framework.py 73.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
X
Xin Pan 已提交
21
import sys
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41 42 43
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
44
    'name_scope',
45
]
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
128 129 130
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
131 132 133 134


def grad_var_name(var_name):
    """
135 136
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
137 138 139
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
140

141
def convert_np_dtype_to_dtype_(np_dtype):
142 143
    """
    Convert the data type in numpy to the data type in Paddle
144

145
    Args:
146
        np_dtype(np.dtype): the data type in numpy.
147

148 149
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
150 151

    """
152 153
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
154
        return core.VarDesc.VarType.FP32
155
    elif dtype == np.float64:
156
        return core.VarDesc.VarType.FP64
157
    elif dtype == np.float16:
158
        return core.VarDesc.VarType.FP16
159
    elif dtype == np.int32:
160
        return core.VarDesc.VarType.INT32
161
    elif dtype == np.int16:
162
        return core.VarDesc.VarType.INT16
163
    elif dtype == np.int64:
164
        return core.VarDesc.VarType.INT64
165
    elif dtype == np.bool:
166
        return core.VarDesc.VarType.BOOL
167 168
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
169 170
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
171 172
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
173
    else:
M
minqiyang 已提交
174
        raise ValueError("Not supported numpy dtype %s" % dtype)
175 176 177


def dtype_is_floating(dtype):
178 179 180
    """
    Check the data type is floating or not.
    Args:
181
        dtype(np.dtype|core.VarDesc.VarType): data type.
182 183 184 185 186
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
187
    if not isinstance(dtype, core.VarDesc.VarType):
188 189
        dtype = convert_np_dtype_to_dtype_(dtype)

190 191 192 193
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
194 195


Y
Yang Yang(Tony) 已提交
196
def _debug_string_(proto, throw_on_error=True):
197 198 199 200 201 202 203 204 205 206 207
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
208
    error_fields = list()
Y
Yang Yang(Tony) 已提交
209
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
210 211
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
212 213 214
    return proto.__str__()


X
Xin Pan 已提交
215
class Variable(core.VariableBase):
216
    """
217 218 219
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
220
    two variables in different blocks could have the same name.
221

222 223
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
224

225
    Most of a Variable's member variables can be setted to be None. It mean
226
    it is not available or will be specified later.
227 228

    Args:
229
        block(Block): The block that the variable belongs to.
230 231
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
232 233
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
234
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
235
            Some kinds of variable do not contain shape, just set it to None.
236 237 238
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
239
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
240
            series data.
241
            Default: None
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
264 265
    """

Y
Yu Yang 已提交
266 267
    def __init__(self,
                 block,
Y
Yu Yang 已提交
268
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
269 270 271 272
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
273
                 capacity=None,
Q
QI JUN 已提交
274
                 persistable=None,
F
fengjiayi 已提交
275
                 error_clip=None,
Y
Yu Yang 已提交
276
                 stop_gradient=False,
F
fengjiayi 已提交
277
                 is_data=False,
Y
Yu Yang 已提交
278
                 **kwargs):
Y
Yu Yang 已提交
279
        self.block = block
F
fengjiayi 已提交
280
        self.error_clip = error_clip
Y
Yu Yang 已提交
281 282

        if name is None:
Y
Yu Yang 已提交
283
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
284
        is_new_var = False
M
minqiyang 已提交
285
        name = cpt.to_text(name)
X
Xin Pan 已提交
286
        desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
287

X
Xin Pan 已提交
288 289
        if desc is None:
            # sys.stderr.write('desc is None\n')
M
minqiyang 已提交
290
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
291
            is_new_var = True
X
Xin Pan 已提交
292 293 294
        else:
            # sys.stderr.write('found var %s %s' % (name, self.desc))
            self.desc = desc
Y
Yu Yang 已提交
295

