framework.py 73.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
X
Xin Pan 已提交
21
import sys
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41 42 43
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
44
    'name_scope',
45
]
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
128 129 130
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
131 132 133 134


def grad_var_name(var_name):
    """
135 136
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
137 138 139
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
140

141
def convert_np_dtype_to_dtype_(np_dtype):
142 143
    """
    Convert the data type in numpy to the data type in Paddle
144

145
    Args:
146
        np_dtype(np.dtype): the data type in numpy.
147

148 149
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
150 151

    """
152 153
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
154
        return core.VarDesc.VarType.FP32
155
    elif dtype == np.float64:
156
        return core.VarDesc.VarType.FP64
157
    elif dtype == np.float16:
158
        return core.VarDesc.VarType.FP16
159
    elif dtype == np.int32:
160
        return core.VarDesc.VarType.INT32
161
    elif dtype == np.int16:
162
        return core.VarDesc.VarType.INT16
163
    elif dtype == np.int64:
164
        return core.VarDesc.VarType.INT64
165
    elif dtype == np.bool:
166
        return core.VarDesc.VarType.BOOL
167 168
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
169 170
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
171 172
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
173
    else:
M
minqiyang 已提交
174
        raise ValueError("Not supported numpy dtype %s" % dtype)
175 176 177


def dtype_is_floating(dtype):
178 179 180
    """
    Check the data type is floating or not.
    Args:
181
        dtype(np.dtype|core.VarDesc.VarType): data type.
182 183 184 185 186
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
187
    if not isinstance(dtype, core.VarDesc.VarType):
188 189
        dtype = convert_np_dtype_to_dtype_(dtype)

190 191 192 193
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
194 195


Y
Yang Yang(Tony) 已提交
196
def _debug_string_(proto, throw_on_error=True):
197 198 199 200 201 202 203 204 205 206 207
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
208
    error_fields = list()
Y
Yang Yang(Tony) 已提交
209
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
210 211
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
212 213 214
    return proto.__str__()


X
Xin Pan 已提交
215
class Variable(core.VarBase):
216
    """
217 218 219
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
220
    two variables in different blocks could have the same name.
221

222 223
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
224

225
    Most of a Variable's member variables can be setted to be None. It mean
226
    it is not available or will be specified later.
227 228

    Args:
229
        block(Block): The block that the variable belongs to.
230 231
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
232 233
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
234
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
235
            Some kinds of variable do not contain shape, just set it to None.
236 237 238
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
239
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
240
            series data.
241
            Default: None
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
264 265
    """

Y
Yu Yang 已提交
266 267
    def __init__(self,
                 block,
Y
Yu Yang 已提交
268
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
269 270 271 272
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
273
                 capacity=None,
Q
QI JUN 已提交
274
                 persistable=None,
F
fengjiayi 已提交
275
                 error_clip=None,
Y
Yu Yang 已提交
276
                 stop_gradient=False,
F
fengjiayi 已提交
277
                 is_data=False,
Y
Yu Yang 已提交
278
                 **kwargs):
Y
Yu Yang 已提交
279
        self.block = block
F
fengjiayi 已提交
280
        self.error_clip = error_clip
Y
Yu Yang 已提交
281 282

        if name is None:
Y
Yu Yang 已提交
283
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
284
        is_new_var = False
M
minqiyang 已提交
285
        name = cpt.to_text(name)
X
Xin Pan 已提交
286
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
287

X
Xin Pan 已提交
288
        if self.desc is None:
M
minqiyang 已提交
289
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
290
            is_new_var = True
Y
Yu Yang 已提交
291

Y
Yu Yang 已提交
292 293 294
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
X
Xin Pan 已提交
295
            # sys.stderr.write('%s vs %s\n' % (self.desc.type(), type))
Y
Yu Yang 已提交
296 297 298 299 300
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
301
        if shape is not None:
Y
Yu Yang 已提交
302
            if is_new_var:
303
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
312
        if dtype is not None:
313
            if not isinstance(dtype, core.VarDesc.VarType):
314
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
315
            if is_new_var:
F
fengjiayi 已提交
316
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
317
            else:
F
fengjiayi 已提交
318
                old_dtype = self.dtype
Q
QI JUN 已提交
319
                if dtype != old_dtype:
Y
Yu Yang 已提交
320 321 322 323 324
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
325 326

        if lod_level is not None:
Y
Yu Yang 已提交
327
            if is_new_var:
328
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
329 330 331 332 333 334 335
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
336 337 338 339 340 341 342 343 344 345 346
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

