提交 68409533 编写于 作者: T tensor-tang

refine nlp multi-threads

上级 b74362f9
......@@ -101,23 +101,22 @@ void SplitData(
}
void ThreadRunInfer(
const int tid, paddle::framework::Executor* executor,
paddle::framework::Scope* scope,
const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program,
const int tid, paddle::framework::Scope* scope,
const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>(
new paddle::framework::ProgramDesc(*inference_program));
// maybe framework:ProgramDesc is not thread-safe
auto& sub_scope = scope->NewScope();
auto place = paddle::platform::CPUPlace();
auto executor = paddle::framework::Executor(place);
auto inference_program =
paddle::inference::Load(&executor, scope, FLAGS_model_path);
std::string feed_holder_name = "feed_" + paddle::string::to_string(tid);
std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid);
copy_program->SetFeedHolderName(feed_holder_name);
copy_program->SetFetchHolderName(fetch_holder_name);
auto ctx = executor.Prepare(*inference_program, /*block_id*/ 0);
executor.CreateVariables(*inference_program, &sub_scope, /*block_id*/ 0);
const std::vector<std::string>& feed_target_names =
copy_program->GetFeedTargetNames();
inference_program->GetFeedTargetNames();
const std::vector<std::string>& fetch_target_names =
copy_program->GetFetchTargetNames();
inference_program->GetFetchTargetNames();
PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
......@@ -131,9 +130,8 @@ void ThreadRunInfer(
auto start_ms = GetCurrentMs();
for (size_t i = 0; i < inputs.size(); ++i) {
feed_targets[feed_target_names[0]] = inputs[i];
executor->Run(*copy_program, &sub_scope, &feed_targets, &fetch_targets,
true /*create_local_scope*/, true /*create_vars*/,
feed_holder_name, fetch_holder_name);
executor.RunPreparedContext(ctx.get(), &sub_scope, &feed_targets,
&fetch_targets, false /*create_local_scope*/);
}
auto stop_ms = GetCurrentMs();
scope->DeleteScope(&sub_scope);
......@@ -158,22 +156,10 @@ TEST(inference, nlp) {
LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
LOG(INFO) << "Total number of words: " << num_total_words;
const bool model_combined = false;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// 1. Define place, executor, scope
auto place = paddle::platform::CPUPlace();
auto executor = paddle::framework::Executor(place);
std::unique_ptr<paddle::framework::Scope> scope(
new paddle::framework::Scope());
// 2. Initialize the inference_program and load parameters
std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
inference_program =
InitProgram(&executor, scope.get(), FLAGS_model_path, model_combined);
if (FLAGS_use_mkldnn) {
EnableMKLDNN(inference_program);
}
#ifdef PADDLE_WITH_MKLML
// only use 1 thread number per std::thread
omp_set_dynamic(0);
......@@ -189,21 +175,30 @@ TEST(inference, nlp) {
start_ms = GetCurrentMs();
for (int i = 0; i < FLAGS_num_threads; ++i) {
threads.emplace_back(
new std::thread(ThreadRunInfer, i, &executor, scope.get(),
std::ref(inference_program), std::ref(jobs)));
new std::thread(ThreadRunInfer, i, scope.get(), std::ref(jobs)));
}
for (int i = 0; i < FLAGS_num_threads; ++i) {
threads[i]->join();
}
stop_ms = GetCurrentMs();
} else {
if (FLAGS_prepare_vars) {
executor.CreateVariables(*inference_program, scope.get(), 0);
// 1. Define place, executor, scope
auto place = paddle::platform::CPUPlace();
auto executor = paddle::framework::Executor(place);
// 2. Initialize the inference_program and load parameters
std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
inference_program = InitProgram(&executor, scope.get(), FLAGS_model_path,
/*model combined*/ false);
if (FLAGS_use_mkldnn) {
EnableMKLDNN(inference_program);
}
// always prepare context
std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
ctx = executor.Prepare(*inference_program, 0);
if (FLAGS_prepare_vars) {
executor.CreateVariables(*inference_program, scope.get(), 0);
}
// preapre fetch
const std::vector<std::string>& fetch_target_names =
inference_program->GetFetchTargetNames();
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册