Y
Yu Yang 已提交
296 297 298
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
X
Xin Pan 已提交
299
            # sys.stderr.write('%s vs %s\n' % (self.desc.type(), type))
Y
Yu Yang 已提交
300 301 302 303 304
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
305
        if shape is not None:
Y
Yu Yang 已提交
306
            if is_new_var:
307
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
308 309 310 311 312 313 314 315
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
316
        if dtype is not None:
317
            if not isinstance(dtype, core.VarDesc.VarType):
318
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
319
            if is_new_var:
F
fengjiayi 已提交
320
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
321
            else:
F
fengjiayi 已提交
322
                old_dtype = self.dtype
Q
QI JUN 已提交
323
                if dtype != old_dtype:
Y
Yu Yang 已提交
324 325 326 327 328
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
329 330

        if lod_level is not None:
Y
Yu Yang 已提交
331
            if is_new_var:
332
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
333 334 335 336 337 338 339
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
340 341 342 343 344 345 346 347 348 349 350
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

351 352 353 354 355 356 357 358
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
359
        self.block.vars[name] = self
Y
Yu Yang 已提交
360
        self.op = None
Y
Yu Yang 已提交
361
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
362
        self.is_data = is_data
Y
Yu Yang 已提交
363

X
Xin Pan 已提交
364 365 366 367
    def numpy(self, scope):
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

368
    def __str__(self):
Y
Yang Yang(Tony) 已提交
369 370
        return self.to_string(True)

F
update  
fengjiayi 已提交
371
    def to_string(self, throw_on_error, with_details=False):
372 373 374 375
        """
        Get debug string.

        Args:
376 377
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
378
            with_details(bool): more details about variables and parameters
379 380
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
381

382 383
        Returns:
            str: The debug string.
384
        """
F
update  
fengjiayi 已提交
385 386
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
387
        protostr = self.desc.serialize_to_string()
388
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
389 390 391 392
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
393 394
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
395
        return res_str
396 397 398

    __repr__ = __str__

W
Wu Yi 已提交
399
    def _set_desc(self, input):
400 401 402 403 404 405 406 407 408
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
409 410
        self.desc = input

411 412 413 414
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
415 416 417 418
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
419 420
    @property
    def name(self):
M
minqiyang 已提交
421
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
422

T
typhoonzero 已提交
423 424 425 426
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
427 428 429
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
430
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
431 432

    @property
F
fengjiayi 已提交
433 434
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
435 436 437

    @property
    def lod_level(self):
438
        return self.desc.lod_level()
Y
Yu Yang 已提交
439

Y
Yu Yang 已提交
440 441 442 443
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
444
    def _set_error_clip(self, error_clip):
445 446 447 448 449 450 451 452 453
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
454 455
        self.error_clip = error_clip

Y
Yu Yang 已提交
456

F
fengjiayi 已提交
457 458 459
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
460

461 462
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
463 464 465 466
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
467
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
468 469 470 471 472
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
473 474 475 476
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
477 478 479 480 481 482 483 484 485
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
486
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
487 488 489 490 491 492
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
493 494 495 496 497 498 499 500
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
501 502
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
503 504
        return self.op_proto_map[type]

505 506 507 508
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
509
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
510
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
511 512
        }

F
fengjiayi 已提交
513

Y
Yu Yang 已提交
514
class Operator(object):
515
    """
516 517 518 519 520 521 522
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
523
        type(str): The type of operator. Default None.
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
544
        Block.append_op or Block._prepend_op instead.
545 546 547 548 549 550 551 552 553 554

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
555
    """
556 557 558 559
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
560
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
561
    }
562

Y
Yu Yang 已提交
563 564
    def __init__(self,
                 block,
Y
Yu Yang 已提交
565
                 desc,
Y
Yu Yang 已提交
566 567 568 569 570
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
571
        self.desc = desc
G
gongweibao 已提交
572 573 574 575 576
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
577 578 579 580
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
581 582
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
583 584 585

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
586 587
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
588

G
gongweibao 已提交
589 590
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
591

F
fengjiayi 已提交
592 593 594 595 596
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
597
        self.desc.set_type(type)
F
fengjiayi 已提交
598
        proto = OpProtoHolder.instance().get_op_proto(type)
599

600 601 602
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
603 604
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
605
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
606 607
                    return True
            return False
Q
QI JUN 已提交
608

Y
Yang Yang(Tony) 已提交
609 610 611 612 613 614 615
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
616 617 618 619
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
620 621
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
622 623 624
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
625
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
626
                            in_arg_names.append(arg)
627 628
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
629
                        else:
M
minqiyang 已提交
630
                            in_arg_names.append(cpt.to_text(arg.name))
631
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
632 633
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
634