347 348 349 350 351 352 353 354
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
355
        self.block.vars[name] = self
Y
Yu Yang 已提交
356
        self.op = None
Y
Yu Yang 已提交
357
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
358
        self.is_data = is_data
Y
Yu Yang 已提交
359

X
Xin Pan 已提交
360 361 362 363
    def numpy(self, scope):
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

364
    def __str__(self):
Y
Yang Yang(Tony) 已提交
365 366
        return self.to_string(True)

F
update  
fengjiayi 已提交
367
    def to_string(self, throw_on_error, with_details=False):
368 369 370 371
        """
        Get debug string.

        Args:
372 373
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
374
            with_details(bool): more details about variables and parameters
375 376
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
377

378 379
        Returns:
            str: The debug string.
380
        """
F
update  
fengjiayi 已提交
381 382
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
383
        protostr = self.desc.serialize_to_string()
384
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
385 386 387 388
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
389 390
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
391
        return res_str
392 393 394

    __repr__ = __str__

W
Wu Yi 已提交
395
    def _set_desc(self, input):
396 397 398 399 400 401 402 403 404
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
405 406
        self.desc = input

407 408 409 410
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
411 412 413 414
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
415 416
    @property
    def name(self):
M
minqiyang 已提交
417
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
418

T
typhoonzero 已提交
419 420 421 422
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
423 424 425
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
426
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
427 428

    @property
F
fengjiayi 已提交
429 430
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
431 432 433

    @property
    def lod_level(self):
434
        return self.desc.lod_level()
Y
Yu Yang 已提交
435

Y
Yu Yang 已提交
436 437 438 439
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
440
    def _set_error_clip(self, error_clip):
441 442 443 444 445 446 447 448 449
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
450 451
        self.error_clip = error_clip

Y
Yu Yang 已提交
452

F
fengjiayi 已提交
453 454 455
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
456

457 458
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
459 460 461 462
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
463
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
464 465 466 467 468
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
469 470 471 472
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
473 474 475 476 477 478 479 480 481
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
482
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
483 484 485 486 487 488
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
489 490 491 492 493 494 495 496
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
497 498
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
499 500
        return self.op_proto_map[type]

501 502 503 504
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
505
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
506
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
507 508
        }

F
fengjiayi 已提交
509

X
Xin Pan 已提交
510
class Operator(core.OpBase):
511
    """
512 513 514 515 516 517 518
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
519
        type(str): The type of operator. Default None.
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
540
        Block.append_op or Block._prepend_op instead.
541 542 543 544 545 546 547 548 549 550

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
551
    """
552 553 554 555
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
556
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
557
    }
558

Y
Yu Yang 已提交
559 560
    def __init__(self,
                 block,
Y
Yu Yang 已提交
561
                 desc,
Y
Yu Yang 已提交
562 563 564 565 566
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
567
        self.desc = desc
G
gongweibao 已提交
568 569 570 571 572
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
573 574 575 576
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
577 578
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
579 580 581

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
582 583
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
584

G
gongweibao 已提交
585 586
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
587

F
fengjiayi 已提交
588 589 590 591 592
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
593
        self.desc.set_type(type)
F
fengjiayi 已提交
594
        proto = OpProtoHolder.instance().get_op_proto(type)
595

596 597 598
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
599 600
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
601
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
602 603
                    return True
            return False
Q
QI JUN 已提交
604

X
Xin Pan 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
        self.inputs = [] if not inputs else inputs
        for in_proto in proto.inputs:
            found = find_name(self.inputs, in_proto.name)
            assert found or in_proto.dispensable, "Input {} not found".format(
                in_proto.name)

            if found:
                in_args = self.inputs[in_proto.name]
                if not isinstance(in_args, list):
                    in_args = [in_args]
                if not in_proto.duplicable and len(in_args) > 1:
                    raise ValueError(
                        "Input %s expects only one input, but %d are given." %
                        (in_proto.name, len(in_args)))
                in_arg_names = []
                for arg in in_args:
                    if isinstance(arg, six.string_types):
                        in_arg_names.append(arg)
                    elif isinstance(arg, six.binary_type):
                        in_arg_names.append(arg.decode())
                    else:
                        in_arg_names.append(cpt.to_text(arg.name))
                self.desc.set_input(in_proto.name, in_arg_names)
            else:
                self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
630

