

    def create_op_node_from_desc(self, op_desc):
3862 3863 3864 3865 3866 3867 3868
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3869
            IrOpNode: the created operator node.
3870
        """
3871
        return IrOpNode(self.graph.create_op_node(op_desc))
3872 3873

    def update_input_link(self, old_input_node, new_input_node, op_node):
3874 3875 3876 3877
        """
        Update the input's link of a operator node.

        Args:
3878 3879 3880
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3881
        """
3882
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3883
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3884
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3885 3886 3887 3888
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3889
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3901
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3902
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3903 3904 3905 3906 3907 3908
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3909
    def link_to(self, node_in, node_out):
3910 3911 3912 3913
        """
        Connect two nodes.

        Args:
3914 3915
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3916
        """
3917
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3918
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3919 3920
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3921 3922

    def safe_remove_nodes(self, remove_nodes):
3923 3924 3925 3926 3927 3928 3929
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3930
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3931 3932 3933 3934
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3935 3936
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3937

Z
Zhen Wang 已提交
3938 3939 3940 3941 3942 3943 3944 3945
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3946
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3947 3948 3949 3950
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3951
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3952 3953 3954
                        ]
                    else:
                        var_nodes[each_var_name].append(
3955 3956
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3957 3958
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3959
    def has_circle(self):
3960 3961 3962 3963 3964 3965
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3966 3967 3968
        return core.has_circle(self.graph)

    def graph_num(self):
3969 3970 3971 3972 3973 3974
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3975 3976 3977
        return core.graph_num(self.graph)

    def topology_sort(self):
3978 3979 3980
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3981
        Notes: the `graph` can not contain a circle.
3982 3983

        Returns:
Z
Zhen Wang 已提交
3984
            list(IrNode): nodes in topology order.
3985
        """
3986
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3987
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3988 3989

    def build_adjacency_list(self):
3990 3991 3992 3993
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3994
            dict{IrNode: set(IrNode)}: the adjacency list.
3995
        """
3996 3997 3998 3999 4000
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4001

4002 4003 4004 4005 4006 4007 4008 4009
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4010
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4011 4012 4013 4014 4015
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4016 4017
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4018 4019 4020
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4021 4022 4023 4024 4025
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4026
        remove_ctr_vars = set()
4027
        if remove_ctr_var:
4028
            for node in self.all_var_nodes():
4029 4030 4031
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4032 4033
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4034 4035
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4036 4037 4038 4039 4040 4041
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4042 4043 4044 4045
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4046 4047
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4048 4049 4050 4051 4052 4053 4054
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4055 4056 4057
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4058
        WARN: When the graph includes backward operator nodes, the
4059 4060 4061 4062 4063 4064
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4065
        convert_pass = core.get_pass('graph_to_program_pass')
4066 4067
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4068 4069 4070 4071
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4099
class Program(object):
D
dzhwinter 已提交
4100
    """
4101
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4102
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4103
    it will contain nested block.
4104

J
Jiabin Yang 已提交
4105 4106 4107
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4108

J
Jiabin Yang 已提交
4109
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4110
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4111 4112 4113 4114 4115 4116 4117
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4118
    **Notes**:
4119 4120 4121
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4122 4123

    Returns:
J
Jiabin Yang 已提交
4124
        Program: An empty Program.
D
dzhwinter 已提交
4125 4126

    Examples:
4127 4128
        .. code-block:: python

4129 4130 4131 4132
            import paddle
            import paddle.static as static

            paddle.enable_static()
4133

4134 4135 4136 4137 4138
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4139
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4140 4141 4142

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4143 4144 4145

    """

4146 4147
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4148 4149
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4150 4151
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4152
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4153
        self.__op_role_var = []
T
tangwei12 已提交
4154

4155 4156
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4157
        self._is_distributed = False
4158
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4159
        self._is_chief = False
4160 4161 4162
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4163
        self._endpoints = []
4164 4165 4166
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4167
        self._trainers_endpoints = []
4168
        # the distributed lookup table names
T
tangwei12 已提交
4169
        self._distributed_lookup_table = None
4170 4171 4172