Y
Yu Yang 已提交
635
        if outputs is not None:
636 637 638 639 640 641 642
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
643 644
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
645 646 647
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
648

F
fengjiayi 已提交
649
            for out_proto in proto.outputs:
650 651 652 653
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
654 655
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
656 657 658
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
659
                    out_arg_names.append(cpt.to_text(arg.name))
660 661
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
662

G
gongweibao 已提交
663 664
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
665
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
666
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
667
                attr_name = attr.name
G
gongweibao 已提交
668
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
669
                    continue
G
gongweibao 已提交
670
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
671 672
                self._update_desc_attr(attr_name, attr_val)

673
        self.desc.check_attrs()
W
Wu Yi 已提交
674
        if self._has_kernel(type):
Q
QI JUN 已提交
675
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
676
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
677

W
Wu Yi 已提交
678
    def _has_kernel(self, op_type):
679 680
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
681
    def to_string(self, throw_on_error):
682
        """
683 684
        Get debug string.

685
        Args:
686 687
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
688

689 690
        Returns:
            str: The debug string.
691 692

        """
693
        protostr = self.desc.serialize_to_string()
694
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
695 696 697 698
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
699 700 701

    __repr__ = __str__

F
fengjiayi 已提交
702 703 704 705 706
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
707
        """
708
        Get the input arguments according to the input parameter name.
709

710 711
        Args:
            name(str): The input parameter name.
712

713 714 715
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
716
        """
F
fengjiayi 已提交
717 718
        return self.desc.input(name)

W
Wu Yi 已提交
719
    def _rename_input(self, old_name, new_name):
720 721 722 723 724 725 726 727 728 729
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
730
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
731

W
Wu Yi 已提交
732
    def _rename_output(self, old_name, new_name):
733 734 735 736 737 738 739 740 741 742
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
743
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
744

F
fengjiayi 已提交
745 746 747 748
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
749 750 751 752 753 754 755 756
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
757
    def output(self, name):
758
        """
759
        Get output arguments by the output parameter name.
760

761 762
        Args:
            name(str): The output parameter name.
763

764 765 766
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
767
        """
F
fengjiayi 已提交
768 769 770 771 772 773
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

774 775 776 777 778 779 780 781
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
782
    def has_attr(self, name):
783
        """
784 785
        Whether this Operator has the attribute with name or not.

786
        Args:
787
            name(str): the attribute name.
788

789 790
        Returns:
            bool: True if has this attribute.
791 792

        """
F
fengjiayi 已提交
793 794 795
        return self.desc.has_attr(name)

    def attr_type(self, name):
796
        """
797
        Get the type of attribute by attribute's name.
798

799 800
        Args:
            name(str): the attribute name.
801

802 803
        Returns:
            core.AttrType: the attribute type.
804
        """
F
fengjiayi 已提交
805 806
        return self.desc.attr_type(name)

W
Wu Yi 已提交
807
    def _set_attr(self, name, val):
808 809 810 811 812 813 814 815 816 817
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
831 832
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
833 834
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
835
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
836 837 838 839
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
840
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
841

F
fengjiayi 已提交
842 843 844 845 846
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
847
        """
848 849
        Get the attribute by name.

850
        Args:
851
            name(str): the attribute name.
852

853 854
        Returns:
            bool|int|str|float|list: The attribute value. The return value
855 856
            can be any valid attribute type.
        """
F
fengjiayi 已提交
857
        return self.desc.attr(name)
Y
Yu Yang 已提交
858

W
Wu Yi 已提交
859
    def _block_attr_id(self, name):
860
        """
G
gongweibao 已提交
861
        Get the block attribute's id by name.
862

863 864
        Args:
            name(str): the attribute name.
865

866 867
        Returns:
            int: the block index.
868
        """
W
Wu Yi 已提交
869
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
870

W
Wu Yi 已提交
871
    def _block_attr(self, name):
G
gongweibao 已提交
872 873 874 875 876 877 878 879 880 881
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
882
        id = self._block_attr_id(name)
G
gongweibao 已提交
883 884 885
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
886
    def _blocks_attr(self, name):
G
gongweibao 已提交
887 888 889 890 891 892 893 894 895 896
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
897
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
898 899 900 901 902
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
903
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
904 905 906 907 908 909 910 911 912 913
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
914
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
915