X
Xin Pan 已提交
631
        self.outputs = [] if not outputs else outputs
Y
Yu Yang 已提交
632
        if outputs is not None:
633 634 635 636 637 638 639
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
640 641
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
642 643 644
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
645

F
fengjiayi 已提交
646
            for out_proto in proto.outputs:
647 648 649 650
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
651 652
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
653 654 655
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
656
                    out_arg_names.append(cpt.to_text(arg.name))
657 658
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
659

G
gongweibao 已提交
660 661
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
662
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
663
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
664
                attr_name = attr.name
G
gongweibao 已提交
665
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
666
                    continue
G
gongweibao 已提交
667
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
668 669
                self._update_desc_attr(attr_name, attr_val)

670
        self.desc.check_attrs()
W
Wu Yi 已提交
671
        if self._has_kernel(type):
Q
QI JUN 已提交
672
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
673
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
674

W
Wu Yi 已提交
675
    def _has_kernel(self, op_type):
676 677
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
678
    def to_string(self, throw_on_error):
679
        """
680 681
        Get debug string.

682
        Args:
683 684
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
685

686 687
        Returns:
            str: The debug string.
688 689

        """
690
        protostr = self.desc.serialize_to_string()
691
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
692 693 694 695
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
696 697 698

    __repr__ = __str__

F
fengjiayi 已提交
699 700 701 702 703
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
704
        """
705
        Get the input arguments according to the input parameter name.
706

707 708
        Args:
            name(str): The input parameter name.
709

710 711 712
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
713
        """
F
fengjiayi 已提交
714 715
        return self.desc.input(name)

W
Wu Yi 已提交
716
    def _rename_input(self, old_name, new_name):
717 718 719 720 721 722 723 724 725 726
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
727
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
728

W
Wu Yi 已提交
729
    def _rename_output(self, old_name, new_name):
730 731 732 733 734 735 736 737 738 739
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
740
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
741

F
fengjiayi 已提交
742 743 744 745
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
746 747 748 749 750 751 752 753
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
754
    def output(self, name):
755
        """
756
        Get output arguments by the output parameter name.
757

758 759
        Args:
            name(str): The output parameter name.
760

761 762 763
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
764
        """
F
fengjiayi 已提交
765 766 767 768 769 770
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

771 772 773 774 775 776 777 778
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
779
    def has_attr(self, name):
780
        """
781 782
        Whether this Operator has the attribute with name or not.

783
        Args:
784
            name(str): the attribute name.
785

786 787
        Returns:
            bool: True if has this attribute.
788 789

        """
F
fengjiayi 已提交
790 791 792
        return self.desc.has_attr(name)

    def attr_type(self, name):
793
        """
794
        Get the type of attribute by attribute's name.
795

796 797
        Args:
            name(str): the attribute name.
798

799 800
        Returns:
            core.AttrType: the attribute type.
801
        """
F
fengjiayi 已提交
802 803
        return self.desc.attr_type(name)

W
Wu Yi 已提交
804
    def _set_attr(self, name, val):
805 806 807 808 809 810 811 812 813 814
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
828 829
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
830 831
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
832
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
833 834 835 836
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
837
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
838

F
fengjiayi 已提交
839 840 841 842 843
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
844
        """
845 846
        Get the attribute by name.

847
        Args:
848
            name(str): the attribute name.
849

850 851
        Returns:
            bool|int|str|float|list: The attribute value. The return value
852 853
            can be any valid attribute type.
        """
F
fengjiayi 已提交
854
        return self.desc.attr(name)
Y
Yu Yang 已提交
855

W
Wu Yi 已提交
856
    def _block_attr_id(self, name):
857
        """
G
gongweibao 已提交
858
        Get the block attribute's id by name.
859

860 861
        Args:
            name(str): the attribute name.
862

863 864
        Returns:
            int: the block index.
865
        """
W
Wu Yi 已提交
866
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
867

W
Wu Yi 已提交
868
    def _block_attr(self, name):
G
gongweibao 已提交
869 870 871 872 873 874 875 876 877 878
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
879
        id = self._block_attr_id(name)
G
gongweibao 已提交
880 881 882
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
883
    def _blocks_attr(self, name):
G
gongweibao 已提交
884 885 886 887 888 889 890 891 892 893
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
894
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
895 896 897 898 899
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
900
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
901 902 903 904 905 906 907 908 909 910
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
911
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
912