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4173 4174
        self._use_lamb = False

4175 4176 4177
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4178

4179 4180 4181
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4182
        self._program_config = None
4183

H
hutuxian 已提交
4184 4185 4186
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4187 4188 4189
        # appending gradients times
        self._appending_grad_times = 0

4190 4191 4192 4193
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4194 4195 4196
        # compiled program, i.e. Graph
        self._graph = None

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4207 4208
                import paddle
                import paddle.static as static
4209

4210 4211 4212
                paddle.enable_static()

                prog = static.default_main_program()
4213 4214 4215 4216 4217
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4218
                prog1 = static.default_main_program()
4219 4220 4221 4222 4223 4224 4225 4226
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4227
    @property
4228
    def _op_role(self):
Y
yuyang18 已提交
4229 4230 4231 4232 4233 4234 4235 4236
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4237
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4238 4239 4240 4241
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4242 4243
        return self._current_role

4244 4245
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4246 4247 4248
        self._current_role = role

    @property
4249
    def _op_role_var(self):
Y
yuyang18 已提交
4250
        """
4251
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4252

4253
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4254 4255 4256

        Notes: This is a very low-level API. Users should not use it directly.
        """
4257
        return self.__op_role_var
Y
yuyang18 已提交
4258

4259
    @signature_safe_contextmanager
4260 4261 4262 4263 4264
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4265 4266 4267 4268
        try:
            yield
        finally:
            self._current_role = tmp_role
4269

S
rename  
sneaxiy 已提交
4270
    @signature_safe_contextmanager
W
Wu Yi 已提交
4271
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4272 4273 4274 4275 4276 4277 4278
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4279
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4280 4281 4282

        Examples:

4283
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4284
            >>> p, g = backward(...)
W
Wu Yi 已提交
4285
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4286 4287
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4288
        tmp_role = self._current_role
4289
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4290

Y
yuyang18 已提交
4291 4292
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4293
        self.__op_role_var = [
4294 4295 4296
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4297 4298 4299 4300 4301
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4302

S
rename  
sneaxiy 已提交
4303
    @signature_safe_contextmanager
X
Xin Pan 已提交
4304
    def _lr_schedule_guard(self, is_with_opt=False):
4305 4306 4307 4308 4309 4310 4311
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4312 4313 4314 4315
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4316 4317 4318

        Examples:

4319
            >>> import paddle.fluid as fluid
4320 4321 4322 4323
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4324 4325

        tmp_role = self._current_role
4326
        tmp_var = self.__op_role_var
4327

4328 4329
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4330 4331
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4332
        # TODO(typhoonzero): how to set target learning rate var
4333
        self.__op_role_var = []
4334 4335 4336 4337 4338
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4339

4340
    def __str__(self):
Y
yuyang18 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4370 4371
            import paddle
            import paddle.static as static
4372

4373 4374 4375
            paddle.enable_static()

            cur_program = static.Program()
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4392
            program_str += '\n'
4393
        return program_str
Y
Yang Yang(Tony) 已提交
4394

F
fengjiayi 已提交
4395 4396 4397
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4398

J
Jiabin Yang 已提交
4399 4400 4401
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4402

J
Jiabin Yang 已提交
4403
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4404

H
haowang101779990 已提交
4405
        Returns:
J
Jiabin Yang 已提交
4406
            str: The debug string describe current Program.
Y
yuyang18 已提交
4407 4408

        Raises:
J
Jiabin Yang 已提交
4409
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4410

4411 4412 4413
        Examples:
            .. code-block:: python

4414 4415 4416 4417
                import paddle
                import paddle.static as static

                paddle.enable_static()
4418

4419 4420 4421
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4422
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4423
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4424
                print("program string without detail: {}".format(prog_string))
4425
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4426
        """
4427 4428 4429 4430 4431 4432 4433 4434 4435
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4436 4437 4438 4439 4440 4441
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4442 4443
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4444 4445
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4446

W
Wu Yi 已提交
4447
    def _get_desc(self):
Y
yuyang18 已提交
4448 4449 4450 4451 4452 4453 4454
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4455 4456
        return self.desc

