framework.py 73.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
X
Xin Pan 已提交
21
import sys
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41 42 43
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
44
    'name_scope',
45
]
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
128 129 130
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
131 132 133 134


def grad_var_name(var_name):
    """
135 136
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
137 138 139
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
140

141
def convert_np_dtype_to_dtype_(np_dtype):
142 143
    """
    Convert the data type in numpy to the data type in Paddle
144

145
    Args:
146
        np_dtype(np.dtype): the data type in numpy.
147

148 149
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
150 151

    """
152 153
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
154
        return core.VarDesc.VarType.FP32
155
    elif dtype == np.float64:
156
        return core.VarDesc.VarType.FP64
157
    elif dtype == np.float16:
158
        return core.VarDesc.VarType.FP16
159
    elif dtype == np.int32:
160
        return core.VarDesc.VarType.INT32
161
    elif dtype == np.int16:
162
        return core.VarDesc.VarType.INT16
163
    elif dtype == np.int64:
164
        return core.VarDesc.VarType.INT64
165
    elif dtype == np.bool:
166
        return core.VarDesc.VarType.BOOL
167 168
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
169 170
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
171 172
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
173
    else:
M
minqiyang 已提交
174
        raise ValueError("Not supported numpy dtype %s" % dtype)
175 176 177


def dtype_is_floating(dtype):
178 179 180
    """
    Check the data type is floating or not.
    Args:
181
        dtype(np.dtype|core.VarDesc.VarType): data type.
182 183 184 185 186
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
187
    if not isinstance(dtype, core.VarDesc.VarType):
188 189
        dtype = convert_np_dtype_to_dtype_(dtype)

190 191 192 193
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
194 195


Y
Yang Yang(Tony) 已提交
196
def _debug_string_(proto, throw_on_error=True):
197 198 199 200 201 202 203 204 205 206 207
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
208
    error_fields = list()
Y
Yang Yang(Tony) 已提交
209
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
210 211
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
212 213 214
    return proto.__str__()


X
Xin Pan 已提交
215
class Variable(core.VarBase):
216
    """
217 218 219
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
220
    two variables in different blocks could have the same name.
221

222 223
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
224

225
    Most of a Variable's member variables can be setted to be None. It mean
226
    it is not available or will be specified later.
227 228

    Args:
229
        block(Block): The block that the variable belongs to.
230 231
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
232 233
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
234
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
235
            Some kinds of variable do not contain shape, just set it to None.
236 237 238
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
239
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
240
            series data.
241
            Default: None
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
264 265
    """

Y
Yu Yang 已提交
266 267
    def __init__(self,
                 block,
Y
Yu Yang 已提交
268
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
269 270 271 272
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
273
                 capacity=None,
Q
QI JUN 已提交
274
                 persistable=None,
F
fengjiayi 已提交
275
                 error_clip=None,
Y
Yu Yang 已提交
276
                 stop_gradient=False,
F
fengjiayi 已提交
277
                 is_data=False,
Y
Yu Yang 已提交
278
                 **kwargs):
X
Xin Pan 已提交
279
        core.VarBase.__init__(self)
Y
Yu Yang 已提交
280
        self.block = block
F
fengjiayi 已提交
281
        self.error_clip = error_clip
Y
Yu Yang 已提交
282 283

        if name is None:
Y
Yu Yang 已提交
284
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
285
        is_new_var = False
M
minqiyang 已提交
286
        name = cpt.to_text(name)
X
Xin Pan 已提交
287
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
288

X
Xin Pan 已提交
289
        if self.desc is None:
M
minqiyang 已提交
290
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
291
            is_new_var = True
Y
Yu Yang 已提交
292