J
JiayiFeng 已提交
913
    def all_attrs(self):
F
fengjiayi 已提交
914
        """
915 916 917
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
918
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
919 920 921 922
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
923 924
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
925
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
926 927 928
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
929
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
930 931 932 933
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
934 935
        return attr_map

Y
Yu Yang 已提交
936

Y
Yu Yang 已提交
937
class Block(object):
938 939 940 941 942 943 944 945 946 947 948 949 950 951
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
952
        use `Program._create_block()` to create a block.
953 954 955 956 957 958 959 960 961 962 963 964 965 966

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
967
    def __init__(self, program, idx):
Y
Yu Yang 已提交
968
        self.desc = program.desc.block(idx)
969
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
970
        self.ops = list()  # operator list
Y
Yu Yang 已提交
971
        self.program = program
972
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
973

974
    def __str__(self):
Y
Yang Yang(Tony) 已提交
975 976
        return self.to_string(True)

F
fengjiayi 已提交
977 978
    def to_string(self, throw_on_error, with_details=False):
        """
979 980
        Get debug string.

F
fengjiayi 已提交
981 982
        Args:
            throw_on_error(bool): raise exception when self is not initialized
983
                when throw_on_error is True.
F
update  
fengjiayi 已提交
984
            with_details(bool): more details about variables and parameters
985 986
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
987

988 989
        Returns:
            str: The debug string.
F
fengjiayi 已提交
990 991 992 993
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
994
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
995 996
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
997
            for var in list(self.vars.values()):
F
fengjiayi 已提交
998
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
999
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1000
            for op in self.ops:
F
fengjiayi 已提交
1001 1002
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1003 1004 1005
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1006 1007
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1008 1009
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1010 1011 1012

    __repr__ = __str__

Y
Yu Yang 已提交
1013 1014
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1015
        return self.desc.parent
Y
Yu Yang 已提交
1016

Y
Yu Yang 已提交
1017 1018 1019 1020
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1021
    def _set_forward_block_idx(self, idx):
1022 1023 1024 1025 1026 1027 1028 1029 1030
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1031
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1032

Y
Yu Yang 已提交
1033 1034
    @property
    def idx(self):
Y
Yu Yang 已提交
1035
        return self.desc.id
Y
Yu Yang 已提交
1036

Q
Qiao Longfei 已提交
1037
    def var(self, name):
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1051
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1052 1053 1054
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1055 1056
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1057
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1058
        return v
Q
Qiao Longfei 已提交
1059

W
Wu Yi 已提交
1060
    def _var_recursive(self, name):
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1100

Q
Qiao Longfei 已提交
1101
    def all_parameters(self):
1102
        return list(self.iter_parameters())
1103

1104
    def iter_parameters(self):
M
minqiyang 已提交
1105
        return (item[1] for item in six.iteritems(self.vars)
1106
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1107

Y
Yu Yang 已提交
1108
    def create_var(self, *args, **kwargs):
1109
        var = Variable(block=self, *args, **kwargs)
1110 1111
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1112
        return var
Y
Yu Yang 已提交
1113

Q
Qiao Longfei 已提交
1114 1115 1116
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1117
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1118 1119
        """
        Rename variable in vars and ops' inputs and outputs
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1132
        """
M
minqiyang 已提交
1133 1134
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1135

T
typhoonzero 已提交
1136
        if not self.has_var(name):
1137
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1138 1139
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1140
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1141 1142 1143 1144 1145 1146 1147
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1148
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1149 1150 1151 1152
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1153
        orig_var_type = v.type
M
minqiyang 已提交
1154
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1155
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1156
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1157
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1158 1159 1160 1161
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1162
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1163 1164 1165 1166 1167 1168 1169
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1170
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1171 1172
            var = Variable(
                self,
T
typhoonzero 已提交
1173
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1174 1175 1176 1177
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1178
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1179 1180 1181
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1182
        self._sync_with_cpp()
1183
        return var
T
typhoonzero 已提交
1184

W
Wu Yi 已提交
1185 1186
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1187
        self.desc._remove_var(cpt.to_bytes(name))
1188 1189
        del self.vars[name]

Y
Yu Yang 已提交
1190 1191
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1192
        param = Parameter(global_block, *args, **kwargs)
1193
        if 'initializer' in kwargs:
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1214
        return param
Y
Yu Yang 已提交
1215