X
version  
Xin Pan 已提交
4457 4458 4459
    def _version(self):
        return self.desc._version()

4460
    def clone(self, for_test=False):
Y
yuyang18 已提交
4461
        """
4462 4463 4464 4465
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4466

4467
        Create a new Program with forward content of original one when ``for_test=True``.
4468
        Create a new Program as same as the original one when ``for_test=False``.
4469

4470
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4471 4472 4473
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4474

4475 4476
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4477 4478
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4479
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4480

J
Jiabin Yang 已提交
4481
        For Example:
4482
          ::
L
Luo Tao 已提交
4483

4484 4485 4486 4487 4488 4489
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4490
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4491
            loss = paddle.mean(pred)
4492
            # Here we use clone before Momentum
4493 4494
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4495
            optimizer.minimize(loss)
4496

J
Jiabin Yang 已提交
4497
        Args:
4498

4499 4500
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4501

J
Jiabin Yang 已提交
4502
        Returns:
4503
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4504

Y
yuyang18 已提交
4505 4506 4507

        Examples:

4508 4509 4510 4511 4512 4513 4514
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4531
            1. To clone a test program, the sample code is:
4532 4533 4534
                .. code-block:: python

                    import six
4535 4536 4537 4538 4539 4540
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4553 4554
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4555 4556 4557

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4558 4559 4560
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4561
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4562 4563
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4564
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4565 4566
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4567
                            test_program = train_program.clone(for_test=True)
4568
                    print_prog(test_program)
J
Jiabin Yang 已提交
4569 4570 4571 4572

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4573
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4574 4575 4576 4577
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4578 4579 4580
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4581 4582 4583
                            sgd.minimize(avg_loss)


4584
            2. The clone method can be avoid if you create program for training and program for testing individually.
4585 4586 4587
                .. code-block:: python

                    import six
4588 4589 4590 4591 4592 4593
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4605

4606
                    def network():
4607
                        img = static.data(name='image', shape=[None, 784])
4608
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4609 4610
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4611
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4612 4613
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4614 4615
                        return avg_loss

4616 4617 4618 4619 4620
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4621
                            avg_loss = network()
4622
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4623
                            sgd.minimize(avg_loss)
4624
                    # the test startup program is not used.
4625 4626
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4627 4628
                            avg_loss = network()
                    print_prog(test_program_2)
4629

4630
            The two code snippets above will generate and print same programs.
4631
        """
4632

T
tangwei12 已提交
4633
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4634 4635 4636
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4637
        pruned_origin_block_id_map = None
4638
        if for_test:
4639 4640 4641 4642 4643 4644 4645 4646 4647
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4648
        else:
4649
            p = Program()
G
gongweibao 已提交
4650 4651
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4652
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4653 4654 4655
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4656 4657

            p._current_role = self._current_role
4658
            p.__op_role_var = self.__op_role_var
4659
            p._appending_grad_times = self._appending_grad_times
4660 4661
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4662

T
tangwei12 已提交
4663
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4664
            # its desc.
W
Wu Yi 已提交
4665
            p._sync_with_cpp()
4666

W
Wu Yi 已提交
4667
        p._copy_param_info_from(self)
4668
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4669
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4670
        return p
4671

4672
    def _prune(self, targets):
Y
yuyang18 已提交
4673 4674 4675 4676 4677 4678 4679 4680
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4681
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4682 4683 4684 4685
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4686
        """
4687
        return self._prune_with_input([], targets)
4688 4689

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4690
        """
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4701
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4702 4703 4704 4705 4706 4707
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4708
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4709 4710 4711
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4712 4713
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4714 4715
        if not isinstance(targets, list):
            targets = [targets]
4716 4717 4718

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4719 4720 4721
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4722

4723 4724 4725 4726
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4727 4728 4729
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4730
                else:
4731 4732 4733
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4734 4735 4736 4737 4738 4739 4740 4741

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4742 4743 4744 4745 4746 4747 4748 4749 4750
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4751
                        # Skip optimize op except for optimize op in targets,
4752 4753 4754 4755 4756 4757
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4758 4759 4760 4761 4762 4763 4764 4765
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4766