Y
Yu Yang 已提交
293 294 295
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
X
Xin Pan 已提交
296
            # sys.stderr.write('%s vs %s\n' % (self.desc.type(), type))
Y
Yu Yang 已提交
297 298 299 300 301
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
302
        if shape is not None:
Y
Yu Yang 已提交
303
            if is_new_var:
304
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
305 306 307 308 309 310 311 312
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
313
        if dtype is not None:
314
            if not isinstance(dtype, core.VarDesc.VarType):
315
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
316
            if is_new_var:
F
fengjiayi 已提交
317
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
318
            else:
F
fengjiayi 已提交
319
                old_dtype = self.dtype
Q
QI JUN 已提交
320
                if dtype != old_dtype:
Y
Yu Yang 已提交
321 322 323 324 325
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
326 327

        if lod_level is not None:
Y
Yu Yang 已提交
328
            if is_new_var:
329
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
330 331 332 333 334 335 336
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
337 338 339 340 341 342 343 344 345 346 347
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

348 349 350 351 352 353 354 355
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
356
        self.block.vars[name] = self
Y
Yu Yang 已提交
357
        self.op = None
Y
Yu Yang 已提交
358
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
359
        self.is_data = is_data
Y
Yu Yang 已提交
360

X
polish  
Xin Pan 已提交
361 362
    def numpy(self):
        scope = _imperative_tracer().get_scope(self.block.desc)
X
Xin Pan 已提交
363 364 365
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

X
polish  
Xin Pan 已提交
366 367
    def backward(self):
        scope = _imperative_tracer().get_scope(self.block.desc)
X
Xin Pan 已提交
368 369 370 371 372
        self._run_backward(scope)

    def grad(self):
        return np.array(self._grad())

373
    def __str__(self):
Y
Yang Yang(Tony) 已提交
374 375
        return self.to_string(True)

F
update  
fengjiayi 已提交
376
    def to_string(self, throw_on_error, with_details=False):
377 378 379 380
        """
        Get debug string.

        Args:
381 382
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
383
            with_details(bool): more details about variables and parameters
384 385
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
386

387 388
        Returns:
            str: The debug string.
389
        """
F
update  
fengjiayi 已提交
390 391
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
392
        protostr = self.desc.serialize_to_string()
393
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
394 395 396 397
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
398 399
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
400
        return res_str
401 402 403

    __repr__ = __str__

W
Wu Yi 已提交
404
    def _set_desc(self, input):
405 406 407 408 409 410 411 412 413
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
414 415
        self.desc = input

416 417 418 419
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
420 421 422 423
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
424 425
    @property
    def name(self):
M
minqiyang 已提交
426
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
427

T
typhoonzero 已提交
428 429 430 431
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
432 433 434
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
435
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
436 437

    @property
F
fengjiayi 已提交
438 439
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
440 441 442

    @property
    def lod_level(self):
443
        return self.desc.lod_level()
Y
Yu Yang 已提交
444

Y
Yu Yang 已提交
445 446 447 448
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
449
    def _set_error_clip(self, error_clip):
450 451 452 453 454 455 456 457 458
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
459 460
        self.error_clip = error_clip

Y
Yu Yang 已提交
461

F
fengjiayi 已提交
462 463 464
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
465

466 467
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
468 469 470 471
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
472
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
473 474 475 476 477
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
478 479 480 481
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
482 483 484 485 486 487 488 489 490
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
491
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
492 493 494 495 496 497
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
498 499 500 501 502 503 504 505
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
506 507
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
508 509
        return self.op_proto_map[type]

510 511 512 513
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
514
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
515
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
516 517
        }

F
fengjiayi 已提交
518

X
Xin Pan 已提交
519
class Operator(core.OpBase):
520
    """
521 522 523 524 525 526 527
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
528
        type(str): The type of operator. Default None.
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
549
        Block.append_op or Block._prepend_op instead.
550 551 552 553 554 555 556 557 558 559

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
560
    """
561 562 563 564
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
565
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
566
    }
567