Y
Yu Yang 已提交
1216
    def append_op(self, *args, **kwargs):
1217 1218 1219 1220 1221 1222
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
X
Xin Pan 已提交
1223 1224 1225
        if _in_imperative_mode():
            op_desc = core.OpDesc()
            op = Operator(block=self, desc=op_desc, *args, **kwargs)
X
Xin Pan 已提交
1226 1227
            sys.stderr.write('%s %s!!!\n' % (type(op.inputs), type(op.outputs)))
            _imperative_tracer().trace(op, op.inputs, op.outputs)
X
Xin Pan 已提交
1228 1229
            return

Y
Yu Yang 已提交
1230
        op_desc = self.desc.append_op()
1231
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1232 1233 1234
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1235
    def _insert_op(self, index, *args, **kwargs):
1236 1237 1238 1239 1240 1241 1242 1243 1244
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1245 1246
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1247 1248 1249 1250
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1251
    def _remove_op(self, index):
1252 1253 1254 1255 1256 1257 1258 1259 1260
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1261 1262
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1263 1264
        del self.ops[index]

W
Wu Yi 已提交
1265
    def _slice_ops(self, start, end):
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1276
        return self.ops[start:end]
Y
Yancey1989 已提交
1277

W
Wu Yi 已提交
1278 1279
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1280
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1281
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1282 1283
        return op

W
Wu Yi 已提交
1284
    def _sync_with_cpp(self):
1285
        """
1286 1287
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1288
        """
Q
Qiao Longfei 已提交
1289 1290 1291 1292 1293
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1294
        # sync variables removed from c++ end
1295
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1296
            if not self.desc.find_var(cpt.to_bytes(var)):
1297 1298
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1299
        # sync operators from cpp
1300 1301 1302 1303
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1320 1321 1322 1323 1324

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1325
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1326 1327 1328 1329 1330 1331 1332

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1346 1347 1348 1349
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1350
    def _copy_param_info_from(self, other):
1351
        """
1352 1353
        Copy the information of parameters from the other block.

1354
        Args:
1355 1356 1357 1358 1359
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1360 1361 1362 1363 1364

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1365 1366
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1367
        for p in other.iter_parameters():
1368 1369 1370
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1371
                raise ValueError("_copy_param_info_from should be invoked with "
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1384
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1385
                error_clip=p.error_clip,
1386 1387 1388
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1389
    def _clone_variable(self, var):
1390 1391
        """
        Clone a variable into current block.
1392

1393 1394 1395 1396
        Args:
            var: the variable to be cloned.

        Returns:
1397
            Variable: the new  variable cloned from 'var' in current block.
1398 1399
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1400 1401 1402 1403 1404
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1405 1406
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1407
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1408 1409 1410 1411 1412 1413
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1414 1415
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1416 1417 1418 1419 1420 1421 1422
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1423 1424
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1425
        return ret_var
1426

Y
Yu Yang 已提交
1427 1428

class Program(object):
D
dzhwinter 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1440
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1441 1442

    Returns:
Y
yuyang18 已提交
1443
        A empty program.
D
dzhwinter 已提交
1444 1445

    Examples:
Y
yuyang18 已提交
1446 1447 1448 1449 1450 1451
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1452 1453 1454

    """

1455 1456
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1457 1458
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1459
        self._seed = 0
Y
yuyang18 已提交
1460
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1461
        self._op_role_var = []
T
tangwei12 已提交
1462 1463 1464 1465

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1466
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1467 1468
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1469 1470 1471

    @property
    def op_role(self):
Y
yuyang18 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1485 1486 1487 1488 1489 1490 1491 1492
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1493 1494 1495 1496 1497 1498 1499
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1500 1501 1502 1503
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1504
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1505 1506

    @contextlib.contextmanager
W
Wu Yi 已提交
1507
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1508 1509 1510 1511 1512 1513 1514
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1515
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1516 1517 1518 1519

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1520
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1521 1522
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1523 1524 1525
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1526 1527
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1528 1529 1530 1531
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1532
        yield
X
Xin Pan 已提交
1533 1534
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1535

1536
    @contextlib.contextmanager
X
Xin Pan 已提交
1537
    def _lr_schedule_guard(self, is_with_opt=False):
1538 1539 1540 1541 1542 1543 1544
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1545 1546 1547 1548
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1549 1550 1551 1552 1553 1554 1555