4767
        res = Program()
4768 4769 4770
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4771 4772 4773
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4774
        res._sync_with_cpp()
4775 4776 4777 4778 4779

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4780 4781
        return res

X
Xin Pan 已提交
4782
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4783
        """
F
fengjiayi 已提交
4784 4785 4786 4787 4788
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4789
        3. change the :code:`is_test`
Y
yuyang18 已提交
4790 4791 4792
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4793
        Args:
X
Xin Pan 已提交
4794 4795
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4796

Y
yuyang18 已提交
4797 4798 4799 4800 4801 4802
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4803
        res = Program()
4804
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4805 4806 4807 4808

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4809
        if prune_read_op:
4810 4811 4812 4813 4814 4815 4816 4817 4818
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4819
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4820 4821

        # change all `is_test` attributes to True
M
minqiyang 已提交
4822
        for i in six.moves.range(res.desc.num_blocks()):
4823
            block = res.desc.block(i)
M
minqiyang 已提交
4824
            for j in six.moves.range(block.op_size()):
4825 4826
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4827
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4828 4829 4830
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4831
        res._sync_with_cpp()
4832 4833
        return res

4834 4835
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4836
        """
4837 4838 4839
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4840

4841 4842
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4843

J
Jiabin Yang 已提交
4844
        Args:
Y
yuyang18 已提交
4845

J
Jiabin Yang 已提交
4846
            binary_str_type (str): the binary prootbuf string.
4847

J
Jiabin Yang 已提交
4848 4849
        Returns:
            Program: A deserialized Program.
4850 4851 4852 4853

        Examples:
            .. code-block:: python

4854 4855 4856 4857
                import paddle
                import paddle.static as static

                paddle.enable_static()
4858

4859 4860 4861 4862
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4863

4864
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4865

4866
                    z = paddle.matmul(x=x, y=y)
4867

4868 4869
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4870

4871
                    print(static.default_main_program())
4872
                    print(prog_restored)
Y
yuyang18 已提交
4873
        """
4874 4875
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4876
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4877
        p._sync_with_cpp()
4878
        return p
Y
Yu Yang 已提交
4879

4880
    @staticmethod
4881
    def _construct_from_desc(desc):
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4897 4898
    @property
    def random_seed(self):
Y
yuyang18 已提交
4899
        """
J
Jiabin Yang 已提交
4900
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4901 4902
        the random seed from random device.

4903 4904
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4905 4906 4907

        Returns:
            int64: Random seed in current Program
4908

4909 4910 4911 4912

        Examples:
            .. code-block:: python

4913 4914 4915
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4916

4917 4918 4919
                paddle.enable_static()

                prog = static.default_main_program()
4920
                random_seed = prog.random_seed
4921
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4922 4923 4924
                print(random_seed)
                ## 0
                ## the default random seed is 0
4925

4926
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4927
                prog.random_seed = 1
4928
                z_var = F.dropout(x_var, 0.7)
4929

4930
                print(prog.random_seed)
4931 4932
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4933
        """
D
dzhwinter 已提交
4934 4935
        return self._seed

Q
qiaolongfei 已提交
4936 4937
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4938
        """
4939 4940
        The number of :ref:`api_guide_Block_en`  in this Program.

4941 4942
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4943 4944 4945

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4946

4947 4948 4949 4950

        Examples:
            .. code-block:: python

4951 4952 4953 4954
                import paddle
                import paddle.static as static

                paddle.enable_static()
4955

4956
                prog = static.default_main_program()
4957 4958
                num_blocks = prog.num_blocks
                print(num_blocks)
4959

4960 4961
                # print result:
                # 1
Y
yuyang18 已提交
4962
        """
Q
qiaolongfei 已提交
4963 4964
        return self.desc.num_blocks()

D
dzhwinter 已提交
4965 4966 4967
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4968 4969 4970
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4971 4972
        self._seed = seed

Y
Yu Yang 已提交
4973
    def __repr__(self):
4974
        return self.__str__()
4975

