pybind.cc 35.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26 27 28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
30
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
33
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
35
#include "paddle/fluid/framework/version.h"
D
dzhwinter 已提交
36
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
40 41 42 43
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
44 45
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
46
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
48

49
#include "paddle/fluid/string/to_string.h"
50

D
Dong Zhihong 已提交
51
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
52 53 54
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
55 56
#endif

M
minqiyang 已提交
57 58
#include "pybind11/stl.h"

Q
Qiao Longfei 已提交
59 60 61
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

62
namespace paddle {
63
namespace pybind {
64
bool IsCompiledWithCUDA() {
65
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
66 67 68 69 70 71
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
72
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
73
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
74 75 76 77 78 79
  return true;
#else
  return false;
#endif
}

80 81
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
82

83 84 85 86
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

87
  BindException(&m);
Y
Yu Yang 已提交
88

89 90 91
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
92
      .def("_get_dims",
93
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
94
      .def("_set_dims",
Q
qijun 已提交
95
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
96
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
97
           })
Y
yuyang18 已提交
98
      .def("_set_layout",
D
dzhwinter 已提交
99 100 101
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
102
      .def("_alloc_float",
D
dzhwinter 已提交
103
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
105
           })
Y
yuyang18 已提交
106
      .def("_alloc_float",
Y
Yu Yang 已提交
107
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
108
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
109
           })
Y
yuyang18 已提交
110
      .def("_alloc_int",
Y
Yu Yang 已提交
111
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
112
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
113
           })
Y
yuyang18 已提交
114
      .def("_alloc_int",
D
dzhwinter 已提交
115
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
116
             self.mutable_data<int>(place);
Q
qijun 已提交
117
           })
Y
yuyang18 已提交
118
      .def("_alloc_int",
C
chengduoZH 已提交
119 120 121
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
122
      .def("_alloc_float",
C
chengduoZH 已提交
123 124 125
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
126 127
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
128
      .def("set", PyCPUTensorSetFromArray<double>)
129
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
130
      .def("set", PyCPUTensorSetFromArray<bool>)
131
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
132
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
133
      .def("set", PyCPUTensorSetFromArray<int8_t>)
134
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
135 136
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
137
      .def("set", PyCUDATensorSetFromArray<double>)
138
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
139
      .def("set", PyCUDATensorSetFromArray<bool>)
140
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
141
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
142
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
143 144 145 146 147 148
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
149
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
150
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
151
#endif
152
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
153 154 155 156 157
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
158

159 160 161 162 163 164 165 166 167 168 169 170 171
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
Xin Pan 已提交
172
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
173
     It means the total number of sequence element. In X, each element has 2
X
Xin Pan 已提交
174
     columns, hence [5, 2].
175 176

      x.lod  = [[2, 3]]
X
Xin Pan 已提交
177 178
      x.data = [[1, 2], [3, 4],  // seq 1
                [5, 6], [7, 8], [9, 10]]  // seq 2
X
Xin Pan 已提交
179
      x.shape = [5, 2]
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
203 204
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
205 206 207 208 209 210 211 212 213 214 215 216 217 218
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
219
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
220 221 222 223 224
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
225
      .def("set_lod",
226
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
227
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
228
             LoD new_lod;
229 230
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
231 232
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
233
             self.set_lod(new_lod);
D
dangqingqing 已提交
234
           })
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
260
      // Set above comments of set_lod.
261 262 263 264 265 266 267 268 269 270 271 272 273
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
274 275
      });

Q
qijun 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
289 290 291 292 293 294 295 296 297
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
298
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
299
      .def("rows", [](SelectedRows &self) {
300 301 302 303 304
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
305
      });
Q
qijun 已提交
306

307
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
308 309 310

All parameter, weight, gradient are variables in Paddle.
)DOC")
311
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
312
      .def("set_int",
313 314
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
315 316 317 318 319 320 321
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
322
      .def("get_tensor",
323 324
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
325 326
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
327 328 329
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
330 331 332 333 334
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
335 336 337
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
338 339 340 341 342 343 344
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
345 346 347 348 349
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
350
           py::return_value_policy::reference);
351

Y
Refine  
Yu Yang 已提交
352
  py::class_<framework::ReaderHolder>(m, "Reader", "")
353
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
354

S
sneaxiy 已提交
355 356 357 358
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
359 360
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
361
      .def("push",
S
sneaxiy 已提交
362
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
363
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
364
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
365
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
366
           })
S
sneaxiy 已提交
367 368 369 370
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
371