J
JiayiFeng 已提交
916
    def all_attrs(self):
F
fengjiayi 已提交
917
        """
918 919 920
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
921
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
922 923 924 925
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
926 927
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
928
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
929 930 931
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
932
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
933 934 935 936
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
937 938
        return attr_map

Y
Yu Yang 已提交
939

Y
Yu Yang 已提交
940
class Block(object):
941 942 943 944 945 946 947 948 949 950 951 952 953 954
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
955
        use `Program._create_block()` to create a block.
956 957 958 959 960 961 962 963 964 965 966 967 968 969

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
970
    def __init__(self, program, idx):
Y
Yu Yang 已提交
971
        self.desc = program.desc.block(idx)
972
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
973
        self.ops = list()  # operator list
Y
Yu Yang 已提交
974
        self.program = program
975
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
976

977
    def __str__(self):
Y
Yang Yang(Tony) 已提交
978 979
        return self.to_string(True)

F
fengjiayi 已提交
980 981
    def to_string(self, throw_on_error, with_details=False):
        """
982 983
        Get debug string.

F
fengjiayi 已提交
984 985
        Args:
            throw_on_error(bool): raise exception when self is not initialized
986
                when throw_on_error is True.
F
update  
fengjiayi 已提交
987
            with_details(bool): more details about variables and parameters
988 989
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
990

991 992
        Returns:
            str: The debug string.
F
fengjiayi 已提交
993 994 995 996
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
997
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
998 999
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1000
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1001
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1002
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1003
            for op in self.ops:
F
fengjiayi 已提交
1004 1005
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1006 1007 1008
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1009 1010
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1011 1012
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1013 1014 1015

    __repr__ = __str__

Y
Yu Yang 已提交
1016 1017
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1018
        return self.desc.parent
Y
Yu Yang 已提交
1019

Y
Yu Yang 已提交
1020 1021 1022 1023
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1024
    def _set_forward_block_idx(self, idx):
1025 1026 1027 1028 1029 1030 1031 1032 1033
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1034
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1035

Y
Yu Yang 已提交
1036 1037
    @property
    def idx(self):
Y
Yu Yang 已提交
1038
        return self.desc.id
Y
Yu Yang 已提交
1039

Q
Qiao Longfei 已提交
1040
    def var(self, name):
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1054
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1055 1056 1057
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1058 1059
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1060
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1061
        return v
Q
Qiao Longfei 已提交
1062

W
Wu Yi 已提交
1063
    def _var_recursive(self, name):
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1103

Q
Qiao Longfei 已提交
1104
    def all_parameters(self):
1105
        return list(self.iter_parameters())
1106

1107
    def iter_parameters(self):
M
minqiyang 已提交
1108
        return (item[1] for item in six.iteritems(self.vars)
1109
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1110

Y
Yu Yang 已提交
1111
    def create_var(self, *args, **kwargs):
1112
        var = Variable(block=self, *args, **kwargs)
1113 1114
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1115
        return var
Y
Yu Yang 已提交
1116

Q
Qiao Longfei 已提交
1117 1118 1119
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1120
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1121 1122
        """
        Rename variable in vars and ops' inputs and outputs
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1135
        """
M
minqiyang 已提交
1136 1137
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1138

T
typhoonzero 已提交
1139
        if not self.has_var(name):
1140
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1141 1142
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1143
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1144 1145 1146 1147 1148 1149 1150
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1151
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1152 1153 1154 1155
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1156
        orig_var_type = v.type
M
minqiyang 已提交
1157
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1158
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1159
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1160
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1161 1162 1163 1164
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1165
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1166 1167 1168 1169 1170 1171 1172
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1173
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1174 1175
            var = Variable(
                self,
T
typhoonzero 已提交
1176
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1177 1178 1179 1180
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1181
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1182 1183 1184
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1185
        self._sync_with_cpp()
1186
        return var
T
typhoonzero 已提交
1187

W
Wu Yi 已提交
1188 1189
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1190
        self.desc._remove_var(cpt.to_bytes(name))
1191 1192
        del self.vars[name]

Y
Yu Yang 已提交
1193 1194
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1195
        param = Parameter(global_block, *args, **kwargs)
1196
        if 'initializer' in kwargs:
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1217
        return param
Y
Yu Yang 已提交
1218