Y
Yu Yang 已提交
4976
    def global_block(self):
Y
yuyang18 已提交
4977
        """
4978 4979
        .. note::
            This API has no effect in Dygraph mode.
4980 4981 4982

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4983 4984
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4985

4986 4987 4988 4989

        Examples:
            .. code-block:: python

4990 4991 4992 4993
                import paddle
                import paddle.static as static

                paddle.enable_static()
4994

4995
                prog = static.default_main_program()
4996 4997
                gb_block = prog.global_block()
                print(gb_block)
4998

Y
yuyang18 已提交
4999
        """
Y
Yu Yang 已提交
5000 5001
        return self.blocks[0]

Q
Qiao Longfei 已提交
5002
    def block(self, index):
Y
yuyang18 已提交
5003
        """
5004 5005
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5006

5007 5008
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5009 5010
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5011

J
Jiabin Yang 已提交
5012 5013
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5014 5015 5016 5017

        Examples:
            .. code-block:: python

5018 5019 5020 5021
                import paddle
                import paddle.static as static

                paddle.enable_static()
5022

5023
                prog = static.default_main_program()
5024 5025
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5026
        """
Q
Qiao Longfei 已提交
5027 5028
        return self.blocks[index]

Y
Yu Yang 已提交
5029
    def current_block(self):
Y
yuyang18 已提交
5030
        """
5031 5032
        .. note::
            This API has no effect in Dygraph mode.
5033

J
Jiabin Yang 已提交
5034 5035
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5036

J
Jiabin Yang 已提交
5037 5038
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5039

5040 5041 5042
        Examples:
            .. code-block:: python

5043 5044 5045 5046
                import paddle
                import paddle.static as static

                paddle.enable_static()
5047

5048
                prog = static.default_main_program()
5049 5050
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5051
        """
Y
Yu Yang 已提交
5052 5053
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5054
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5055 5056 5057 5058 5059
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5060

Y
yuyang18 已提交
5061 5062 5063 5064 5065
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5066
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5067 5068 5069
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5070 5071 5072 5073
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5074
    def _rollback(self):
Y
yuyang18 已提交
5075 5076 5077 5078 5079
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5080 5081
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5082
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5093 5094 5095
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5096
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5097

W
Wu Yi 已提交
5098
    def _copy_param_info_from(self, other):
5099
        """
5100
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5101

Y
yuyang18 已提交
5102 5103 5104
        Notes: This is a very low level API. Users should not invoke it
        directly.

5105 5106 5107 5108 5109 5110 5111
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5112 5113 5114
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5115

W
Wu Yi 已提交
5116
        self.global_block()._copy_param_info_from(other.global_block())
5117

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5129 5130 5131
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5132 5133
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5134
        self._parameters_on_pservers = other._parameters_on_pservers
5135
        self._endpoints = other._endpoints
5136
        self._ps_endpoint = other._ps_endpoint
5137 5138
        self._distributed_lookup_table = other._distributed_lookup_table

5139
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5140 5141
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5142

Y
yuyang18 已提交
5143 5144 5145
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5146 5147
        Args:
            other(Program): Other program
5148 5149 5150 5151
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5152 5153 5154 5155 5156

        Returns:
            None
        """
        if not isinstance(other, Program):
5157 5158 5159
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5160

5161 5162 5163 5164 5165
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5166 5167 5168

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5169 5170
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5171
            for var in list(block.vars.values()):
5172 5173 5174 5175 5176 5177 5178
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5179

5180
    def list_vars(self):
Y
yuyang18 已提交
5181
        """
5182
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5183

J
Jiabin Yang 已提交
5184
        Returns:
5185
            iterable Tensors: The Generator will yield every Tensor in this program.
5186 5187 5188 5189

        Examples:
            .. code-block:: python

5190 5191
                import paddle
                import paddle.static as static
5192

5193 5194 5195 5196 5197
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5198 5199
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5200

5201 5202
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5203
        """
5204
        for each_block in self.blocks:
5205
            for each_var in list(each_block.vars.values()):
5206 5207
                yield each_var

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5218 5219 5220 5221
                import paddle
                import paddle.static as static

                paddle.enable_static()
5222

5223 5224
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5225
                hidden = static.nn.fc(x=data, size=10)
5226 5227
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5228 5229 5230 5231 5232 5233 5234

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5235 5236
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5247

5248
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5249
class Parameter(Variable):
5250
    """
5251
    Parameter is derived from Variable. A parameter is a persistable
5252
    Variable, and will be updated by optimizers after each iteration.
5253
    The training of a neural network is essentially the updating of
5254 5255
    its parameters.

