test_inference_nlp.cc 8.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DEFINE_string(model_path, "", "Directory of the inference model.");
DEFINE_string(data_file, "", "File of input index data.");
T
tensor-tang 已提交
26 27
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
T
tensor-tang 已提交
28
DEFINE_int32(num_threads, 1, "Number of threads should be used");
T
tensor-tang 已提交
29
DECLARE_bool(use_mkldnn);
T
tensor-tang 已提交
30
DECLARE_int32(paddle_num_threads);
T
tensor-tang 已提交
31

T
tensor-tang 已提交
32
inline double GetCurrentMs() {
T
tensor-tang 已提交
33 34 35 36 37
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
38 39 40 41 42 43 44 45
// This function just give dummy data for recognize_digits model.
size_t DummyData(std::vector<paddle::framework::LoDTensor>* out) {
  paddle::framework::LoDTensor input;
  SetupTensor<float>(&input, {1, 1, 28, 28}, -1.f, 1.f);
  out->emplace_back(input);
  return 1;
}

T
tensor-tang 已提交
46 47
// Load the input word index data from file and save into LodTensor.
// Return the size of words.
T
tensor-tang 已提交
48 49
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
T
tensor-tang 已提交
50 51 52 53
  if (filename.empty()) {
    return DummyData(out);
  }

T
tensor-tang 已提交
54
  size_t sz = 0;
T
tensor-tang 已提交
55 56
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
57 58
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
59 60 61
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
62 63 64
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
65
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
66
      // Synced with NLP guys, they will ignore input larger then 1024
T
tensor-tang 已提交
67 68 69 70 71 72 73 74 75 76 77
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
78
  }
T
tensor-tang 已提交
79 80 81
  return sz;
}

T
tensor-tang 已提交
82 83
// Split input data samples into small pieces jobs as balanced as possible,
// according to the number of threads.
T
tensor-tang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

T
tensor-tang 已提交
101
void ThreadRunInfer(
T
tensor-tang 已提交
102
    const int tid, paddle::framework::Scope* scope,
T
tensor-tang 已提交
103
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
T
tensor-tang 已提交
104
  // maybe framework:ProgramDesc is not thread-safe
T
tensor-tang 已提交
105 106
  paddle::platform::CPUPlace place;
  paddle::framework::Executor executor(place);
T
tensor-tang 已提交
107
  auto& sub_scope = scope->NewScope();
T
tensor-tang 已提交
108 109
  auto inference_program =
      paddle::inference::Load(&executor, scope, FLAGS_model_path);
T
tensor-tang 已提交
110

T
tensor-tang 已提交
111 112
  auto ctx = executor.Prepare(*inference_program, /*block_id*/ 0);
  executor.CreateVariables(*inference_program, &sub_scope, /*block_id*/ 0);
T
tensor-tang 已提交
113 114

  const std::vector<std::string>& feed_target_names =
T
tensor-tang 已提交
115
      inference_program->GetFeedTargetNames();
T
tensor-tang 已提交
116
  const std::vector<std::string>& fetch_target_names =
T
tensor-tang 已提交
117
      inference_program->GetFetchTargetNames();
T
tensor-tang 已提交
118 119 120 121 122 123 124 125 126 127

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  auto& inputs = jobs[tid];
T
tensor-tang 已提交
128
  auto start_ms = GetCurrentMs();
T
tensor-tang 已提交
129 130
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
T
tensor-tang 已提交
131 132
    executor.RunPreparedContext(ctx.get(), &sub_scope, &feed_targets,
                                &fetch_targets, false /*create_local_scope*/);
T
tensor-tang 已提交
133
  }
T
tensor-tang 已提交
134
  auto stop_ms = GetCurrentMs();
T
tensor-tang 已提交
135
  scope->DeleteScope(&sub_scope);
T
tensor-tang 已提交
136 137 138 139 140
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

T
tensor-tang 已提交
141
TEST(inference, nlp) {
T
tensor-tang 已提交
142 143
  if (FLAGS_model_path.empty()) {
    LOG(FATAL) << "Usage: ./example --model_path=path/to/your/model";
T
tensor-tang 已提交
144
  }
T
tensor-tang 已提交
145 146
  if (FLAGS_data_file.empty()) {
    LOG(WARNING) << "No data file provided, will use dummy data!"
T
tensor-tang 已提交
147
                 << "Note: if you use nlp model, please provide data file.";
T
tensor-tang 已提交
148
  }
T
tensor-tang 已提交
149 150
  LOG(INFO) << "Model Path: " << FLAGS_model_path;
  LOG(INFO) << "Data File: " << FLAGS_data_file;
T
tensor-tang 已提交
151

T
tensor-tang 已提交
152
  std::vector<paddle::framework::LoDTensor> datasets;
T
tensor-tang 已提交
153
  size_t num_total_words = LoadData(&datasets, FLAGS_data_file);
T
tensor-tang 已提交
154
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
T
tensor-tang 已提交
155 156 157
  LOG(INFO) << "Total number of words: " << num_total_words;

  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
T
tensor-tang 已提交
158 159
  std::unique_ptr<paddle::framework::Scope> scope(
      new paddle::framework::Scope());
T
tensor-tang 已提交
160

T
tensor-tang 已提交
161
  paddle::platform::SetNumThreads(FLAGS_paddle_num_threads);
T
tensor-tang 已提交
162 163

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
164
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
165
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
T
tensor-tang 已提交
166
    SplitData(datasets, &jobs, FLAGS_num_threads);
T
tensor-tang 已提交
167
    std::vector<std::unique_ptr<std::thread>> threads;
168
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
169
    for (int i = 0; i < FLAGS_num_threads; ++i) {
T
tensor-tang 已提交
170
      threads.emplace_back(
T
tensor-tang 已提交
171
          new std::thread(ThreadRunInfer, i, scope.get(), std::ref(jobs)));
T
tensor-tang 已提交
172 173 174 175
    }
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
176
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
177
  } else {
T
tensor-tang 已提交
178
    // 1. Define place, executor, scope
T
tensor-tang 已提交
179 180
    paddle::platform::CPUPlace place;
    paddle::framework::Executor executor(place);
T
tensor-tang 已提交
181 182 183 184 185

    // 2. Initialize the inference_program and load parameters
    std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
    inference_program = InitProgram(&executor, scope.get(), FLAGS_model_path,
                                    /*model combined*/ false);
T
tensor-tang 已提交
186
    // always prepare context
T
tensor-tang 已提交
187 188
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);
T
tensor-tang 已提交
189 190 191
    if (FLAGS_prepare_vars) {
      executor.CreateVariables(*inference_program, scope.get(), 0);
    }
T
tensor-tang 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205
    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

T
tensor-tang 已提交
206 207
    // feed data and run
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
208 209
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
T
tensor-tang 已提交
210
      executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets,
T
tensor-tang 已提交
211 212
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
213
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
214 215 216
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
217
  }
T
tensor-tang 已提交
218 219
  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
T
tensor-tang 已提交
220
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
T
tensor-tang 已提交
221
}