Y
Yu Yang 已提交
568 569
    def __init__(self,
                 block,
Y
Yu Yang 已提交
570
                 desc,
Y
Yu Yang 已提交
571 572 573 574
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
X
Xin Pan 已提交
575
        core.OpBase.__init__(self)
Y
Yu Yang 已提交
576
        self.block = block
Y
Yu Yang 已提交
577
        self.desc = desc
G
gongweibao 已提交
578 579 580 581 582
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
583 584 585 586
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
587 588
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
589 590 591

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
592 593
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
594

G
gongweibao 已提交
595 596
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
597

F
fengjiayi 已提交
598 599 600 601 602
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
603
        self.desc.set_type(type)
F
fengjiayi 已提交
604
        proto = OpProtoHolder.instance().get_op_proto(type)
605

606 607 608
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
609 610
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
611
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
612 613
                    return True
            return False
Q
QI JUN 已提交
614

X
Xin Pan 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
                        if isinstance(arg, six.string_types):
                            in_arg_names.append(arg)
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
                        else:
                            in_arg_names.append(cpt.to_text(arg.name))
                    self.desc.set_input(in_proto.name, in_arg_names)
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
640

Y
Yu Yang 已提交
641
        if outputs is not None:
642 643 644 645 646 647 648
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
649 650
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
651 652 653
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
654

F
fengjiayi 已提交
655
            for out_proto in proto.outputs:
656 657 658 659
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
660 661
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
662 663 664
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
665
                    out_arg_names.append(cpt.to_text(arg.name))
666 667
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
668

X
Xin Pan 已提交
669 670 671 672
        input_vars = []
        for inp in inputs.values():
            if isinstance(inp, Variable):
                input_vars.append(inp)
X
polish  
Xin Pan 已提交
673
            elif isinstance(inp, list) or isinstance(inp, tuple):
X
Xin Pan 已提交
674 675 676 677 678 679
                input_vars.extend(inp[:])
        self.inputs = input_vars
        output_vars = []
        for out in outputs.values():
            if isinstance(out, Variable):
                output_vars.append(out)
X
polish  
Xin Pan 已提交
680
            elif isinstance(out, list) or isinstance(out, tuple):
X
Xin Pan 已提交
681 682 683
                output_vars.extend(out[:])
        self.outputs = output_vars

G
gongweibao 已提交
684 685
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
686
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
687
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
688
                attr_name = attr.name
G
gongweibao 已提交
689
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
690
                    continue
G
gongweibao 已提交
691
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
692 693
                self._update_desc_attr(attr_name, attr_val)

694
        self.desc.check_attrs()
W
Wu Yi 已提交
695
        if self._has_kernel(type):
Q
QI JUN 已提交
696
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
697
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
698

W
Wu Yi 已提交
699
    def _has_kernel(self, op_type):
700 701
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
702
    def to_string(self, throw_on_error):
703
        """
704 705
        Get debug string.

706
        Args:
707 708
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
709

710 711
        Returns:
            str: The debug string.
712 713

        """
714
        protostr = self.desc.serialize_to_string()
715
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
716 717 718 719
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
720 721 722

    __repr__ = __str__

F
fengjiayi 已提交
723 724 725 726 727
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
728
        """
729
        Get the input arguments according to the input parameter name.
730

731 732
        Args:
            name(str): The input parameter name.
733

734 735 736
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
737
        """
F
fengjiayi 已提交
738 739
        return self.desc.input(name)

W
Wu Yi 已提交
740
    def _rename_input(self, old_name, new_name):
741 742 743 744 745 746 747 748 749 750
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
751
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
752

W
Wu Yi 已提交
753
    def _rename_output(self, old_name, new_name):
754 755 756 757 758 759 760 761 762 763
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
764
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
765

F
fengjiayi 已提交
766 767 768 769
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
770 771 772 773 774 775 776 777
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
778
    def output(self, name):
779
        """
780
        Get output arguments by the output parameter name.
781

782 783
        Args:
            name(str): The output parameter name.
784

785 786 787
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
788
        """
F
fengjiayi 已提交
789 790 791 792 793 794
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

795 796 797 798 799 800 801 802
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
803
    def has_attr(self, name):
804
        """
805 806
        Whether this Operator has the attribute with name or not.

