test_inference_nlp.cc 8.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
T
tensor-tang 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLML
#include <mkl_service.h>
#include <omp.h>
#endif
T
tensor-tang 已提交
26

T
tensor-tang 已提交
27 28
DEFINE_string(modelpath, "", "Directory of the inference model.");
DEFINE_string(datafile, "", "File of input index data.");
T
tensor-tang 已提交
29 30 31
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
T
tensor-tang 已提交
32 33
DEFINE_int32(num_threads, 1, "Number of threads should be used");

T
tensor-tang 已提交
34
inline double GetCurrentMs() {
T
tensor-tang 已提交
35 36 37 38 39
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
40 41
// Load the input word index data from file and save into LodTensor.
// Return the size of words.
T
tensor-tang 已提交
42 43
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
T
tensor-tang 已提交
44
  size_t sz = 0;
T
tensor-tang 已提交
45 46
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
47 48
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
49 50 51
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
52 53 54
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
55
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
67
  }
T
tensor-tang 已提交
68 69 70
  return sz;
}

T
tensor-tang 已提交
71 72
// Split input data samples into small pieces jobs as balanced as possible,
// according to the number of threads.
T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

T
tensor-tang 已提交
90 91 92 93 94 95 96
void ThreadRunInfer(
    const int tid, paddle::framework::Executor* executor,
    paddle::framework::Scope* scope,
    const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program,
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
  auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>(
      new paddle::framework::ProgramDesc(*inference_program));
T
tensor-tang 已提交
97 98
  auto& sub_scope = scope->NewScope();

T
tensor-tang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  std::string feed_holder_name = "feed_" + paddle::string::to_string(tid);
  std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid);
  copy_program->SetFeedHolderName(feed_holder_name);
  copy_program->SetFetchHolderName(fetch_holder_name);

  const std::vector<std::string>& feed_target_names =
      copy_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      copy_program->GetFetchTargetNames();

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  auto& inputs = jobs[tid];
T
tensor-tang 已提交
118
  auto start_ms = GetCurrentMs();
T
tensor-tang 已提交
119 120
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
T
tensor-tang 已提交
121
    executor->Run(*copy_program, &sub_scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
122 123
                  true /*create_local_scope*/, true /*create_vars*/,
                  feed_holder_name, fetch_holder_name);
T
tensor-tang 已提交
124
  }
T
tensor-tang 已提交
125
  auto stop_ms = GetCurrentMs();
T
tensor-tang 已提交
126
  scope->DeleteScope(&sub_scope);
T
tensor-tang 已提交
127 128 129 130 131
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

T
tensor-tang 已提交
132
TEST(inference, nlp) {
T
tensor-tang 已提交
133 134 135
  if (FLAGS_modelpath.empty() || FLAGS_datafile.empty()) {
    LOG(FATAL) << "Usage: ./example --modelpath=path/to/your/model "
               << "--datafile=path/to/your/data";
T
tensor-tang 已提交
136
  }
T
tensor-tang 已提交
137 138
  LOG(INFO) << "Model Path: " << FLAGS_modelpath;
  LOG(INFO) << "Data File: " << FLAGS_datafile;
T
tensor-tang 已提交
139

T
tensor-tang 已提交
140
  std::vector<paddle::framework::LoDTensor> datasets;
T
tensor-tang 已提交
141 142
  size_t num_total_words = LoadData(&datasets, FLAGS_datafile);
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
T
tensor-tang 已提交
143 144
  LOG(INFO) << "Total number of words: " << num_total_words;

T
tensor-tang 已提交
145
  const bool model_combined = false;
T
tensor-tang 已提交
146 147 148 149
  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
  // 1. Define place, executor, scope
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
T
tensor-tang 已提交
150 151
  std::unique_ptr<paddle::framework::Scope> scope(
      new paddle::framework::Scope());
T
tensor-tang 已提交
152 153 154

  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
T
tensor-tang 已提交
155
  inference_program =
T
tensor-tang 已提交
156
      InitProgram(&executor, scope.get(), FLAGS_modelpath, model_combined);
T
tensor-tang 已提交
157 158
  if (FLAGS_use_mkldnn) {
    EnableMKLDNN(inference_program);
T
tensor-tang 已提交
159
  }
T
tensor-tang 已提交
160

T
tensor-tang 已提交
161
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
162
  // only use 1 thread number per std::thread
T
tensor-tang 已提交
163 164 165 166 167 168
  omp_set_dynamic(0);
  omp_set_num_threads(1);
  mkl_set_num_threads(1);
#endif

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
169
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
170
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
T
tensor-tang 已提交
171
    SplitData(datasets, &jobs, FLAGS_num_threads);
T
tensor-tang 已提交
172 173
    std::vector<std::unique_ptr<std::thread>> threads;
    for (int i = 0; i < FLAGS_num_threads; ++i) {
T
tensor-tang 已提交
174 175 176
      threads.emplace_back(
          new std::thread(ThreadRunInfer, i, &executor, scope.get(),
                          std::ref(inference_program), std::ref(jobs)));
T
tensor-tang 已提交
177
    }
T
tensor-tang 已提交
178
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
179 180 181
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
182
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
183 184
  } else {
    if (FLAGS_prepare_vars) {
T
tensor-tang 已提交
185
      executor.CreateVariables(*inference_program, scope.get(), 0);
T
tensor-tang 已提交
186
    }
T
tensor-tang 已提交
187
    // always prepare context
T
tensor-tang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);

    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

T
tensor-tang 已提交
205 206
    // feed data and run
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
207 208
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
T
tensor-tang 已提交
209
      executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets,
T
tensor-tang 已提交
210 211
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
212
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
213 214 215
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
216
  }
T
tensor-tang 已提交
217 218
  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
T
tensor-tang 已提交
219
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
T
tensor-tang 已提交
220
}