Y
Yu Yang 已提交
1219
    def append_op(self, *args, **kwargs):
1220 1221 1222 1223 1224 1225
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
X
Xin Pan 已提交
1226 1227 1228 1229 1230 1231
        if _in_imperative_mode():
            op_desc = core.OpDesc()
            op = Operator(block=self, desc=op_desc, *args, **kwargs)
            _imperative_tracer().trace(op.desc)
            return

Y
Yu Yang 已提交
1232
        op_desc = self.desc.append_op()
1233
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1234 1235 1236
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1237
    def _insert_op(self, index, *args, **kwargs):
1238 1239 1240 1241 1242 1243 1244 1245 1246
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1247 1248
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1249 1250 1251 1252
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1253
    def _remove_op(self, index):
1254 1255 1256 1257 1258 1259 1260 1261 1262
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1263 1264
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1265 1266
        del self.ops[index]

W
Wu Yi 已提交
1267
    def _slice_ops(self, start, end):
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1278
        return self.ops[start:end]
Y
Yancey1989 已提交
1279

W
Wu Yi 已提交
1280 1281
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1282
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1283
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1284 1285
        return op

W
Wu Yi 已提交
1286
    def _sync_with_cpp(self):
1287
        """
1288 1289
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1290
        """
Q
Qiao Longfei 已提交
1291 1292 1293 1294 1295
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1296
        # sync variables removed from c++ end
1297
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1298
            if not self.desc.find_var(cpt.to_bytes(var)):
1299 1300
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1301
        # sync operators from cpp
1302 1303 1304 1305
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1322 1323 1324 1325 1326

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1327
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1328 1329 1330 1331 1332 1333 1334

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1348 1349 1350 1351
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1352
    def _copy_param_info_from(self, other):
1353
        """
1354 1355
        Copy the information of parameters from the other block.

1356
        Args:
1357 1358 1359 1360 1361
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1362 1363 1364 1365 1366

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1367 1368
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1369
        for p in other.iter_parameters():
1370 1371 1372
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1373
                raise ValueError("_copy_param_info_from should be invoked with "
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1386
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1387
                error_clip=p.error_clip,
1388 1389 1390
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1391
    def _clone_variable(self, var):
1392 1393
        """
        Clone a variable into current block.
1394

1395 1396 1397 1398
        Args:
            var: the variable to be cloned.

        Returns:
1399
            Variable: the new  variable cloned from 'var' in current block.
1400 1401
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1402 1403 1404 1405 1406
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1407 1408
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1409
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1410 1411 1412 1413 1414 1415
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1416 1417
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1418 1419 1420 1421 1422 1423 1424
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1425 1426
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1427
        return ret_var
1428

Y
Yu Yang 已提交
1429 1430

class Program(object):
D
dzhwinter 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1442
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1443 1444

    Returns:
Y
yuyang18 已提交
1445
        A empty program.
D
dzhwinter 已提交
1446 1447

    Examples:
Y
yuyang18 已提交
1448 1449 1450 1451 1452 1453
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1454 1455 1456

    """

1457 1458
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1459 1460
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1461
        self._seed = 0
Y
yuyang18 已提交
1462
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1463
        self._op_role_var = []
T
tangwei12 已提交
1464 1465 1466 1467

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1468
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1469 1470
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1471 1472 1473

    @property
    def op_role(self):
Y
yuyang18 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1487 1488 1489 1490 1491 1492 1493 1494
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1495 1496 1497 1498 1499 1500 1501
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1502 1503 1504 1505
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1506
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1507 1508

    @contextlib.contextmanager
W
Wu Yi 已提交
1509
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1510 1511 1512 1513 1514 1515 1516
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1517
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1518 1519 1520 1521

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1522
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1523 1524
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1525 1526 1527
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1528 1529
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1530 1531 1532 1533
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1534
        yield
X
Xin Pan 已提交
1535 1536
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1537

1538
    @contextlib.contextmanager
X
Xin Pan 已提交
1539
    def _lr_schedule_guard(self, is_with_opt=False):
1540 1541 1542 1543 1544 1545 1546
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1547 1548 1549 1550
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1551 1552 1553 1554 1555 1556 1557

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1558 1559 1560 1561

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1562 1563
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1564 1565
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1566 1567 1568
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1569 1570
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1571