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1556 1557 1558 1559

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1560 1561
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1562 1563
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1564 1565 1566
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1567 1568
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1569

1570
    def __str__(self):
Y
yuyang18 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1580 1581
        return self.to_string(True)

F
fengjiayi 已提交
1582 1583 1584
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1585

F
fengjiayi 已提交
1586
        Args:
Y
yuyang18 已提交
1587 1588
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1589

Y
yuyang18 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1610 1611
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1612 1613
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1614

W
Wu Yi 已提交
1615
    def _get_desc(self):
Y
yuyang18 已提交
1616 1617 1618 1619 1620 1621 1622
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1623 1624
        return self.desc

X
version  
Xin Pan 已提交
1625 1626 1627
    def _version(self):
        return self.desc._version()

1628
    def clone(self, for_test=False):
Y
yuyang18 已提交
1629 1630 1631
        """
        Create a new, duplicated program.

1632

Y
yuyang18 已提交
1633 1634 1635 1636
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1637

Y
yuyang18 已提交
1638 1639 1640 1641
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1642 1643 1644 1645 1646
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1647 1648

        Args:
Y
yuyang18 已提交
1649 1650
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1651

D
dzhwinter 已提交
1652
        Returns:
Y
yuyang18 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1706 1707
        """
        if for_test:
X
Xin Pan 已提交
1708
            p = self._inference_optimize(prune_read_op=False)
1709
        else:
1710
            p = Program()
G
gongweibao 已提交
1711 1712
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1713
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1714 1715 1716
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1717 1718 1719 1720

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1721
            p._sync_with_cpp()
1722

W
Wu Yi 已提交
1723
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1724
        p._copy_data_info_from(self)
1725
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1726
        return p
1727

W
Wu Yi 已提交
1728
    def _prune(self, targets):
Y
yuyang18 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1744 1745 1746 1747 1748 1749
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1750 1751
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1752
                    # and we need to find the current op that generate this
1753 1754 1755 1756 1757 1758 1759 1760
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1761
                    t = t.op
1762 1763 1764 1765
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1766
                else:
1767 1768
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1769 1770 1771 1772

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1773 1774 1775
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1776
        res._sync_with_cpp()
1777 1778
        return res

X
Xin Pan 已提交
1779
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1780
        """
F
fengjiayi 已提交
1781 1782 1783 1784 1785
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1786
        3. change the :code:`is_test`
Y
yuyang18 已提交
1787 1788 1789
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1790
        Args:
X
Xin Pan 已提交
1791 1792
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1793

Y
yuyang18 已提交
1794 1795 1796 1797 1798 1799
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1800
        res = Program()
1801
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1802 1803 1804 1805

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1806
        if prune_read_op:
1807 1808 1809 1810 1811 1812 1813 1814 1815
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1816
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1817 1818

        # change all `is_test` attributes to True
M
minqiyang 已提交
1819
        for i in six.moves.range(res.desc.num_blocks()):
1820
            block = res.desc.block(i)
M
minqiyang 已提交
1821
            for j in six.moves.range(block.op_size()):
1822 1823
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1824
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1825 1826 1827
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1828
        res._sync_with_cpp()
1829 1830
        return res

1831 1832
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1833 1834 1835 1836 1837 1838 1839
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1840
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1841 1842 1843 1844

        Returns:
            Program: A deserialized program desc.
        """
1845 1846
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1847
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1848
        p._sync_with_cpp()
1849
        return p
Y
Yu Yang 已提交
1850

D
dzhwinter 已提交
1851 1852
    @property
    def random_seed(self):
Y
yuyang18 已提交
1853 1854 1855 1856 1857 1858
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1859 1860
        return self._seed

Q
qiaolongfei 已提交
1861 1862
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1863 1864 1865
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1866 1867
        return self.desc.num_blocks()

D
dzhwinter 已提交
1868 1869 1870 1871 1872 1873
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1874
    def __repr__(self):
1875
        return self.__str__()
1876

Y
Yu Yang 已提交
1877
    def global_block(self):
Y
yuyang18 已提交
1878 1879 1880
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1881 1882
        return self.blocks[0]

Q
Qiao Longfei 已提交
1883
    def block(self, index):
Y
yuyang18 已提交
1884 1885 1886 1887 1888 1889 1890 1891
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1892 1893
        return self.blocks[index]