807
        Args:
808
            name(str): the attribute name.
809

810 811
        Returns:
            bool: True if has this attribute.
812 813

        """
F
fengjiayi 已提交
814 815 816
        return self.desc.has_attr(name)

    def attr_type(self, name):
817
        """
818
        Get the type of attribute by attribute's name.
819

820 821
        Args:
            name(str): the attribute name.
822

823 824
        Returns:
            core.AttrType: the attribute type.
825
        """
F
fengjiayi 已提交
826 827
        return self.desc.attr_type(name)

W
Wu Yi 已提交
828
    def _set_attr(self, name, val):
829 830 831 832 833 834 835 836 837 838
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
852 853
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
854 855
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
856
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
857 858 859 860
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
861
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
862

F
fengjiayi 已提交
863 864 865 866 867
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
868
        """
869 870
        Get the attribute by name.

871
        Args:
872
            name(str): the attribute name.
873

874 875
        Returns:
            bool|int|str|float|list: The attribute value. The return value
876 877
            can be any valid attribute type.
        """
F
fengjiayi 已提交
878
        return self.desc.attr(name)
Y
Yu Yang 已提交
879

W
Wu Yi 已提交
880
    def _block_attr_id(self, name):
881
        """
G
gongweibao 已提交
882
        Get the block attribute's id by name.
883

884 885
        Args:
            name(str): the attribute name.
886

887 888
        Returns:
            int: the block index.
889
        """
W
Wu Yi 已提交
890
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
891

W
Wu Yi 已提交
892
    def _block_attr(self, name):
G
gongweibao 已提交
893 894 895 896 897 898 899 900 901 902
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
903
        id = self._block_attr_id(name)
G
gongweibao 已提交
904 905 906
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
907
    def _blocks_attr(self, name):
G
gongweibao 已提交
908 909 910 911 912 913 914 915 916 917
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
918
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
919 920 921 922 923
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
924
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
925 926 927 928 929 930 931 932 933 934
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
935
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
936

J
JiayiFeng 已提交
937
    def all_attrs(self):
F
fengjiayi 已提交
938
        """
939 940 941
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
942
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
943 944 945 946
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
947 948
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
949
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
950 951 952
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
953
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
954 955 956 957
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
958 959
        return attr_map

Y
Yu Yang 已提交
960

Y
Yu Yang 已提交
961
class Block(object):
962 963 964 965 966 967 968 969 970 971 972 973 974 975
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
976
        use `Program._create_block()` to create a block.
977 978 979 980 981 982 983 984 985 986 987 988 989 990

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
991
    def __init__(self, program, idx):
Y
Yu Yang 已提交
992
        self.desc = program.desc.block(idx)
993
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
994
        self.ops = list()  # operator list
X
Xin Pan 已提交
995
        self._op_descs = list()
Y
Yu Yang 已提交
996
        self.program = program
997
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
998

999
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1000 1001
        return self.to_string(True)

F
fengjiayi 已提交
1002 1003
    def to_string(self, throw_on_error, with_details=False):
        """
1004 1005
        Get debug string.

F
fengjiayi 已提交
1006 1007
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1008
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1009
            with_details(bool): more details about variables and parameters
1010 1011
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1012

1013 1014
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1015 1016 1017 1018
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1019
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1020 1021
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1022
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1023
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1024
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1025
            for op in self.ops:
F
fengjiayi 已提交
1026 1027
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1028 1029 1030
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1031 1032
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1033 1034
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1035 1036 1037

    __repr__ = __str__

Y
Yu Yang 已提交
1038 1039
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1040
        return self.desc.parent
Y
Yu Yang 已提交
1041

Y
Yu Yang 已提交
1042 1043 1044 1045
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1046
    def _set_forward_block_idx(self, idx):
1047 1048 1049 1050 1051 1052 1053 1054 1055
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1056
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1057