1572
    def __str__(self):
Y
yuyang18 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1582 1583
        return self.to_string(True)

F
fengjiayi 已提交
1584 1585 1586
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1587

F
fengjiayi 已提交
1588
        Args:
Y
yuyang18 已提交
1589 1590
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1591

Y
yuyang18 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1612 1613
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1614 1615
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1616

W
Wu Yi 已提交
1617
    def _get_desc(self):
Y
yuyang18 已提交
1618 1619 1620 1621 1622 1623 1624
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1625 1626
        return self.desc

X
version  
Xin Pan 已提交
1627 1628 1629
    def _version(self):
        return self.desc._version()

1630
    def clone(self, for_test=False):
Y
yuyang18 已提交
1631 1632 1633
        """
        Create a new, duplicated program.

1634

Y
yuyang18 已提交
1635 1636 1637 1638
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1639

Y
yuyang18 已提交
1640 1641 1642 1643
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1644 1645 1646 1647 1648
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1649 1650

        Args:
Y
yuyang18 已提交
1651 1652
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1653

D
dzhwinter 已提交
1654
        Returns:
Y
yuyang18 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1708 1709
        """
        if for_test:
X
Xin Pan 已提交
1710
            p = self._inference_optimize(prune_read_op=False)
1711
        else:
1712
            p = Program()
G
gongweibao 已提交
1713 1714
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1715
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1716 1717 1718
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1719 1720 1721 1722

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1723
            p._sync_with_cpp()
1724

W
Wu Yi 已提交
1725
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1726
        p._copy_data_info_from(self)
1727
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1728
        return p
1729

W
Wu Yi 已提交
1730
    def _prune(self, targets):
Y
yuyang18 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1746 1747 1748 1749 1750 1751
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1752 1753
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1754
                    # and we need to find the current op that generate this
1755 1756 1757 1758 1759 1760 1761 1762
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1763
                    t = t.op
1764 1765 1766 1767
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1768
                else:
1769 1770
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1771 1772 1773 1774

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1775 1776 1777
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1778
        res._sync_with_cpp()
1779 1780
        return res

X
Xin Pan 已提交
1781
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1782
        """
F
fengjiayi 已提交
1783 1784 1785 1786 1787
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1788
        3. change the :code:`is_test`
Y
yuyang18 已提交
1789 1790 1791
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1792
        Args:
X
Xin Pan 已提交
1793 1794
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1795

Y
yuyang18 已提交
1796 1797 1798 1799 1800 1801
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1802
        res = Program()
1803
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1804 1805 1806 1807

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1808
        if prune_read_op:
1809 1810 1811 1812 1813 1814 1815 1816 1817
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1818
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1819 1820

        # change all `is_test` attributes to True
M
minqiyang 已提交
1821
        for i in six.moves.range(res.desc.num_blocks()):
1822
            block = res.desc.block(i)
M
minqiyang 已提交
1823
            for j in six.moves.range(block.op_size()):
1824 1825
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1826
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1827 1828 1829
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1830
        res._sync_with_cpp()
1831 1832
        return res

1833 1834
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1835 1836 1837 1838 1839 1840 1841
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1842
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1843 1844 1845 1846

        Returns:
            Program: A deserialized program desc.
        """
1847 1848
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1849
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1850
        p._sync_with_cpp()
1851
        return p
Y
Yu Yang 已提交
1852

D
dzhwinter 已提交
1853 1854
    @property
    def random_seed(self):
Y
yuyang18 已提交
1855 1856 1857 1858 1859 1860
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1861 1862
        return self._seed

Q
qiaolongfei 已提交
1863 1864
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1865 1866 1867
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1868 1869
        return self.desc.num_blocks()

D
dzhwinter 已提交
1870 1871 1872 1873 1874 1875
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1876
    def __repr__(self):
1877
        return self.__str__()
1878

Y
Yu Yang 已提交
1879
    def global_block(self):
Y
yuyang18 已提交
1880 1881 1882
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1883 1884
        return self.blocks[0]

Q
Qiao Longfei 已提交
1885
    def block(self, index):
Y
yuyang18 已提交
1886 1887 1888 1889 1890 1891 1892 1893
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1894 1895
        return self.blocks[index]

Y
Yu Yang 已提交
1896
    def current_block(self):
Y
yuyang18 已提交
1897 1898 1899 1900
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1901 1902
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1903
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1914
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1915 1916 1917
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1918 1919 1920 1921
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1922
    def _rollback(self):
Y
yuyang18 已提交
1923 1924 1925 1926 1927
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1928 1929
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1930
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1941 1942 1943
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1944
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1945

W
Wu Yi 已提交
1946
    def _copy_param_info_from(self, other):
1947
        """
1948
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1949

Y
yuyang18 已提交
1950 1951 1952
        Notes: This is a very low level API. Users should not invoke it
        directly.