Y
Yu Yang 已提交
1894
    def current_block(self):
Y
yuyang18 已提交
1895 1896 1897 1898
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1899 1900
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1901
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1912
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1913 1914 1915
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1916 1917 1918 1919
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1920
    def _rollback(self):
Y
yuyang18 已提交
1921 1922 1923 1924 1925
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1926 1927
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1928
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1939 1940 1941
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1942
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1943

W
Wu Yi 已提交
1944
    def _copy_param_info_from(self, other):
1945
        """
1946
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1947

Y
yuyang18 已提交
1948 1949 1950
        Notes: This is a very low level API. Users should not invoke it
        directly.

1951 1952 1953 1954 1955 1956 1957
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1958
            raise TypeError("_copy_param_info_from should be invoked with "
1959 1960 1961
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1962
            raise ValueError("_copy_param_info_from should be invoked with two "
1963
                             "program, with represent the same topology")
W
Wu Yi 已提交
1964
        self.global_block()._copy_param_info_from(other.global_block())
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
1985
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
1986 1987
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1988

Y
yuyang18 已提交
1989 1990 1991
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1992 1993 1994 1995 1996 1997 1998
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1999
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2000 2001 2002
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2003
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2004
                             "program, with represent the same topology")
2005
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2006 2007 2008
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2009
    def list_vars(self):
Y
yuyang18 已提交
2010 2011 2012 2013 2014 2015
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2016
        for each_block in self.blocks:
2017
            for each_var in list(each_block.vars.values()):
2018 2019
                yield each_var

Y
Yu Yang 已提交
2020

Y
Yu Yang 已提交
2021
class Parameter(Variable):
2022
    """
2023
    Parameter is derived from Variable. A parameter is a persistable
2024
    Variable, and will be updated by optimizers after each iteration.
2025
    The training of a neural network is essentially the updating of
2026 2027
    its parameters.

2028
    Relative to a general Variable, a Parameter has several its own
2029 2030
    member variables:

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2043 2044
    """

Y
Yu Yang 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2055 2056 2057

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2058 2059 2060 2061
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2062 2063
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2064
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2065

W
wanghaoshuang 已提交
2066
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2067

F
fengjiayi 已提交
2068 2069 2070
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2071 2072 2073
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2074

F
update  
fengjiayi 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2089
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2090
            for attr_name in additional_attr:
2091 2092
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2093 2094
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2095 2096 2097 2098
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2099

Y
Yu Yang 已提交
2100
# program is a global instance.
Y
Yu Yang 已提交
2101 2102
_main_program_ = Program()
_startup_program_ = Program()
2103

2104

2105
def default_startup_program():
Y
Yu Yang 已提交
2106
    """
Y
yuyang18 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2116

Y
Yu Yang 已提交
2117 2118 2119
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2120
    return _startup_program_
2121

2122

2123
def default_main_program():
Y
Yu Yang 已提交
2124
    """
Y
yuyang18 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2134

Y
Yu Yang 已提交
2135 2136 2137
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2138
    return _main_program_
Y
Yu Yang 已提交
2139 2140 2141 2142 2143


def switch_main_program(program):
    """
    Switch the main program to a new program.
2144

Y
Yu Yang 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2159
    Switch the startup program to a new program
Y
Yu Yang 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2175 2176 2177
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2178

Y
Yu Yang 已提交
2179
    Examples:
Y
yuyang18 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2190

Y
Yu Yang 已提交
2191
    Examples:
Y
yuyang18 已提交
2192 2193 2194 2195 2196 2197

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2198

Y
Yu Yang 已提交
2199
    Args:
Y
yuyang18 已提交
2200
        main_program(Program): New main program inside `with` statement.
2201
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2215 2216


W
Wu Yi 已提交
2217
def _get_var(name, program=None):
X
xuwei06 已提交
2218
    """
Y
yuyang18 已提交
2219
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2220

X
xuwei06 已提交
2221 2222 2223
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2224
        If None, default_global_program() will be used.
X
xuwei06 已提交
2225 2226 2227 2228 2229 2230 2231

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2232
    assert isinstance(program, Program)
X
xuwei06 已提交
2233 2234

    return program.global_block().var(name)
X
Xin Pan 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243


@contextlib.contextmanager
def _imperative_guard():
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = core.Tracer()
    yield
    _imperative_tracer_ = tmp_trace