test_inference_nlp.cc 7.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
T
tensor-tang 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLML
#include <mkl_service.h>
#include <omp.h>
#endif
T
tensor-tang 已提交
26

T
tensor-tang 已提交
27 28
DEFINE_string(modelpath, "", "Directory of the inference model.");
DEFINE_string(datafile, "", "File of input index data.");
T
tensor-tang 已提交
29 30 31
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
T
tensor-tang 已提交
32 33
DEFINE_int32(num_threads, 1, "Number of threads should be used");

T
tensor-tang 已提交
34
inline double GetCurrentMs() {
T
tensor-tang 已提交
35 36 37 38 39
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
40
// return size of total words
T
tensor-tang 已提交
41 42
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
T
tensor-tang 已提交
43
  size_t sz = 0;
T
tensor-tang 已提交
44 45
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
46 47
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
48 49 50
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
51 52 53
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
54
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
55 56 57 58 59 60 61 62 63 64 65
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
66
  }
T
tensor-tang 已提交
67 68 69
  return sz;
}

T
tensor-tang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

T
tensor-tang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
void ThreadRunInfer(
    const int tid, paddle::framework::Executor* executor,
    paddle::framework::Scope* scope,
    const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program,
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
  auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>(
      new paddle::framework::ProgramDesc(*inference_program));
  std::string feed_holder_name = "feed_" + paddle::string::to_string(tid);
  std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid);
  copy_program->SetFeedHolderName(feed_holder_name);
  copy_program->SetFetchHolderName(fetch_holder_name);

  const std::vector<std::string>& feed_target_names =
      copy_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      copy_program->GetFetchTargetNames();

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  auto& inputs = jobs[tid];
T
tensor-tang 已提交
113
  auto start_ms = GetCurrentMs();
T
tensor-tang 已提交
114 115 116 117 118
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
    executor->Run(*copy_program, scope, &feed_targets, &fetch_targets, true,
                  true, feed_holder_name, fetch_holder_name);
  }
T
tensor-tang 已提交
119
  auto stop_ms = GetCurrentMs();
T
tensor-tang 已提交
120 121 122 123 124
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

T
tensor-tang 已提交
125
TEST(inference, nlp) {
T
tensor-tang 已提交
126 127 128
  if (FLAGS_modelpath.empty() || FLAGS_datafile.empty()) {
    LOG(FATAL) << "Usage: ./example --modelpath=path/to/your/model "
               << "--datafile=path/to/your/data";
T
tensor-tang 已提交
129
  }
T
tensor-tang 已提交
130 131
  LOG(INFO) << "Model Path: " << FLAGS_modelpath;
  LOG(INFO) << "Data File: " << FLAGS_datafile;
T
tensor-tang 已提交
132

T
tensor-tang 已提交
133
  std::vector<paddle::framework::LoDTensor> datasets;
T
tensor-tang 已提交
134 135
  size_t num_total_words = LoadData(&datasets, FLAGS_datafile);
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
T
tensor-tang 已提交
136 137
  LOG(INFO) << "Total number of words: " << num_total_words;

T
tensor-tang 已提交
138
  const bool model_combined = false;
T
tensor-tang 已提交
139 140 141 142 143 144 145 146
  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
  // 1. Define place, executor, scope
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
T
tensor-tang 已提交
147 148
  inference_program =
      InitProgram(&executor, scope, FLAGS_modelpath, model_combined);
T
tensor-tang 已提交
149 150
  if (FLAGS_use_mkldnn) {
    EnableMKLDNN(inference_program);
T
tensor-tang 已提交
151
  }
T
tensor-tang 已提交
152

T
tensor-tang 已提交
153
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
154
  // only use 1 thread number per std::thread
T
tensor-tang 已提交
155 156 157 158 159 160
  omp_set_dynamic(0);
  omp_set_num_threads(1);
  mkl_set_num_threads(1);
#endif

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
161
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
162
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
T
tensor-tang 已提交
163
    SplitData(datasets, &jobs, FLAGS_num_threads);
T
tensor-tang 已提交
164 165 166 167 168 169
    std::vector<std::unique_ptr<std::thread>> threads;
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads.emplace_back(new std::thread(ThreadRunInfer, i, &executor, scope,
                                           std::ref(inference_program),
                                           std::ref(jobs)));
    }
T
tensor-tang 已提交
170
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
171 172 173
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
174
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
175 176 177 178
  } else {
    if (FLAGS_prepare_vars) {
      executor.CreateVariables(*inference_program, scope, 0);
    }
T
tensor-tang 已提交
179
    // always prepare context
T
tensor-tang 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);

    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

T
tensor-tang 已提交
197 198
    // feed data and run
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
199 200 201 202 203
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
204
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
205 206 207
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
208
  }
T
tensor-tang 已提交
209 210 211

  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
T
tensor-tang 已提交
212
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
T
tensor-tang 已提交
213
  delete scope;
T
tensor-tang 已提交
214
}