1953 1954 1955 1956 1957 1958 1959
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1960
            raise TypeError("_copy_param_info_from should be invoked with "
1961 1962 1963
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1964
            raise ValueError("_copy_param_info_from should be invoked with two "
1965
                             "program, with represent the same topology")
W
Wu Yi 已提交
1966
        self.global_block()._copy_param_info_from(other.global_block())
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
1987
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
1988 1989
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1990

Y
yuyang18 已提交
1991 1992 1993
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1994 1995 1996 1997 1998 1999 2000
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2001
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2002 2003 2004
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2005
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2006
                             "program, with represent the same topology")
2007
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2008 2009 2010
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2011
    def list_vars(self):
Y
yuyang18 已提交
2012 2013 2014 2015 2016 2017
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2018
        for each_block in self.blocks:
2019
            for each_var in list(each_block.vars.values()):
2020 2021
                yield each_var

Y
Yu Yang 已提交
2022

Y
Yu Yang 已提交
2023
class Parameter(Variable):
2024
    """
2025
    Parameter is derived from Variable. A parameter is a persistable
2026
    Variable, and will be updated by optimizers after each iteration.
2027
    The training of a neural network is essentially the updating of
2028 2029
    its parameters.

2030
    Relative to a general Variable, a Parameter has several its own
2031 2032
    member variables:

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2045 2046
    """

Y
Yu Yang 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2057 2058 2059

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2060 2061 2062 2063
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2064 2065
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2066
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2067

W
wanghaoshuang 已提交
2068
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2069

F
fengjiayi 已提交
2070 2071 2072
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2073 2074 2075
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2076

F
update  
fengjiayi 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2091
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2092
            for attr_name in additional_attr:
2093 2094
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2095 2096
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2097 2098 2099 2100
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2101

Y
Yu Yang 已提交
2102
# program is a global instance.
Y
Yu Yang 已提交
2103 2104
_main_program_ = Program()
_startup_program_ = Program()
2105

2106

2107
def default_startup_program():
Y
Yu Yang 已提交
2108
    """
Y
yuyang18 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2118

Y
Yu Yang 已提交
2119 2120 2121
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2122
    return _startup_program_
2123

2124

2125
def default_main_program():
Y
Yu Yang 已提交
2126
    """
Y
yuyang18 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2136

Y
Yu Yang 已提交
2137 2138 2139
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2140
    return _main_program_
Y
Yu Yang 已提交
2141 2142 2143 2144 2145


def switch_main_program(program):
    """
    Switch the main program to a new program.
2146

Y
Yu Yang 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2161
    Switch the startup program to a new program
Y
Yu Yang 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2177 2178 2179
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2180

Y
Yu Yang 已提交
2181
    Examples:
Y
yuyang18 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2192

Y
Yu Yang 已提交
2193
    Examples:
Y
yuyang18 已提交
2194 2195 2196 2197 2198 2199

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2200

Y
Yu Yang 已提交
2201
    Args:
Y
yuyang18 已提交
2202
        main_program(Program): New main program inside `with` statement.
2203
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2217 2218


W
Wu Yi 已提交
2219
def _get_var(name, program=None):
X
xuwei06 已提交
2220
    """
Y
yuyang18 已提交
2221
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2222

X
xuwei06 已提交
2223 2224 2225
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2226
        If None, default_global_program() will be used.
X
xuwei06 已提交
2227 2228 2229 2230 2231 2232 2233

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2234
    assert isinstance(program, Program)
X
xuwei06 已提交
2235 2236

    return program.global_block().var(name)
X
Xin Pan 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245


@contextlib.contextmanager
def _imperative_guard():
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = core.Tracer()
    yield
    _imperative_tracer_ = tmp_trace