S
sneaxiy 已提交
372
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
373
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
374
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
375
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
376 377 378 379 380 381 382
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
              holder->InitOnce(capacity, dims);
S
sneaxiy 已提交
383
              return holder->GetQueue();
S
sneaxiy 已提交
384
            },
S
sneaxiy 已提交
385
        py::return_value_policy::copy);
S
sneaxiy 已提交
386

387
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
388
      .def("var",
389
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
390
             return self.Var(name);
Y
Yu Yang 已提交
391
           },
392
           py::return_value_policy::reference)
393
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
394
      .def(py::init<>())
395
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
396
           py::return_value_policy::reference)
Y
Yu Yang 已提交
397
      .def("drop_kids", &Scope::DropKids);
398

Y
Yu Yang 已提交
399 400
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
401 402
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
403 404 405 406 407 408 409 410 411 412
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
413 414
    return ret_values;
  });
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
431
  m.def("prune", [](const ProgramDesc &origin,
432
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
433
    ProgramDesc prog_with_targets(origin);
434
    for (const auto &t : targets) {
435
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
436
    }
437
    proto::ProgramDesc pruned_desc;
438
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
439
    return new ProgramDesc(pruned_desc);
440
  });
441 442 443 444
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
445 446 447
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
448 449
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
450
  // clang-format off
Y
Yu Yang 已提交
451
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
452 453
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
454
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
455 456 457
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
458
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
459
                      -> paddle::platform::DeviceContext* {
460
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
461
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
462
#else
Q
qijun 已提交
463
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
464
#endif
C
chengduoZH 已提交
465 466 467 468 469 470 471 472 473 474 475
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
476 477 478 479
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
480
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
481
      .def(py::init<int>())
D
dzhwinter 已提交
482
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
483

484 485 486
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
487

C
chengduoZH 已提交
488 489 490 491
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
492 493 494 495 496 497 498
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
499
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
500
             self = gpu_place;
C
chengduoZH 已提交
501 502
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
503 504
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
505
      });
Y
Yu Yang 已提交
506

Y
Yu Yang 已提交
507 508 509
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
510
                    proto::OpDesc desc;
Y
Yu Yang 已提交
511 512 513 514 515
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
516
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
517
                  })
518
      .def("run",
519
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
520 521 522
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
523
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
524 525 526 527 528
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
529 530 531 532 533 534 535
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
536 537
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
538
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
539
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
540 541 542 543
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
544

F
fengjiayi 已提交
545
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
546
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
547
      .def("close", &Executor::Close)
S
sneaxiy 已提交
548 549 550 551 552
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
553

D
dzhwinter 已提交
554
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
555
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
556 557
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
558

559
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
560
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
561 562 563 564 565 566
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
567

568
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
569
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
570

X
Xin Pan 已提交
571 572
  m.def("_is_program_version_supported", IsProgramVersionSupported);

573 574 575 576 577
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
578

Y
Yu Yang 已提交
579 580 581 582 583 584 585 586 587
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
588
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
589 590
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
607 608 609
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
610
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
611
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
612
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
613 614 615 616

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
617
#endif
Y
Yu Yang 已提交
618

619 620 621 622
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
623
      .value("kAll", platform::ProfilerState::kAll)
624 625 626 627 628 629 630 631 632 633 634 635 636
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
637
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
638
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
639

Y
yuyang18 已提交
640
  // -- python binds for parallel executor.
Y
yuyang18 已提交
641
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)

        )DOC");

Y
yuyang18 已提交
660
  exec_strategy.def(py::init())
Y
yuyang18 已提交
661 662 663 664 665
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
666 667 668 669 670 671 672 673 674 675
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
676
      .def_property(
677 678 679 680
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
681 682 683 684
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
685 686 687 688 689
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
690 691 692 693
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
694 695 696 697 698 699 700
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
701 702 703 704 705 706 707 708 709 710 711 712 713
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
              )DOC");

Y
yuyang18 已提交
714
  exec_strategy.def_property(
Y
yuyang18 已提交
715 716 717 718 719 720 721
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
722 723
      });

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC");
Y
yuyang18 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
757 758 759 760 761 762 763
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
764 765 766 767 768 769
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
770 771 772 773 774 775
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
776 777 778 779 780
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
781 782 783 784
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
785 786 787
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
788 789 790 791 792 793 794 795 796 797 798 799 800 801
          [](BuildStrategy &self, bool b) {
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC");
Y
yuyang18 已提交
802 803 804 805

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
806
                  const std::string &, Scope *, std::vector<Scope *> &,
807 808
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
809 810 811 812
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
813 814 815 816 817
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
818 819 820 821
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
822 823 824 825 826 827
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
828

829
  BindRecordIOWriter(&m);
830
  return m.ptr();
L
Luo Tao 已提交
831
}
832
}  // namespace pybind
833
}  // namespace paddle