test_inference_nlp.cc 8.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
22
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
23 24 25
#ifdef PADDLE_WITH_MKLML
#include <omp.h>
#endif
T
tensor-tang 已提交
26

T
tensor-tang 已提交
27 28
DEFINE_string(model_path, "", "Directory of the inference model.");
DEFINE_string(data_file, "", "File of input index data.");
T
tensor-tang 已提交
29 30
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
T
tensor-tang 已提交
31
DEFINE_int32(num_threads, 1, "Number of threads should be used");
T
tensor-tang 已提交
32
DECLARE_bool(use_mkldnn);
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34
inline double GetCurrentMs() {
T
tensor-tang 已提交
35 36 37 38 39
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
40 41 42 43 44 45 46 47
// This function just give dummy data for recognize_digits model.
size_t DummyData(std::vector<paddle::framework::LoDTensor>* out) {
  paddle::framework::LoDTensor input;
  SetupTensor<float>(&input, {1, 1, 28, 28}, -1.f, 1.f);
  out->emplace_back(input);
  return 1;
}

T
tensor-tang 已提交
48 49
// Load the input word index data from file and save into LodTensor.
// Return the size of words.
T
tensor-tang 已提交
50 51
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
T
tensor-tang 已提交
52 53 54 55
  if (filename.empty()) {
    return DummyData(out);
  }

T
tensor-tang 已提交
56
  size_t sz = 0;
T
tensor-tang 已提交
57 58
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
59 60
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
61 62 63
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
64 65 66
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
67
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
68
      // Synced with NLP guys, they will ignore input larger then 1024
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
80
  }
T
tensor-tang 已提交
81 82 83
  return sz;
}

T
tensor-tang 已提交
84 85
// Split input data samples into small pieces jobs as balanced as possible,
// according to the number of threads.
T
tensor-tang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

T
tensor-tang 已提交
103
void ThreadRunInfer(
T
tensor-tang 已提交
104
    const int tid, paddle::framework::Scope* scope,
T
tensor-tang 已提交
105
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
T
tensor-tang 已提交
106
  // maybe framework:ProgramDesc is not thread-safe
T
tensor-tang 已提交
107 108
  paddle::platform::CPUPlace place;
  paddle::framework::Executor executor(place);
T
tensor-tang 已提交
109
  auto& sub_scope = scope->NewScope();
T
tensor-tang 已提交
110 111
  auto inference_program =
      paddle::inference::Load(&executor, scope, FLAGS_model_path);
T
tensor-tang 已提交
112

T
tensor-tang 已提交
113 114
  auto ctx = executor.Prepare(*inference_program, /*block_id*/ 0);
  executor.CreateVariables(*inference_program, &sub_scope, /*block_id*/ 0);
T
tensor-tang 已提交
115 116

  const std::vector<std::string>& feed_target_names =
T
tensor-tang 已提交
117
      inference_program->GetFeedTargetNames();
T
tensor-tang 已提交
118
  const std::vector<std::string>& fetch_target_names =
T
tensor-tang 已提交
119
      inference_program->GetFetchTargetNames();
T
tensor-tang 已提交
120 121 122 123 124 125 126 127 128 129

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  auto& inputs = jobs[tid];
T
tensor-tang 已提交
130
  auto start_ms = GetCurrentMs();
T
tensor-tang 已提交
131 132
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
T
tensor-tang 已提交
133 134
    executor.RunPreparedContext(ctx.get(), &sub_scope, &feed_targets,
                                &fetch_targets, false /*create_local_scope*/);
T
tensor-tang 已提交
135
  }
T
tensor-tang 已提交
136
  auto stop_ms = GetCurrentMs();
T
tensor-tang 已提交
137
  scope->DeleteScope(&sub_scope);
T
tensor-tang 已提交
138 139 140 141 142
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

T
tensor-tang 已提交
143
TEST(inference, nlp) {
T
tensor-tang 已提交
144 145
  if (FLAGS_model_path.empty()) {
    LOG(FATAL) << "Usage: ./example --model_path=path/to/your/model";
T
tensor-tang 已提交
146
  }
T
tensor-tang 已提交
147 148
  if (FLAGS_data_file.empty()) {
    LOG(WARNING) << "No data file provided, will use dummy data!"
T
tensor-tang 已提交
149
                 << "Note: if you use nlp model, please provide data file.";
T
tensor-tang 已提交
150
  }
T
tensor-tang 已提交
151 152
  LOG(INFO) << "Model Path: " << FLAGS_model_path;
  LOG(INFO) << "Data File: " << FLAGS_data_file;
T
tensor-tang 已提交
153

T
tensor-tang 已提交
154
  std::vector<paddle::framework::LoDTensor> datasets;
T
tensor-tang 已提交
155
  size_t num_total_words = LoadData(&datasets, FLAGS_data_file);
T
tensor-tang 已提交
156
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
T
tensor-tang 已提交
157 158 159
  LOG(INFO) << "Total number of words: " << num_total_words;

  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
T
tensor-tang 已提交
160 161
  std::unique_ptr<paddle::framework::Scope> scope(
      new paddle::framework::Scope());
T
tensor-tang 已提交
162

T
tensor-tang 已提交
163
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
164
  // only use 1 thread number per std::thread
T
tensor-tang 已提交
165 166
  omp_set_dynamic(0);
  omp_set_num_threads(1);
167
  paddle::operators::math::SetNumThreads(1);
T
tensor-tang 已提交
168 169 170
#endif

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
171
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
172
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
T
tensor-tang 已提交
173
    SplitData(datasets, &jobs, FLAGS_num_threads);
T
tensor-tang 已提交
174
    std::vector<std::unique_ptr<std::thread>> threads;
175
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
176
    for (int i = 0; i < FLAGS_num_threads; ++i) {
T
tensor-tang 已提交
177
      threads.emplace_back(
T
tensor-tang 已提交
178
          new std::thread(ThreadRunInfer, i, scope.get(), std::ref(jobs)));
T
tensor-tang 已提交
179 180 181 182
    }
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
183
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
184
  } else {
T
tensor-tang 已提交
185
    // 1. Define place, executor, scope
T
tensor-tang 已提交
186 187
    paddle::platform::CPUPlace place;
    paddle::framework::Executor executor(place);
T
tensor-tang 已提交
188 189 190 191 192

    // 2. Initialize the inference_program and load parameters
    std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
    inference_program = InitProgram(&executor, scope.get(), FLAGS_model_path,
                                    /*model combined*/ false);
T
tensor-tang 已提交
193
    // always prepare context
T
tensor-tang 已提交
194 195
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);
T
tensor-tang 已提交
196 197 198
    if (FLAGS_prepare_vars) {
      executor.CreateVariables(*inference_program, scope.get(), 0);
    }
T
tensor-tang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212
    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

T
tensor-tang 已提交
213 214
    // feed data and run
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
215 216
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
T
tensor-tang 已提交
217
      executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets,
T
tensor-tang 已提交
218 219
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
220
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
221 222 223
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
224
  }
T
tensor-tang 已提交
225 226
  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
T
tensor-tang 已提交
227
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
T
tensor-tang 已提交
228
}