5256
    Relative to a general Variable, a Parameter has several its own
5257 5258
    member variables:

5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5269 5270
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5271 5272
    """

5273 5274 5275 5276 5277 5278
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5279 5280 5281 5282 5283
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5284
        if len(shape) == 0:
5285 5286
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5287 5288 5289

        for each in shape:
            if each < 0:
5290 5291 5292
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5293 5294

        Variable.__init__(
5295 5296 5297 5298 5299 5300 5301
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5302 5303 5304 5305
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5306 5307
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5308
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5309

5310 5311
        self.need_clip = kwargs.get('need_clip', True)

5312 5313
        self.is_distributed = False

F
fengjiayi 已提交
5314
    def __str__(self):
5315
        return self._to_readable_code()
F
fengjiayi 已提交
5316

F
update  
fengjiayi 已提交
5317 5318 5319
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5320

F
update  
fengjiayi 已提交
5321 5322 5323 5324 5325 5326 5327 5328
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5329 5330 5331 5332 5333 5334 5335 5336 5337
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5338 5339 5340 5341 5342 5343
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5344
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5345
            for attr_name in additional_attr:
5346 5347
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5348 5349
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5350 5351 5352 5353
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5354

5355 5356
class ParamBase(core.VarBase):
    """
5357 5358 5359
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5360 5361 5362
    The training of a neural network is essentially the updating of
    its ParamBase.

5363
    Relative to a general Tensor, a ParamBase has several its own
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5376 5377
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5408 5409
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5410 5411 5412 5413 5414 5415 5416

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5417 5418
        self.need_clip = kwargs.get('need_clip', True)

5419
        self.is_distributed = False
5420
        # self.block = default_main_program().global_block()
5421

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5435
    def __str__(self):
5436
        """
5437
        Convert a ParamBase object to a readable string.
5438

5439
        Returns(str): A readable string.
5440 5441 5442 5443

        Examples:
            .. code-block:: python

5444
                import paddle
5445 5446 5447 5448 5449 5450 5451
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5452
        """
5453 5454
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5455

5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
                
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5486 5487 5488
    __repr__ = __str__


Y
Yu Yang 已提交
5489
# program is a global instance.
Y
Yu Yang 已提交
5490 5491
_main_program_ = Program()
_startup_program_ = Program()
5492

5493

5494
def default_startup_program():
Y
Yu Yang 已提交
5495
    """
Y
yuyang18 已提交
5496 5497
    Get default/global startup program.

5498 5499
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5500

5501 5502
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5503

5504 5505
    Returns:
        Program: current default startup program.
5506

5507
    Returns type: 
5508 5509 5510 5511

    Examples:
        .. code-block:: python

5512
            import paddle
5513

5514
            paddle.enable_static()
5515 5516 5517 5518
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5519
    """
Y
Yu Yang 已提交
5520
    return _startup_program_
5521

5522

5523
def default_main_program():
Y
Yu Yang 已提交
5524
    """
5525
    This API can be used to get ``default main program`` which store the 
5526
    descriptions of Ops and tensors.
T
tangwei12 已提交
5527

5528
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5529
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5530

5531 5532
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5533
    :code:`default_main_program` when the program is not specified.
5534

5535
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5536

Y
Yu Yang 已提交
5537
    Returns:
5538
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5539 5540 5541 5542

    Examples:
        ..  code-block:: python

5543
            import paddle
5544

5545
            paddle.enable_static()
5546
            # Sample Network:
5547 5548 5549
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5550

5551 5552 5553
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5554
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5555
    """
Y
Yu Yang 已提交
5556
    return _main_program_
Y
Yu Yang 已提交
5557 5558 5559 5560 5561


def switch_main_program(program):
    """
    Switch the main program to a new program.
5562

