test_inference_nlp.cc 9.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
23

24 25
#include "paddle/fluid/framework/feed_fetch_method.h"

T
tensor-tang 已提交
26 27
DEFINE_string(model_path, "", "Directory of the inference model.");
DEFINE_string(data_file, "", "File of input index data.");
T
tensor-tang 已提交
28 29
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
T
tensor-tang 已提交
30
DEFINE_int32(num_threads, 1, "Number of threads should be used");
T
tensor-tang 已提交
31
DECLARE_bool(use_mkldnn);
T
tensor-tang 已提交
32
DECLARE_int32(paddle_num_threads);
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34
inline double GetCurrentMs() {
T
tensor-tang 已提交
35 36 37 38 39
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
40 41 42 43 44 45 46 47
// This function just give dummy data for recognize_digits model.
size_t DummyData(std::vector<paddle::framework::LoDTensor>* out) {
  paddle::framework::LoDTensor input;
  SetupTensor<float>(&input, {1, 1, 28, 28}, -1.f, 1.f);
  out->emplace_back(input);
  return 1;
}

T
tensor-tang 已提交
48 49
// Load the input word index data from file and save into LodTensor.
// Return the size of words.
T
tensor-tang 已提交
50 51
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
T
tensor-tang 已提交
52 53 54 55
  if (filename.empty()) {
    return DummyData(out);
  }

T
tensor-tang 已提交
56
  size_t sz = 0;
T
tensor-tang 已提交
57 58
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
59 60
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
61 62 63
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
64 65 66
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
67
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
68
      // Synced with NLP guys, they will ignore input larger then 1024
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
80
  }
T
tensor-tang 已提交
81 82 83
  return sz;
}

T
tensor-tang 已提交
84 85
// Split input data samples into small pieces jobs as balanced as possible,
// according to the number of threads.
T
tensor-tang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

T
tensor-tang 已提交
103
void ThreadRunInfer(
T
tensor-tang 已提交
104
    const int tid, paddle::framework::Scope* scope,
T
tensor-tang 已提交
105
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
T
tensor-tang 已提交
106
  // maybe framework:ProgramDesc is not thread-safe
T
tensor-tang 已提交
107 108
  paddle::platform::CPUPlace place;
  paddle::framework::Executor executor(place);
T
tensor-tang 已提交
109
  auto& sub_scope = scope->NewScope();
T
tensor-tang 已提交
110 111
  auto inference_program =
      paddle::inference::Load(&executor, scope, FLAGS_model_path);
T
tensor-tang 已提交
112

T
tensor-tang 已提交
113 114
  auto ctx = executor.Prepare(*inference_program, /*block_id*/ 0);
  executor.CreateVariables(*inference_program, &sub_scope, /*block_id*/ 0);
T
tensor-tang 已提交
115 116

  const std::vector<std::string>& feed_target_names =
T
tensor-tang 已提交
117
      inference_program->GetFeedTargetNames();
T
tensor-tang 已提交
118
  const std::vector<std::string>& fetch_target_names =
T
tensor-tang 已提交
119
      inference_program->GetFetchTargetNames();
T
tensor-tang 已提交
120 121 122 123 124 125 126 127 128

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

129 130 131 132 133 134 135 136 137 138
  // map the data of feed_targets to feed_holder
  for (auto* op : inference_program->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      paddle::framework::SetFeedVariable(scope, *feed_targets[feed_target_name],
                                         "feed", idx);
    }
  }

T
tensor-tang 已提交
139
  auto& inputs = jobs[tid];
T
tensor-tang 已提交
140
  auto start_ms = GetCurrentMs();
T
tensor-tang 已提交
141 142
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
143 144
    executor.RunPreparedContext(ctx.get(), &sub_scope,
                                false /*create_local_scope*/);
T
tensor-tang 已提交
145
  }
T
tensor-tang 已提交
146
  auto stop_ms = GetCurrentMs();
147 148 149 150 151 152 153 154 155 156 157

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : inference_program->Block(0).AllOps()) {
    if (op->Type() == "fetch") {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      *fetch_targets[fetch_target_name] =
          paddle::framework::GetFetchVariable(*scope, "fetch", idx);
    }
  }

T
tensor-tang 已提交
158
  scope->DeleteScope(&sub_scope);
T
tensor-tang 已提交
159 160 161 162 163
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

T
tensor-tang 已提交
164
TEST(inference, nlp) {
T
tensor-tang 已提交
165 166
  if (FLAGS_model_path.empty()) {
    LOG(FATAL) << "Usage: ./example --model_path=path/to/your/model";
T
tensor-tang 已提交
167
  }
T
tensor-tang 已提交
168 169
  if (FLAGS_data_file.empty()) {
    LOG(WARNING) << "No data file provided, will use dummy data!"
T
tensor-tang 已提交
170
                 << "Note: if you use nlp model, please provide data file.";
T
tensor-tang 已提交
171
  }
T
tensor-tang 已提交
172 173
  LOG(INFO) << "Model Path: " << FLAGS_model_path;
  LOG(INFO) << "Data File: " << FLAGS_data_file;
T
tensor-tang 已提交
174

T
tensor-tang 已提交
175
  std::vector<paddle::framework::LoDTensor> datasets;
T
tensor-tang 已提交
176
  size_t num_total_words = LoadData(&datasets, FLAGS_data_file);
T
tensor-tang 已提交
177
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
T
tensor-tang 已提交
178 179 180
  LOG(INFO) << "Total number of words: " << num_total_words;

  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
T
tensor-tang 已提交
181 182
  std::unique_ptr<paddle::framework::Scope> scope(
      new paddle::framework::Scope());
T
tensor-tang 已提交
183

T
tensor-tang 已提交
184
  paddle::platform::SetNumThreads(FLAGS_paddle_num_threads);
T
tensor-tang 已提交
185 186

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
187
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
188
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
T
tensor-tang 已提交
189
    SplitData(datasets, &jobs, FLAGS_num_threads);
T
tensor-tang 已提交
190
    std::vector<std::unique_ptr<std::thread>> threads;
191
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
192
    for (int i = 0; i < FLAGS_num_threads; ++i) {
T
tensor-tang 已提交
193
      threads.emplace_back(
T
tensor-tang 已提交
194
          new std::thread(ThreadRunInfer, i, scope.get(), std::ref(jobs)));
T
tensor-tang 已提交
195 196 197 198
    }
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
199
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
200
  } else {
T
tensor-tang 已提交
201
    // 1. Define place, executor, scope
T
tensor-tang 已提交
202 203
    paddle::platform::CPUPlace place;
    paddle::framework::Executor executor(place);
T
tensor-tang 已提交
204 205 206 207 208

    // 2. Initialize the inference_program and load parameters
    std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
    inference_program = InitProgram(&executor, scope.get(), FLAGS_model_path,
                                    /*model combined*/ false);
T
tensor-tang 已提交
209
    // always prepare context
T
tensor-tang 已提交
210 211
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);
T
tensor-tang 已提交
212 213 214
    if (FLAGS_prepare_vars) {
      executor.CreateVariables(*inference_program, scope.get(), 0);
    }
T
tensor-tang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228
    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

T
tensor-tang 已提交
229 230
    // feed data and run
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
231 232
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
T
tensor-tang 已提交
233
      executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets,
T
tensor-tang 已提交
234 235
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
236
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
237 238 239
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
240
  }
T
tensor-tang 已提交
241 242
  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
T
tensor-tang 已提交
243
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
T
tensor-tang 已提交
244
}