Y
Yu Yang 已提交
1058 1059
    @property
    def idx(self):
Y
Yu Yang 已提交
1060
        return self.desc.id
Y
Yu Yang 已提交
1061

Q
Qiao Longfei 已提交
1062
    def var(self, name):
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1076
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1077 1078 1079
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1080 1081
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1082
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1083
        return v
Q
Qiao Longfei 已提交
1084

W
Wu Yi 已提交
1085
    def _var_recursive(self, name):
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1125

Q
Qiao Longfei 已提交
1126
    def all_parameters(self):
1127
        return list(self.iter_parameters())
1128

1129
    def iter_parameters(self):
M
minqiyang 已提交
1130
        return (item[1] for item in six.iteritems(self.vars)
1131
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1132

Y
Yu Yang 已提交
1133
    def create_var(self, *args, **kwargs):
1134
        var = Variable(block=self, *args, **kwargs)
1135 1136
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1137
        return var
Y
Yu Yang 已提交
1138

Q
Qiao Longfei 已提交
1139 1140 1141
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1142
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1143 1144
        """
        Rename variable in vars and ops' inputs and outputs
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1157
        """
M
minqiyang 已提交
1158 1159
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1160

T
typhoonzero 已提交
1161
        if not self.has_var(name):
1162
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1163 1164
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1165
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1166 1167 1168 1169 1170 1171 1172
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1173
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1174 1175 1176 1177
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1178
        orig_var_type = v.type
M
minqiyang 已提交
1179
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1180
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1181
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1182
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1183 1184 1185 1186
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1187
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1188 1189 1190 1191 1192 1193 1194
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1195
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1196 1197
            var = Variable(
                self,
T
typhoonzero 已提交
1198
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1199 1200 1201 1202
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1203
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1204 1205 1206
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1207
        self._sync_with_cpp()
1208
        return var
T
typhoonzero 已提交
1209

W
Wu Yi 已提交
1210 1211
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1212
        self.desc._remove_var(cpt.to_bytes(name))
1213 1214
        del self.vars[name]

Y
Yu Yang 已提交
1215 1216
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1217
        param = Parameter(global_block, *args, **kwargs)
1218
        if 'initializer' in kwargs:
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1239
        return param
Y
Yu Yang 已提交
1240

Y
Yu Yang 已提交
1241
    def append_op(self, *args, **kwargs):
1242 1243 1244 1245 1246 1247
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
X
Xin Pan 已提交
1248 1249 1250
        if _in_imperative_mode():
            op_desc = core.OpDesc()
            op = Operator(block=self, desc=op_desc, *args, **kwargs)
X
polish  
Xin Pan 已提交
1251
            _imperative_tracer().trace(op, op.inputs, op.outputs, self.desc)
X
Xin Pan 已提交
1252 1253 1254
        else:
            op_desc = self.desc.append_op()
            op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1255
        self.ops.append(op)
X
Xin Pan 已提交
1256
        self._op_descs.append(op_desc)
Y
Yu Yang 已提交
1257 1258
        return op

W
Wu Yi 已提交
1259
    def _insert_op(self, index, *args, **kwargs):
1260 1261 1262 1263 1264 1265 1266 1267 1268
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1269 1270
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1271 1272 1273 1274
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1275
    def _remove_op(self, index):
1276 1277 1278 1279 1280 1281 1282 1283 1284
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1285 1286
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1287 1288
        del self.ops[index]

W
Wu Yi 已提交
1289
    def _slice_ops(self, start, end):
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1300
        return self.ops[start:end]
Y
Yancey1989 已提交
1301

W
Wu Yi 已提交
1302 1303
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1304
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1305
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1306 1307
        return op

W
Wu Yi 已提交
1308
    def _sync_with_cpp(self):
1309
        """
1310 1311
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1312
        """
Q
Qiao Longfei 已提交
1313 1314 1315 1316 1317
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1318
        # sync variables removed from c++ end
1319
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1320
            if not self.desc.find_var(cpt.to_bytes(var)):
1321 1322
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1323
        # sync operators from cpp
1324 1325 1326 1327
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1344 1345 1346 1347 1348

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1349
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1350 1351 1352 1353 1354 1355 1356

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1370 1371 1372 1373
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1374
    def _copy_param_info_from(self, other):
1375
        """
1376 1377
        Copy the information of parameters from the other block.

1378
        Args:
1379 1380 1381 1382 1383
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1384 1385 1386 1387 1388

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1389 1390
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1391
        for p in other.iter_parameters():
1392 1393 1394
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1395
                raise ValueError("_copy_param_info_from should be invoked with "
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1408
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1409
                error_clip=p.error_clip,
1410 1411 1412
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1413
    def _clone_variable(self, var):
1414 1415
        """
        Clone a variable into current block.
1416

1417 1418 1419 1420
        Args:
            var: the variable to be cloned.

        Returns:
1421
            Variable: the new  variable cloned from 'var' in current block.
1422 1423
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1424 1425 1426 1427 1428
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1429 1430
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1431
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1432 1433 1434 1435 1436 1437
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1438 1439
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1440 1441 1442 1443 1444 1445 1446
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1447 1448
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1449
        return ret_var
1450

Y
Yu Yang 已提交
1451 1452

class Program(object):
D
dzhwinter 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1464
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1465 1466

    Returns:
Y
yuyang18 已提交
1467
        A empty program.
D
dzhwinter 已提交
1468 1469

    Examples:
Y
yuyang18 已提交
1470 1471 1472 1473 1474 1475
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1476 1477 1478

    """

1479 1480
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1481 1482
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1483
        self._seed = 0
Y
yuyang18 已提交
1484
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1485
        self._op_role_var = []
T
tangwei12 已提交
1486 1487 1488 1489

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1490
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1491 1492
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1493 1494 1495

    @property
    def op_role(self):
Y
yuyang18 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1509 1510 1511 1512 1513 1514 1515 1516
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1517 1518 1519 1520 1521 1522 1523
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1524 1525 1526 1527
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1528
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1529 1530

    @contextlib.contextmanager
W
Wu Yi 已提交
1531
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1532 1533 1534 1535 1536 1537 1538
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1539
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1540 1541 1542 1543

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1544
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1545 1546
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1547 1548 1549
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1550 1551
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1552 1553 1554 1555
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1556
        yield
X
Xin Pan 已提交
1557 1558
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1559

1560
    @contextlib.contextmanager
X
Xin Pan 已提交
1561
    def _lr_schedule_guard(self, is_with_opt=False):
1562 1563 1564 1565 1566 1567 1568
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1569 1570 1571 1572
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1573 1574 1575 1576 1577 1578 1579

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1580 1581 1582 1583

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1584 1585
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1586 1587
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1588 1589 1590
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1591 1592
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1593

1594
    def __str__(self):
Y
yuyang18 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1604 1605
        return self.to_string(True)

F
fengjiayi 已提交
1606 1607 1608
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1609

F
fengjiayi 已提交
1610
        Args:
Y
yuyang18 已提交
1611 1612
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1613

Y
yuyang18 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1634 1635
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1636 1637
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1638

W
Wu Yi 已提交
1639
    def _get_desc(self):
Y
yuyang18 已提交
1640 1641 1642 1643 1644 1645 1646
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1647 1648
        return self.desc

X
version  
Xin Pan 已提交
1649 1650 1651
    def _version(self):
        return self.desc._version()

1652
    def clone(self, for_test=False):
Y
yuyang18 已提交
1653 1654 1655
        """
        Create a new, duplicated program.

1656

Y
yuyang18 已提交
1657 1658 1659 1660
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1661

Y
yuyang18 已提交
1662 1663 1664 1665
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1666 1667 1668 1669 1670
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1671 1672

        Args:
Y
yuyang18 已提交
1673 1674
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1675

D
dzhwinter 已提交
1676
        Returns:
Y
yuyang18 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1730 1731
        """
        if for_test:
X
Xin Pan 已提交
1732
            p = self._inference_optimize(prune_read_op=False)
1733
        else:
1734
            p = Program()
G
gongweibao 已提交
1735 1736
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1737
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1738 1739 1740
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1741 1742 1743 1744

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1745
            p._sync_with_cpp()
1746

W
Wu Yi 已提交
1747
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1748
        p._copy_data_info_from(self)
1749
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1750
        return p
1751

W
Wu Yi 已提交
1752
    def _prune(self, targets):
Y
yuyang18 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1768 1769 1770 1771 1772 1773
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1774 1775
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1776
                    # and we need to find the current op that generate this
1777 1778 1779 1780 1781 1782 1783 1784
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1785
                    t = t.op
1786 1787 1788 1789
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1790
                else:
1791 1792
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1793 1794 1795 1796

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1797 1798 1799
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1800
        res._sync_with_cpp()
1801 1802
        return res

X
Xin Pan 已提交
1803
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1804
        """
F
fengjiayi 已提交
1805 1806 1807 1808 1809
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1810
        3. change the :code:`is_test`
Y
yuyang18 已提交
1811 1812 1813
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1814
        Args:
X
Xin Pan 已提交
1815 1816
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1817

Y
yuyang18 已提交
1818 1819 1820 1821 1822 1823
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1824
        res = Program()
1825
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1826 1827 1828 1829

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1830
        if prune_read_op:
1831 1832 1833 1834 1835 1836 1837 1838 1839
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1840
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1841 1842

        # change all `is_test` attributes to True
M
minqiyang 已提交
1843
        for i in six.moves.range(res.desc.num_blocks()):
1844
            block = res.desc.block(i)
M
minqiyang 已提交
1845
            for j in six.moves.range(block.op_size()):
1846 1847
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1848
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1849 1850 1851
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1852
        res._sync_with_cpp()
1853 1854
        return res

1855 1856
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1857 1858 1859 1860 1861 1862 1863
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1864
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1865 1866 1867 1868

        Returns:
            Program: A deserialized program desc.
        """
1869 1870
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1871
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1872
        p._sync_with_cpp()
1873
        return p
Y
Yu Yang 已提交
1874

D
dzhwinter 已提交
1875 1876
    @property
    def random_seed(self):
Y
yuyang18 已提交
1877 1878 1879 1880 1881 1882
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1883 1884
        return self._seed

Q
qiaolongfei 已提交
1885 1886
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1887 1888 1889
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1890 1891
        return self.desc.num_blocks()

D
dzhwinter 已提交
1892 1893 1894 1895 1896 1897
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1898
    def __repr__(self):
1899
        return self.__str__()
1900

Y
Yu Yang 已提交
1901
    def global_block(self):
Y
yuyang18 已提交
1902 1903 1904
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1905 1906
        return self.blocks[0]

Q
Qiao Longfei 已提交
1907
    def block(self, index):
Y
yuyang18 已提交
1908 1909 1910 1911 1912 1913 1914 1915
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1916 1917
        return self.blocks[index]

Y
Yu Yang 已提交
1918
    def current_block(self):
Y
yuyang18 已提交
1919 1920 1921 1922
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1923 1924
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1925
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1936
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1937 1938 1939
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1940 1941 1942 1943
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1944
    def _rollback(self):
Y
yuyang18 已提交
1945 1946 1947 1948 1949
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1950 1951
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1952
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1963 1964 1965
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1966
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1967

W
Wu Yi 已提交
1968
    def _copy_param_info_from(self, other):
1969
        """
1970
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1971

Y
yuyang18 已提交
1972 1973 1974
        Notes: This is a very low level API. Users should not invoke it
        directly.

1975 1976 1977 1978 1979 1980 1981
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1982
            raise TypeError("_copy_param_info_from should be invoked with "
1983 1984 1985
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1986
            raise ValueError("_copy_param_info_from should be invoked with two "
1987
                             "program, with represent the same topology")
W
Wu Yi 已提交
1988
        self.global_block()._copy_param_info_from(other.global_block())
1989

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2009
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2010 2011
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2012

Y
yuyang18 已提交
2013 2014 2015
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2016 2017 2018 2019 2020 2021 2022
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2023
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2024 2025 2026
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2027
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2028
                             "program, with represent the same topology")
2029
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2030 2031 2032
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2033
    def list_vars(self):
Y
yuyang18 已提交
2034 2035 2036 2037 2038 2039
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2040
        for each_block in self.blocks:
2041
            for each_var in list(each_block.vars.values()):
2042 2043
                yield each_var

Y
Yu Yang 已提交
2044

Y
Yu Yang 已提交
2045
class Parameter(Variable):
2046
    """
2047
    Parameter is derived from Variable. A parameter is a persistable
2048
    Variable, and will be updated by optimizers after each iteration.
2049
    The training of a neural network is essentially the updating of
2050 2051
    its parameters.

2052
    Relative to a general Variable, a Parameter has several its own
2053 2054
    member variables:

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2067 2068
    """

Y
Yu Yang 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2079 2080 2081

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2082 2083 2084 2085
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2086 2087
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2088
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2089

W
wanghaoshuang 已提交
2090
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2091

F
fengjiayi 已提交
2092 2093 2094
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2095 2096 2097
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2098

F
update  
fengjiayi 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2113
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2114
            for attr_name in additional_attr:
2115 2116
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2117 2118
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2119 2120 2121 2122
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2123

Y
Yu Yang 已提交
2124
# program is a global instance.
Y
Yu Yang 已提交
2125 2126
_main_program_ = Program()
_startup_program_ = Program()
2127

2128

2129
def default_startup_program():
Y
Yu Yang 已提交
2130
    """
Y
yuyang18 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2140

Y
Yu Yang 已提交
2141 2142 2143
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2144
    return _startup_program_
2145

2146

2147
def default_main_program():
Y
Yu Yang 已提交
2148
    """
Y
yuyang18 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2158

Y
Yu Yang 已提交
2159 2160 2161
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2162
    return _main_program_
Y
Yu Yang 已提交
2163 2164 2165 2166 2167


def switch_main_program(program):
    """
    Switch the main program to a new program.
2168

Y
Yu Yang 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2183
    Switch the startup program to a new program
Y
Yu Yang 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2199 2200 2201
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2202

Y
Yu Yang 已提交
2203
    Examples:
Y
yuyang18 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2214

Y
Yu Yang 已提交
2215
    Examples:
Y
yuyang18 已提交
2216 2217 2218 2219 2220 2221

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2222

Y
Yu Yang 已提交
2223
    Args:
Y
yuyang18 已提交
2224
        main_program(Program): New main program inside `with` statement.
2225
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2239 2240


W
Wu Yi 已提交
2241
def _get_var(name, program=None):
X
xuwei06 已提交
2242
    """
Y
yuyang18 已提交
2243
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2244

X
xuwei06 已提交
2245 2246 2247
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2248
        If None, default_global_program() will be used.
X
xuwei06 已提交
2249 2250 2251 2252 2253 2254 2255

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2256
    assert isinstance(program, Program)
X
xuwei06 已提交
2257 2258

    return program.global_block().var(name)
X
Xin Pan 已提交
2259 2260 2261


@contextlib.contextmanager
X
polish  
Xin Pan 已提交
2262
def _imperative_guard(tracer):
X
Xin Pan 已提交
2263 2264
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
X
polish  
Xin Pan 已提交
2265
    _imperative_tracer_ = tracer
X
Xin Pan 已提交
2266 2267
    yield
    _imperative_tracer_ = tmp_trace