Y
Yu Yang 已提交
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5577
    Switch the startup program to a new program
Y
Yu Yang 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5590
@signature_safe_contextmanager
Y
Yu Yang 已提交
5591 5592
def program_guard(main_program, startup_program=None):
    """
5593 5594
    :api_attr: Static Graph

5595 5596 5597
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5598

G
guofei 已提交
5599
    Args:
5600 5601
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5602 5603 5604 5605
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5606
    Examples:
5607
       .. code-block:: python
T
tangwei12 已提交
5608

5609
          import paddle
Y
yuyang18 已提交
5610

5611 5612 5613 5614 5615
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5616
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5617 5618 5619

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5620

Y
Yu Yang 已提交
5621
    Examples:
5622
       .. code-block:: python
Y
yuyang18 已提交
5623

5624
          import paddle
5625

5626 5627 5628 5629 5630
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5631

Y
Yu Yang 已提交
5632
    """
5633
    from .data_feeder import check_type
5634 5635
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5636 5637
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5638
        check_type(startup_program, 'startup_program', Program,
5639
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5640
        startup_program = switch_startup_program(startup_program)
5641 5642 5643 5644 5645 5646
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5647 5648


W
Wu Yi 已提交
5649
def _get_var(name, program=None):
X
xuwei06 已提交
5650
    """
Y
yuyang18 已提交
5651
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5652

X
xuwei06 已提交
5653 5654 5655
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5656
        If None, default_global_program() will be used.
X
xuwei06 已提交
5657 5658 5659 5660 5661 5662 5663

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5664
    assert isinstance(program, Program)
X
xuwei06 已提交
5665 5666

    return program.global_block().var(name)
5667 5668


S
rename  
sneaxiy 已提交
5669
@signature_safe_contextmanager
L
lujun 已提交
5670 5671
def _dygraph_guard(tracer):
    global _dygraph_tracer_
5672
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
5673
    _dygraph_tracer_ = tracer
5674
    core._switch_tracer(tracer)
M
minqiyang 已提交
5675

5676 5677 5678
    try:
        yield
    finally:
5679 5680
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
5681 5682


S
rename  
sneaxiy 已提交
5683
@signature_safe_contextmanager
L
lujun 已提交
5684
def _dygraph_place_guard(place):
5685 5686 5687
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5688

5689 5690
    _set_dygraph_tracer_expected_place(place)

5691 5692 5693
    try:
        yield
    finally:
5694
        _global_expected_place_ = tmp_place
5695
        _set_dygraph_tracer_expected_place(tmp_place)
5696 5697 5698 5699


def load_op_library(lib_filename):
    """
5700
    :api_attr: Static Graph
T
tangwei12 已提交
5701

5702 5703 5704
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5705
    Please note, the type of custom operators can't have the same type
5706 5707 5708 5709
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.
5710 5711 5712
    
    Returns:
        list[str]: new registered custom op names.
5713 5714 5715 5716 5717 5718 5719 5720 5721

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
5722
    return OpProtoHolder.instance().update_op_proto()
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

5751
            import paddle
5752

5753 5754 5755
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
5756
            if support_gpu:
5757
                place = paddle.CUDAPlace(0)
5758 5759

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
5760 5761 5762
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
5763

5764
            with paddle.static.device_guard("cpu"):
5765
                # Ops created here will be placed on CPUPlace
5766 5767
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
5768
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
5769
                out = paddle.reshape(data1, shape=shape)
5770

5771 5772
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
5773 5774 5775
            result = exe.run(fetch_list=[out])
    """

5776 5777 5778 5779 5780
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5781 5782 5783 5784
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5785 5786
    if index:
        device = ":".join([device, index])
5787
    pre_device = switch_device(device)
5788 5789 5790 5791
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
                          core.CUDAPinnedPlace, core.CUDAPlace)):
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
    if (place == "device"):
        return core.Place()

    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
    raise ValueError(
        "paddle support CPUPlace, CUDAPlace,CUDAPinnedPlace and XPUPlace, Please check your Place Input"
    )


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret