framework.py 194.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'ComplexVariable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
183

184 185 186 187 188 189 190
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
191 192

    Returns:
193
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198 199 200 201 202 203 204 205
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
206 207

    """
L
lujun 已提交
208
    return _dygraph_tracer_ is not None
209 210


211 212 213
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
214
        ), "We don't support %s in imperative mode" % func.__name__
215 216 217 218 219 220 221 222
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
223 224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We only support '%s()' in static graph mode, please call 'paddle.enable_static()' to enter static graph mode." % func.__name__
233 234 235 236 237
        return func(*args, **kwargs)

    return __impl__


238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


273 274
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
275
static_only = wrap_decorator(_static_only_)
276
fake_interface_only = wrap_decorator(_fake_interface_only_)
277 278


L
lujun 已提交
279 280
def _dygraph_tracer():
    return _dygraph_tracer_
281

W
Wu Yi 已提交
282

M
minqiyang 已提交
283
def _current_expected_place():
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
            _global_expected_place_ = core.CUDAPlace(0)
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
304 305


L
Leo Chen 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
323
def _cpu_num():
324
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
325 326 327 328 329 330 331 332
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
333
        os.environ['CPU_NUM'] = str(1)
334
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
335 336 337 338 339 340 341 342 343 344
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
345 346


347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
362 363 364 365
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

366
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
367 368 369 370

    Examples:
        .. code-block:: python

371 372
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
373 374 375 376
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
377
def cuda_places(device_ids=None):
L
lujun 已提交
378
    """
379 380 381 382
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
383
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
384 385

    If :code:`device_ids` is None, environment variable of
386
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
387
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
388
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
389
    If :code:`FLAGS_selected_gpus` is not set, all visible
390
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
391 392

    If :code:`device_ids` is not None, it should be the device
393
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
394
    the returned list would be 
C
Chen Weihang 已提交
395
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
396
    
397 398
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
399 400

    Returns:
C
Chen Weihang 已提交
401
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
402 403 404 405

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
406 407 408 409 410 411
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
412 413

    """
S
sneaxiy 已提交
414 415 416
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
417
        device_ids = _cuda_ids()
S
sneaxiy 已提交
418 419 420 421 422 423
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
424
    """
C
Chen Weihang 已提交
425
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
426 427 428
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
429 430
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
431 432
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
433

434 435
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
436 437

    Returns:
C
Chen Weihang 已提交
438
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
439 440 441 442

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
443 444 445 446 447 448
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
449 450
    """

S
sneaxiy 已提交
451 452 453 454 455 456
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
457
    """
458
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
459 460 461

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
462 463 464 465
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
466

467 468
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
469 470

    Returns:
471
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
472 473 474 475

    Examples:
        .. code-block:: python

476
            import paddle.fluid as fluid
L
lujun 已提交
477 478 479 480 481
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
482 483 484
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
485 486
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
487 488


489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
515
@signature_safe_contextmanager
516 517
def name_scope(prefix=None):
    """
518 519
    :api_attr: Static Graph

520
    Generate hierarchical name prefix for the operators in Static Graph.
521

T
Tao Luo 已提交
522 523 524
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
525
        Don't use it in dygraph, since it will cause memory leak.
526 527

    Args:
T
Tao Luo 已提交
528
        prefix(str, optional): prefix. Default is none.
529 530 531

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
532

533 534 535 536
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
             a = paddle.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
537
             b = a + 1
538
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
539
                c = b * 1
540
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
541
                d = c / 1
542 543 544
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
545 546 547
                g = f - 1

          # Op are created in the default main program.  
548
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
564 565
    """
    # TODO(panyx0718): Only [0-9a-z].
566
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
567 568 569
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
570
        assert prefix, "namescope prefix can not be empty."
571 572
        global _name_scope
        _name_scope = _name_scope.child(prefix)
573 574 575 576
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
577 578 579 580 581 582 583 584 585 586 587 588


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
589 590 591
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
592 593 594 595


def grad_var_name(var_name):
    """
596 597
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
598 599 600
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
601

602
def convert_np_dtype_to_dtype_(np_dtype):
603 604
    """
    Convert the data type in numpy to the data type in Paddle
605

606
    Args:
607
        np_dtype(np.dtype): the data type in numpy.
608

609 610
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
611 612

    """
613 614
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
615
        return core.VarDesc.VarType.FP32
616
    elif dtype == np.float64:
617
        return core.VarDesc.VarType.FP64
618
    elif dtype == np.float16:
619
        return core.VarDesc.VarType.FP16
620
    elif dtype == np.int32:
621
        return core.VarDesc.VarType.INT32
622
    elif dtype == np.int16:
623
        return core.VarDesc.VarType.INT16
624
    elif dtype == np.int64:
625
        return core.VarDesc.VarType.INT64
626
    elif dtype == np.bool:
627
        return core.VarDesc.VarType.BOOL
628
    elif dtype == np.uint16:
629 630 631
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
632 633
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
634 635
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
636
    else:
M
minqiyang 已提交
637
        raise ValueError("Not supported numpy dtype %s" % dtype)
638 639 640


def dtype_is_floating(dtype):
641 642 643
    """
    Check the data type is floating or not.
    Args:
644
        dtype(np.dtype|core.VarDesc.VarType): data type.
645 646 647 648 649
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
650
    if not isinstance(dtype, core.VarDesc.VarType):
651 652
        dtype = convert_np_dtype_to_dtype_(dtype)

653 654 655 656
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
657 658


Y
Yang Yang(Tony) 已提交
659
def _debug_string_(proto, throw_on_error=True):
660 661 662 663 664 665 666 667 668 669 670
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
671
    error_fields = list()
Y
Yang Yang(Tony) 已提交
672
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
673 674
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
675 676 677
    return proto.__str__()


678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
735
    target_block = default_main_program().current_block()
736 737 738 739 740 741 742 743 744 745 746

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
747
            })
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
787
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
788
                fill_constant([1], 1, force_cpu=True, out=temp_1)
789
                temp_end = target_block.create_var(dtype=slice_item.dtype)
790
                target_block.append_op(
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
830

831
    # starts
L
Leo Chen 已提交
832
    if contain_var(slice_start):
833 834 835 836 837 838 839 840
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
841 842 843 844
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
845 846 847 848 849 850 851
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
852 853 854
    else:
        attrs['ends'] = slice_end

855 856
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
857
        if contain_var(slice_step):
858 859 860 861 862 863 864
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
865 866
        else:
            attrs['strides'] = slice_step
867 868 869 870 871 872
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
873
        slice_out_var = target_block.create_var(
874 875 876
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

877
        target_block.append_op(
878 879 880 881 882 883 884
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
885
        strided_slice_out_var = target_block.create_var(
886 887 888
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
889
        target_block.append_op(
890 891 892 893 894 895 896 897
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
898
        reverse_out_var = target_block.create_var(
899 900 901
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
902
        target_block.append_op(
903 904 905 906 907 908 909 910 911 912 913
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
914
class Variable(object):
915
    """
J
Jiabin Yang 已提交
916
    **Notes**:
917
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
918

919 920
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
921 922 923
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
924
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
925 926
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
927

928
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
929
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
930

T
tianshuo78520a 已提交
931
    Most of a Variable's member variables can be set to be None. It mean
932
    it is not available or will be specified later.
933

934
    Examples:
935 936
        In Static Graph Mode:

937 938
        .. code-block:: python

939
            import paddle.fluid as fluid
940
            cur_program = fluid.Program()
941 942 943 944
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
945
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
946 947 948 949 950 951 952 953 954

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

955 956
    """

Y
Yu Yang 已提交
957 958
    def __init__(self,
                 block,
Y
Yu Yang 已提交
959
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
960 961 962 963
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
964
                 capacity=None,
Q
QI JUN 已提交
965
                 persistable=None,
F
fengjiayi 已提交
966
                 error_clip=None,
Y
Yu Yang 已提交
967
                 stop_gradient=False,
F
fengjiayi 已提交
968
                 is_data=False,
H
Huihuang Zheng 已提交
969
                 need_check_feed=False,
H
hong 已提交
970
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
971
                 **kwargs):
Y
Yu Yang 已提交
972 973
        self.block = block
        if name is None:
Y
Yu Yang 已提交
974
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
975

Y
Yu Yang 已提交
976
        if dtype is not None:
977
            if not isinstance(dtype, core.VarDesc.VarType):
978
                dtype = convert_np_dtype_to_dtype_(dtype)
979

H
hong 已提交
980 981
        self.belong_to_optimizer = belong_to_optimizer

982 983 984 985 986
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
987

988 989 990
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
991

992 993 994 995 996 997 998
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
999

1000
        if shape is not None:
1001
            if is_new_var:
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1043

1044 1045
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1046

1047 1048 1049 1050 1051 1052 1053
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1054

1055 1056 1057 1058
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1059

1060
    @fake_interface_only
1061 1062
    def detach(self):
        """
J
Jiabin Yang 已提交
1063
        **Notes**:
T
tianshuo78520a 已提交
1064
            **This API is ONLY available in Dygraph mode**
1065

1066
        Returns a new Variable, detached from the current graph.
1067

1068
        Returns:
J
Jiabin Yang 已提交
1069
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1070

1071

1072 1073 1074 1075 1076
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1077
                from paddle.fluid.dygraph import Linear
1078 1079 1080 1081
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1082
                    linear = Linear(32, 64)
1083
                    data = to_variable(data)
1084
                    x = linear(data)
1085 1086 1087
                    y = x.detach()

        """
1088
        pass
1089

1090
    @fake_interface_only
1091
    def numpy(self):
1092
        """
J
Jiabin Yang 已提交
1093
        **Notes**:
T
tianshuo78520a 已提交
1094
            **This API is ONLY available in Dygraph mode**
1095

J
Jiabin Yang 已提交
1096
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1097 1098 1099 1100 1101

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1102
            ndarray: dtype is same as current Variable
1103 1104 1105 1106 1107 1108

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1109
                from paddle.fluid.dygraph import Linear
1110 1111 1112 1113
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1114
                    linear = Linear(32, 64)
1115
                    data = to_variable(data)
1116
                    x = linear(data)
1117 1118 1119
                    print(x.numpy())

        """
1120
        pass
1121

1122
    @fake_interface_only
1123 1124
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1125
        **Notes**:
T
tianshuo78520a 已提交
1126
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1138
                from paddle.fluid.dygraph import Linear
1139 1140
                import numpy as np

1141
                data = np.ones([3, 1024], dtype='float32')
1142
                with fluid.dygraph.guard():
1143
                    linear = fluid.dygraph.Linear(1024, 4)
1144
                    t = to_variable(data)
1145
                    linear(t)  # call with default weight
1146
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1147 1148
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1149 1150

        """
1151
        pass
1152

1153
    @fake_interface_only
1154
    def backward(self, retain_graph=False):
1155
        """
J
Jiabin Yang 已提交
1156
        **Notes**:
T
tianshuo78520a 已提交
1157
            **This API is ONLY available in Dygraph mode**
1158

1159
        Run backward of current Graph which starts from current Tensor.
1160

J
Jiabin Yang 已提交
1161
        Args:
1162 1163 1164 1165
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1166

J
Jiabin Yang 已提交
1167 1168
        Returns:
            NoneType: None
1169 1170 1171 1172 1173

        Examples:
            .. code-block:: python

                import numpy as np
1174 1175
                import paddle
                paddle.disable_static()
1176 1177

                x = np.ones([2, 2], np.float32)
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
                loss = paddle.reduce_sum(ret)
                loss.backward()
1188 1189

        """
1190
        pass
1191

1192
    @fake_interface_only
1193
    def gradient(self):
1194
        """
J
Jiabin Yang 已提交
1195
        **Notes**:
T
tianshuo78520a 已提交
1196
            **This API is ONLY available in Dygraph mode**
1197 1198 1199

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1200
        Returns:
1201
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1202 1203 1204 1205 1206 1207 1208

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1209
                # example1: return ndarray
1210 1211 1212 1213 1214 1215 1216 1217 1218
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1219
                    loss2.backward()
1220 1221
                    print(loss2.gradient())

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1235
        """
1236
        pass
1237

1238
    @fake_interface_only
1239
    def clear_gradient(self):
1240
        """
J
Jiabin Yang 已提交
1241
        **Notes**:
T
tianshuo78520a 已提交
1242
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1243 1244

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1245

J
Jiabin Yang 已提交
1246
        Clear  (set to ``0`` ) the Gradient of Current Variable
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1265
                    loss2.backward()
1266 1267 1268 1269 1270
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1271
        pass
X
Xin Pan 已提交
1272

1273
    def __str__(self):
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1318

F
update  
fengjiayi 已提交
1319
    def to_string(self, throw_on_error, with_details=False):
1320 1321 1322
        """
        Get debug string.

J
Jiabin Yang 已提交
1323 1324 1325 1326 1327
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1328

1329 1330
        Returns:
            str: The debug string.
1331 1332 1333 1334 1335

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1336

1337 1338 1339 1340 1341
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1342
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1343
                print("=============with detail===============")
1344
                print(new_variable.to_string(True, True))
1345
        """
F
update  
fengjiayi 已提交
1346 1347
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1348
        protostr = self.desc.serialize_to_string()
1349
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1350 1351 1352 1353
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1354 1355 1356
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1357
        return res_str
1358 1359 1360

    __repr__ = __str__

1361
    @property
1362
    def stop_gradient(self):
J
Jiabin Yang 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1378 1379
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1380 1381 1382
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1383 1384
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1385 1386 1387 1388
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1389
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1390 1391
                assert (out1.gradient() == 0).all()
        """
1392
        return self._stop_gradient
1393

1394 1395
    @stop_gradient.setter
    def stop_gradient(self, s):
1396
        self._stop_gradient = s
1397

1398 1399
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1421
        return self.desc.persistable()
1422

Y
Yu Yang 已提交
1423 1424
    @persistable.setter
    def persistable(self, p):
1425
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1426

Y
Yu Yang 已提交
1427 1428
    @property
    def name(self):
J
Jiabin Yang 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1445
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1467 1468
    @name.setter
    def name(self, new_name):
1469
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1470

Y
Yu Yang 已提交
1471 1472
    @property
    def shape(self):
J
Jiabin Yang 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1490
        # convert to tuple, make it as same as numpy API.
1491
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1492 1493

    @property
F
fengjiayi 已提交
1494
    def dtype(self):
J
Jiabin Yang 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1511
        return self.desc.dtype()
Y
Yu Yang 已提交
1512 1513 1514

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1536 1537 1538
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1539
        return self.desc.lod_level()
Y
Yu Yang 已提交
1540

Y
Yu Yang 已提交
1541 1542
    @property
    def type(self):
J
Jiabin Yang 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1559
        return self.desc.type()
Y
Yu Yang 已提交
1560

W
Wu Yi 已提交
1561
    def _set_error_clip(self, error_clip):
1562 1563 1564 1565 1566 1567 1568 1569 1570
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1571 1572
        self.error_clip = error_clip

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1613
            raise ValueError("slice step can not be zero")
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1689
    def _cloneVar(self, copy=False):
1690 1691
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1692 1693
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1694 1695 1696 1697
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1698
        new_var = self._cloneVar()
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1709
        new_var = self._cloneVar()
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1720
                return self._cloneVar(True)
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1739
                return self._cloneVar(True)
1740
            index = int(item)
1741
            if (index > 0 and index >= self.shape[axis]) \
1742 1743 1744 1745 1746 1747 1748
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1749
        return _getitem_impl_(self, item)
1750

Y
Yu Yang 已提交
1751

F
fengjiayi 已提交
1752 1753 1754
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1755

1756 1757
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1758 1759 1760 1761
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1762
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1763 1764 1765 1766
        ret_values.append(op_proto)
    return ret_values


1767 1768
class ComplexVariable(object):
    """
1769 1770
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1771 1772 1773
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1774
        **The constructor of ComplexTensor should not be invoked directly.**
1775

1776
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1777 1778

    Args:
1779 1780
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1781 1782 1783 1784
    
    Examples:
        .. code-block:: python

1785
            import paddle
1786 1787
            import numpy as np

1788 1789 1790 1791 1792 1793 1794 1795
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1796 1797
    """

1798 1799 1800 1801 1802
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1849 1850 1851
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1852 1853 1854 1855

    __repr__ = __str__


F
fengjiayi 已提交
1856
class OpProtoHolder(object):
1857 1858 1859 1860
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1870
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1871 1872 1873 1874 1875 1876
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1877 1878 1879 1880 1881 1882 1883 1884
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1885 1886
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1887 1888
        return self.op_proto_map[type]

1889 1890 1891 1892 1893 1894
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1895 1896 1897 1898
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1899
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1900
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1901 1902
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1903 1904
        }

F
fengjiayi 已提交
1905

X
Xin Pan 已提交
1906
class Operator(object):
1907
    """
1908 1909 1910 1911 1912 1913 1914
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1915
        type(str): The type of operator. Default None.
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1936
        Block.append_op or Block._prepend_op instead.
1937 1938 1939 1940

    Examples:
        .. code-block:: python

1941
            import paddle.fluid as fluid
1942
            cur_program = fluid.Program()
1943 1944 1945 1946 1947
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1948
    """
1949
    OP_WITHOUT_KERNEL_SET = {
1950 1951
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1952 1953
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1954
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1955
    }
1956

Y
Yu Yang 已提交
1957 1958
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1959
                 desc,
Y
Yu Yang 已提交
1960 1961 1962
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1963
                 attrs=None):
L
lujun 已提交
1964
        if in_dygraph_mode():
1965 1966
            if type is None:
                raise ValueError(
1967
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1968
            self._type = type
M
minqiyang 已提交
1969
            self.attrs = attrs if attrs else {}
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1984
                )] = self.block.program._op_role
1985 1986 1987

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1988 1989
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1990 1991 1992 1993 1994 1995 1996 1997

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1998
                    "`type` to initialized an Operator can not be None.")
1999 2000
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2001 2002 2003 2004 2005 2006 2007
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2008 2009 2010 2011 2012 2013 2014

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2046
                        if not isinstance(in_args, (list, tuple)):
2047 2048 2049 2050 2051 2052
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2053
                        for index, arg in enumerate(in_args):
2054 2055 2056 2057
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2058
                            elif isinstance(arg, (Variable, core.VarBase)):
2059
                                in_arg_names.append(cpt.to_text(arg.name))
2060
                            else:
2061 2062 2063 2064
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2065 2066
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2093
                        if not in_dygraph_mode():
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2113
    def _has_kernel(self, op_type):
2114 2115
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2116
    def to_string(self, throw_on_error):
2117
        """
2118 2119
        Get debug string.

2120
        Args:
2121 2122
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2123

2124 2125
        Returns:
            str: The debug string.
2126 2127

        """
2128
        protostr = self.desc.serialize_to_string()
2129
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2130 2131
        return _debug_string_(proto, throw_on_error)

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2225
    def __str__(self):
2226
        return self._to_readable_code()
2227 2228 2229

    __repr__ = __str__

F
fengjiayi 已提交
2230 2231
    @property
    def type(self):
2232
        return self.desc.type()
F
fengjiayi 已提交
2233 2234

    def input(self, name):
2235
        """
2236
        Get the input arguments according to the input parameter name.
2237

2238 2239
        Args:
            name(str): The input parameter name.
2240

2241 2242 2243
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2244
        """
F
fengjiayi 已提交
2245 2246
        return self.desc.input(name)

W
Wu Yi 已提交
2247
    def _rename_input(self, old_name, new_name):
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2258
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2259

W
Wu Yi 已提交
2260
    def _rename_output(self, old_name, new_name):
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2271
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2272

F
fengjiayi 已提交
2273 2274 2275 2276
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2277 2278 2279 2280 2281 2282 2283 2284
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2285
    def output(self, name):
2286
        """
2287
        Get output arguments by the output parameter name.
2288

2289 2290
        Args:
            name(str): The output parameter name.
2291

2292 2293 2294
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2295
        """
F
fengjiayi 已提交
2296 2297 2298 2299 2300 2301
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2302 2303 2304 2305 2306 2307 2308 2309
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2310
    def has_attr(self, name):
2311
        """
2312 2313
        Whether this Operator has the attribute with name or not.

2314
        Args:
2315
            name(str): the attribute name.
2316

2317 2318
        Returns:
            bool: True if has this attribute.
2319 2320

        """
F
fengjiayi 已提交
2321 2322 2323
        return self.desc.has_attr(name)

    def attr_type(self, name):
2324
        """
2325
        Get the type of attribute by attribute's name.
2326

2327 2328
        Args:
            name(str): the attribute name.
2329

2330 2331
        Returns:
            core.AttrType: the attribute type.
2332
        """
F
fengjiayi 已提交
2333 2334
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2335
    def _set_attr(self, name, val):
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2346 2347
        self._update_desc_attr(name, val)

2348 2349 2350
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2362 2363
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2364 2365
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2366
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2367 2368 2369 2370
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2371
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2372

F
fengjiayi 已提交
2373 2374 2375 2376 2377
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2378
        """
2379 2380
        Get the attribute by name.

2381
        Args:
2382
            name(str): the attribute name.
2383

2384 2385
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2386 2387
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2388
        return self.desc.attr(name)
Y
Yu Yang 已提交
2389

W
Wu Yi 已提交
2390
    def _block_attr_id(self, name):
2391
        """
G
gongweibao 已提交
2392
        Get the block attribute's id by name.
2393

2394 2395
        Args:
            name(str): the attribute name.
2396

2397 2398
        Returns:
            int: the block index.
2399
        """
W
Wu Yi 已提交
2400
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2401

W
Wu Yi 已提交
2402
    def _block_attr(self, name):
G
gongweibao 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2413
        id = self._block_attr_id(name)
G
gongweibao 已提交
2414 2415 2416
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2417
    def _blocks_attr(self, name):
G
gongweibao 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2428
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2429 2430 2431 2432 2433
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2434
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2445
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2446

J
JiayiFeng 已提交
2447
    def all_attrs(self):
F
fengjiayi 已提交
2448
        """
2449 2450 2451
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2452
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2453 2454 2455 2456
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2457 2458
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2459
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2460 2461 2462
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2463
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2464 2465 2466 2467
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2468 2469
        return attr_map

2470 2471 2472
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2473 2474 2475 2476

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2477 2478 2479
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2480 2481 2482 2483 2484 2485 2486 2487

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2488 2489
            return False

2490 2491 2492 2493 2494 2495
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2496

Y
Yu Yang 已提交
2497
class Block(object):
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2512
        use `Program._create_block()` to create a block.
2513 2514 2515 2516

    Examples:
        .. code-block:: python

2517 2518 2519
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2520 2521 2522 2523 2524 2525 2526 2527 2528
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2529
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2530
        self.desc = program.desc.block(idx)
2531
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2532
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2533
        self.program = program
2534
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2535

2536
    def __str__(self):
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2583

F
fengjiayi 已提交
2584 2585
    def to_string(self, throw_on_error, with_details=False):
        """
2586 2587
        Get debug string.

F
fengjiayi 已提交
2588 2589
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2590
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2591
            with_details(bool): more details about variables and parameters
2592 2593
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2594

2595 2596
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2597 2598 2599 2600
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2601
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2602 2603
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2604
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2605
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2606
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2607
            for op in self.ops:
F
fengjiayi 已提交
2608 2609
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2610 2611 2612
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2613 2614
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2615 2616
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2617 2618 2619

    __repr__ = __str__

Y
Yu Yang 已提交
2620 2621
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2622
        return self.desc.parent
Y
Yu Yang 已提交
2623

Y
Yu Yang 已提交
2624 2625 2626 2627
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2628
    def _set_forward_block_idx(self, idx):
2629 2630 2631 2632 2633 2634 2635 2636 2637
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2638
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2639

2640 2641 2642 2643 2644 2645 2646 2647
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2648 2649
    @property
    def idx(self):
Y
Yu Yang 已提交
2650
        return self.desc.id
Y
Yu Yang 已提交
2651

Q
Qiao Longfei 已提交
2652
    def var(self, name):
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2666
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2667 2668 2669
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2670 2671
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2672
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2673
        return v
Q
Qiao Longfei 已提交
2674

X
Xin Pan 已提交
2675
    def _find_var_recursive(self, name):
2676 2677 2678 2679 2680 2681 2682
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2683
            Variable: the Variable with the giving name. Or None if not found.
2684
        """
Y
Yu Yang 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2709
        return None
Y
Yu Yang 已提交
2710

X
Xin Pan 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2730

Q
Qiao Longfei 已提交
2731
    def all_parameters(self):
2732
        return list(self.iter_parameters())
2733

2734
    def iter_parameters(self):
M
minqiyang 已提交
2735
        return (item[1] for item in six.iteritems(self.vars)
2736
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2737

Y
Yu Yang 已提交
2738
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2739 2740 2741
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2742 2743 2744
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2745
        return var
Y
Yu Yang 已提交
2746

Q
Qiao Longfei 已提交
2747 2748 2749
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2750
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2751 2752
        """
        Rename variable in vars and ops' inputs and outputs
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2765
        """
M
minqiyang 已提交
2766 2767
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2768

T
typhoonzero 已提交
2769
        if not self.has_var(name):
2770
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2771 2772
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2773
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2774 2775 2776 2777 2778 2779
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2780
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2781 2782 2783 2784
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2785
        orig_var_type = v.type
M
minqiyang 已提交
2786
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2787
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2788
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2789
        if var_type == "Parameter":
L
Leo Chen 已提交
2790 2791
            if in_dygraph_mode():
                var = ParamBase(
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2802 2803
                var = Parameter(
                    self,
2804 2805 2806 2807 2808 2809 2810 2811 2812
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2813
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2814 2815
            var = Variable(
                self,
T
typhoonzero 已提交
2816
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2817 2818 2819 2820
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2821
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2822 2823 2824
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2825
        self._sync_with_cpp()
2826
        return var
T
typhoonzero 已提交
2827

W
Wu Yi 已提交
2828 2829
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2830
        self.desc._remove_var(cpt.to_bytes(name))
2831 2832
        del self.vars[name]

Y
Yu Yang 已提交
2833 2834
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2835
        param = None
L
Leo Chen 已提交
2836
        if in_dygraph_mode():
2837
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2838 2839
        else:
            param = Parameter(global_block, *args, **kwargs)
2840
        if 'initializer' in kwargs:
2841 2842 2843 2844 2845

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2846 2847 2848 2849 2850
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2862
                # TODO already inited, do nothing, should log a warning
2863 2864 2865
                pass
            else:
                initializer(param, self)
2866
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2867
        return param
Y
Yu Yang 已提交
2868

Y
Yu Yang 已提交
2869
    def append_op(self, *args, **kwargs):
2870 2871 2872 2873 2874 2875
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2876
        if in_dygraph_mode():
2877
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2878
            type = kwargs.get("type", None)
2879 2880 2881
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2882
                type=type,
M
minqiyang 已提交
2883 2884
                inputs=None,
                outputs=None,
2885
                attrs=attrs)
2886

M
minqiyang 已提交
2887 2888 2889
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2890
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2891 2892

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2893
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2894 2895
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2896
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2897
        else:
2898 2899 2900 2901 2902 2903 2904 2905 2906
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2907
            self.ops.append(op)
M
minqiyang 已提交
2908

2909 2910
        return op

W
Wu Yi 已提交
2911
    def _insert_op(self, index, *args, **kwargs):
2912 2913 2914 2915 2916 2917 2918 2919 2920
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2921 2922
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2923 2924 2925 2926
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2927
    def _remove_op(self, index):
2928 2929 2930 2931 2932 2933 2934 2935 2936
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2937 2938
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2939 2940
        del self.ops[index]

W
Wu Yi 已提交
2941
    def _slice_ops(self, start, end):
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2952
        return self.ops[start:end]
Y
Yancey1989 已提交
2953

W
Wu Yi 已提交
2954
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2955
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2956 2957
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2958
            op = Operator(
J
Jiabin Yang 已提交
2959
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2960

J
Jiabin Yang 已提交
2961
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2962
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2963 2964
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2965
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2966
        else:
2967 2968 2969 2970 2971 2972 2973 2974
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2975
            self.ops.insert(0, op)
2976

Y
Yu Yang 已提交
2977 2978
        return op

W
Wu Yi 已提交
2979
    def _sync_with_cpp(self):
2980
        """
2981 2982
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2983
        """
Q
Qiao Longfei 已提交
2984 2985 2986 2987 2988
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2989
        # sync variables removed from c++ end
2990
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2991
            if not self.desc.find_var(cpt.to_bytes(var)):
2992 2993
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2994
        # sync operators from cpp
2995 2996 2997 2998
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3015 3016 3017 3018 3019

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3020
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3021 3022 3023 3024 3025 3026 3027

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3041 3042 3043 3044
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3045
    def _copy_param_info_from(self, other):
3046
        """
3047 3048
        Copy the information of parameters from the other block.

3049
        Args:
3050 3051 3052 3053 3054
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3055 3056 3057 3058 3059

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3060 3061
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3062
        for p in other.iter_parameters():
3063 3064 3065
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3066 3067
                # if the Parameter is pruned, v may be None
                continue
3068
            assert isinstance(v, Variable)
3069
            new_p = None
L
Leo Chen 已提交
3070 3071
            if in_dygraph_mode():
                new_p = ParamBase(
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3083 3084
                new_p = Parameter(
                    block=self,
3085 3086 3087
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3088 3089
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3090 3091 3092 3093 3094 3095
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3096 3097
            self.vars[new_p.name] = new_p

3098
    def _clone_variable(self, var, force_persistable=True):
3099 3100
        """
        Clone a variable into current block.
3101

3102 3103
        Args:
            var: the variable to be cloned.
3104 3105 3106
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3107 3108

        Returns:
3109
            Variable: the new  variable cloned from 'var' in current block.
3110 3111
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3112 3113 3114 3115 3116
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3117 3118
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3119
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3120 3121 3122 3123 3124 3125
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3126
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3127 3128
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3129 3130 3131 3132 3133 3134 3135
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3136
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3137 3138
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3139
        return ret_var
3140

Y
Yu Yang 已提交
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3237
    def remove_input_by_id(self, node_id):
3238 3239 3240 3241 3242 3243
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3244
        self.node.remove_input(node_id)
3245

3246
    def remove_input(self, node):
3247 3248 3249 3250
        """
        Remove a node from inputs.

        Args:
3251
            node(IrNode): the node being removed.
3252
        """
3253
        self.node.remove_input(node.node)
3254

3255
    def append_input(self, node):
3256 3257 3258 3259
        """
        Append a node in inputs.

        Args:
3260
            node(IrNode): the node being appended.
3261
        """
3262
        self.node.append_input(node.node)
3263 3264 3265 3266 3267 3268 3269 3270

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3271
    def remove_output_by_id(self, node_id):
3272 3273 3274 3275 3276 3277
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3278
        self.node.remove_output(node_id)
3279

3280
    def remove_output(self, node):
3281 3282 3283 3284
        """
        Remove a node from outputs.

        Args:
3285
            node(IrNode): the node being removed.
3286
        """
3287
        self.node.remove_output(node.node)
3288

3289
    def append_output(self, node):
3290 3291 3292 3293
        """
        Append a node in outputs.

        Args:
3294
            node(IrNode): the node being appended.
3295
        """
3296
        self.node.append_output(node.node)
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3344
            "The node variable description can not be None."
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3355
            "The node variable description can not be None."
3356 3357
        return self.node.var().persistable()

3358 3359 3360 3361 3362 3363 3364 3365
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3366
            "The node variable description can not be None."
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3377
            "The node variable description can not be None."
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3388
            "The node variable description can not be None."
3389 3390
        return self.node.var().shape()

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3438
            "The node operator description can not be None."
3439 3440
        self.node.op()._rename_input(old_input_name, new_input_name)

3441 3442 3443 3444 3445 3446 3447 3448 3449
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3450
            "The node operator description can not be None."
3451 3452
        self.node.op()._rename_output(old_output_name, new_output_name)

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3464
            "The node operator description can not be None."
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3478
            "The node operator description can not be None."
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3489
            "The node operator description can not be None."
3490 3491
        return self.node.op().set_type(new_type)

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3507
            "The node operator description can not be None."
3508 3509 3510 3511
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3512
                all(isinstance(v, Block) for v in val):
3513 3514
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3515
                isinstance(val, core.ProgramDesc):
3516 3517 3518 3519
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3520 3521 3522 3523 3524 3525 3526 3527
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3528
            "The node operator description can not be None."
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3539
            "The node operator description can not be None."
3540 3541
        return self.node.op().output_arg_names()

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3563 3564
class IrGraph(object):
    """
3565
    Python IrGraph. Beneath it is a core.Graph, which is used for
3566
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3567 3568
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3569 3570 3571 3572
    """

    def __init__(self, graph, for_test=False):
        """
3573 3574
        Construct an IrGraph using core.Graph.

3575 3576 3577 3578 3579 3580 3581 3582 3583
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3584 3585 3586 3587
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3588 3589 3590
        Warns:
            The method only clones the graph structure, not its attributes.

3591 3592 3593
        Returns:
            IrGraph: A new and duplicated graph.
        """
3594
        g = self.graph.clone()
3595 3596
        return IrGraph(g, self._for_test)

3597
    def is_test(self):
3598 3599 3600
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3601 3602
        return self._for_test

W
WangZhen 已提交
3603
    def all_nodes(self):
3604 3605 3606
        """
        Return all nodes included in the graph as a set.
        """
3607
        return {IrNode(node) for node in self.graph.nodes()}
3608

3609
    def all_var_nodes(self):
3610 3611 3612
        """
        Return all variable nodes included in the graph as a set.
        """
3613
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3614

3615
    def all_persistable_nodes(self):
3616 3617 3618
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3619 3620 3621 3622 3623
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3624
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3625

3626
    def all_op_nodes(self):
3627 3628 3629
        """
        Return all operator nodes included in the graph as a set.
        """
3630
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3631

3632
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3644
            IrVarNode: the created persistable variable node.
3645
        """
3646 3647 3648 3649 3650
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3651
        return IrVarNode(self.graph.create_var_node(var_desc))
3652 3653

    def create_var_node(self, name, var_type, shape, var_dtype):
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3665
            IrVarNode: the created variable node.
3666 3667
        """

3668 3669 3670 3671
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3672
        return IrVarNode(self.graph.create_var_node(var_desc))
3673

3674 3675 3676 3677 3678 3679
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3680
    def create_var_node_from_desc(self, var_desc):
3681 3682 3683 3684 3685 3686 3687 3688
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3689
            IrVarNode: the created variable node.
3690
        """
3691
        return IrVarNode(self.graph.create_var_node(var_desc))
3692 3693

    def create_op_node(self, op_type, attrs, inputs, outputs):
3694 3695 3696 3697 3698 3699 3700
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3701
            outputs(dict): the outputs of the operator node.
3702 3703

        Returns:
3704
            IrOpNode: the created operator node.
3705
        """
3706 3707
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3708
        for attr, value in six.iteritems(attrs):
3709
            self._update_desc_attr(op_desc, attr, value)
3710
        for input_name, var_nodes in six.iteritems(inputs):
3711 3712 3713 3714
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3715
        for output_name, var_nodes in six.iteritems(outputs):
3716 3717 3718 3719
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3720
        return IrOpNode(self.graph.create_op_node(op_desc))
3721 3722

    def create_op_node_from_desc(self, op_desc):
3723 3724 3725 3726 3727 3728 3729
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3730
            IrOpNode: the created operator node.
3731
        """
3732
        return IrOpNode(self.graph.create_op_node(op_desc))
3733 3734

    def update_input_link(self, old_input_node, new_input_node, op_node):
3735 3736 3737 3738
        """
        Update the input's link of a operator node.

        Args:
3739 3740 3741
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3742
        """
3743
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3744 3745
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3746 3747 3748 3749
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3750
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3751

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3762 3763
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3764 3765 3766 3767 3768 3769
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3770
    def link_to(self, node_in, node_out):
3771 3772 3773 3774
        """
        Connect two nodes.

        Args:
3775 3776
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3777
        """
3778
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3779
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3780 3781
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3782 3783

    def safe_remove_nodes(self, remove_nodes):
3784 3785 3786 3787 3788 3789 3790
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3791
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3792 3793 3794 3795
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3796 3797
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3798

Z
Zhen Wang 已提交
3799 3800 3801 3802 3803 3804 3805 3806
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3807
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3808 3809 3810 3811
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3812
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3813 3814 3815
                        ]
                    else:
                        var_nodes[each_var_name].append(
3816 3817
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3818 3819
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3820
    def has_circle(self):
3821 3822 3823 3824 3825 3826
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3827 3828 3829
        return core.has_circle(self.graph)

    def graph_num(self):
3830 3831 3832 3833 3834 3835
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3836 3837 3838
        return core.graph_num(self.graph)

    def topology_sort(self):
3839 3840 3841
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3842
        Notes: the `graph` can not contain a circle.
3843 3844

        Returns:
Z
Zhen Wang 已提交
3845
            list(IrNode): nodes in topology order.
3846
        """
3847
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3848
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3849 3850

    def build_adjacency_list(self):
3851 3852 3853 3854
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3855
            dict{IrNode: set(IrNode)}: the adjacency list.
3856
        """
3857 3858 3859 3860 3861
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3862

3863 3864 3865 3866 3867 3868 3869 3870
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3871
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3872 3873 3874 3875 3876
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3877 3878 3879
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3880
                                          + ' -o ' + pdf_save_path, shell=True)
3881 3882 3883 3884 3885
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3886
        remove_ctr_vars = set()
3887
        if remove_ctr_var:
3888
            for node in self.all_var_nodes():
3889 3890 3891
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3892 3893
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3894 3895
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3896 3897 3898 3899 3900 3901
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3902 3903 3904 3905
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3906 3907
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3908 3909 3910 3911 3912 3913 3914
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3915 3916 3917
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3918
        WARN: When the graph includes backward operator nodes, the
3919 3920 3921 3922 3923 3924
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3925
        convert_pass = core.get_pass('graph_to_program_pass')
3926 3927
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3928 3929 3930 3931
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3959
class Program(object):
D
dzhwinter 已提交
3960
    """
3961
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3962
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3963
    it will contain nested block.
3964

J
Jiabin Yang 已提交
3965 3966 3967
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3968

J
Jiabin Yang 已提交
3969
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3970
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3971 3972 3973 3974 3975 3976 3977
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3978
    **Notes**:
3979 3980 3981
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3982 3983

    Returns:
J
Jiabin Yang 已提交
3984
        Program: An empty Program.
D
dzhwinter 已提交
3985 3986

    Examples:
3987 3988
        .. code-block:: python

3989 3990 3991 3992
            import paddle
            import paddle.static as static

            paddle.enable_static()
3993

3994 3995 3996 3997 3998
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
3999
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4000 4001 4002

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4003 4004 4005

    """

4006 4007
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4008 4009
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4010 4011
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4012
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4013
        self.__op_role_var = []
T
tangwei12 已提交
4014

4015 4016
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4017
        self._is_distributed = False
4018
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4019
        self._is_chief = False
4020 4021 4022
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4023
        self._endpoints = []
4024 4025 4026
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4027
        self._trainers_endpoints = []
4028
        # the distributed lookup table names
T
tangwei12 已提交
4029
        self._distributed_lookup_table = None
4030 4031 4032

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4033 4034
        self._use_lamb = False

4035 4036 4037
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4038

4039 4040 4041
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4042
        self._program_config = None
4043

H
hutuxian 已提交
4044 4045 4046
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4047 4048 4049
        # appending gradients times
        self._appending_grad_times = 0

4050 4051 4052 4053
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4054 4055 4056
        # compiled program, i.e. Graph
        self._graph = None

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4067 4068
                import paddle
                import paddle.static as static
4069

4070 4071 4072
                paddle.enable_static()

                prog = static.default_main_program()
4073 4074 4075 4076 4077
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4078
                prog1 = static.default_main_program()
4079 4080 4081 4082 4083 4084 4085 4086
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4087
    @property
4088
    def _op_role(self):
Y
yuyang18 已提交
4089 4090 4091 4092 4093 4094 4095 4096
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4097
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4098 4099 4100 4101
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4102 4103
        return self._current_role

4104 4105
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4106 4107 4108
        self._current_role = role

    @property
4109
    def _op_role_var(self):
Y
yuyang18 已提交
4110
        """
4111
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4112

4113
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4114 4115 4116

        Notes: This is a very low-level API. Users should not use it directly.
        """
4117
        return self.__op_role_var
Y
yuyang18 已提交
4118

4119
    @signature_safe_contextmanager
4120 4121 4122 4123 4124
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4125 4126 4127 4128
        try:
            yield
        finally:
            self._current_role = tmp_role
4129

S
rename  
sneaxiy 已提交
4130
    @signature_safe_contextmanager
W
Wu Yi 已提交
4131
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4132 4133 4134 4135 4136 4137 4138
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4139
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4140 4141 4142

        Examples:

4143
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4144
            >>> p, g = backward(...)
W
Wu Yi 已提交
4145
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4146 4147
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4148
        tmp_role = self._current_role
4149
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4150

Y
yuyang18 已提交
4151 4152
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4153
        self.__op_role_var = [
4154 4155 4156
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4157 4158 4159 4160 4161
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4162

S
rename  
sneaxiy 已提交
4163
    @signature_safe_contextmanager
X
Xin Pan 已提交
4164
    def _lr_schedule_guard(self, is_with_opt=False):
4165 4166 4167 4168 4169 4170 4171
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4172 4173 4174 4175
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4176 4177 4178

        Examples:

4179
            >>> import paddle.fluid as fluid
4180 4181 4182 4183
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4184 4185

        tmp_role = self._current_role
4186
        tmp_var = self.__op_role_var
4187

4188 4189
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4190 4191
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4192
        # TODO(typhoonzero): how to set target learning rate var
4193
        self.__op_role_var = []
4194 4195 4196 4197 4198
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4199

4200
    def __str__(self):
Y
yuyang18 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4249
            program_str += '\n'
4250
        return program_str
Y
Yang Yang(Tony) 已提交
4251

F
fengjiayi 已提交
4252 4253 4254
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4255

J
Jiabin Yang 已提交
4256 4257 4258
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4259

J
Jiabin Yang 已提交
4260
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4261

H
haowang101779990 已提交
4262
        Returns:
J
Jiabin Yang 已提交
4263
            str: The debug string describe current Program.
Y
yuyang18 已提交
4264 4265

        Raises:
J
Jiabin Yang 已提交
4266
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4267

4268 4269 4270
        Examples:
            .. code-block:: python

4271 4272 4273 4274
                import paddle
                import paddle.static as static

                paddle.enable_static()
4275

4276 4277 4278
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4279
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4280
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4281
                print("program string without detail: {}".format(prog_string))
4282
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4283
        """
4284 4285 4286 4287 4288 4289 4290 4291 4292
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4293 4294 4295 4296 4297 4298
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4299 4300
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4301 4302
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4303

W
Wu Yi 已提交
4304
    def _get_desc(self):
Y
yuyang18 已提交
4305 4306 4307 4308 4309 4310 4311
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4312 4313
        return self.desc

X
version  
Xin Pan 已提交
4314 4315 4316
    def _version(self):
        return self.desc._version()

4317
    def clone(self, for_test=False):
Y
yuyang18 已提交
4318
        """
4319 4320 4321 4322
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4323

4324
        Create a new Program with forward content of original one when ``for_test=True``.
4325
        Create a new Program as same as the original one when ``for_test=False``.
4326

4327
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4328 4329 4330
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4331

4332 4333
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4334 4335
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4336
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4337

J
Jiabin Yang 已提交
4338
        For Example:
4339
          ::
L
Luo Tao 已提交
4340

4341 4342 4343 4344 4345 4346
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4347
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4348
            loss = paddle.mean(pred)
4349
            # Here we use clone before Momentum
4350 4351
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4352
            optimizer.minimize(loss)
4353

J
Jiabin Yang 已提交
4354
        Args:
4355

4356 4357
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4358

J
Jiabin Yang 已提交
4359
        Returns:
4360
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4361

Y
yuyang18 已提交
4362 4363 4364

        Examples:

4365 4366 4367 4368 4369 4370 4371
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4388
            1. To clone a test program, the sample code is:
4389 4390 4391
                .. code-block:: python

                    import six
4392 4393 4394 4395 4396 4397
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4410 4411
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4412 4413 4414

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4415 4416 4417
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4418
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4419 4420
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4421
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4422 4423
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4424
                            test_program = train_program.clone(for_test=True)
4425
                    print_prog(test_program)
J
Jiabin Yang 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4435 4436 4437
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4438 4439 4440
                            sgd.minimize(avg_loss)


4441
            2. The clone method can be avoid if you create program for training and program for testing individually.
4442 4443 4444
                .. code-block:: python

                    import six
4445 4446 4447 4448 4449 4450
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4462

4463
                    def network():
4464
                        img = static.data(name='image', shape=[None, 784])
4465
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4466 4467
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4468
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4469 4470
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4471 4472
                        return avg_loss

4473 4474 4475 4476 4477
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4478
                            avg_loss = network()
4479
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4480
                            sgd.minimize(avg_loss)
4481
                    # the test startup program is not used.
4482 4483
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4484 4485
                            avg_loss = network()
                    print_prog(test_program_2)
4486

4487
            The two code snippets above will generate and print same programs.
4488
        """
4489 4490 4491 4492 4493

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4494
        pruned_origin_block_id_map = None
4495
        if for_test:
4496 4497 4498 4499 4500 4501 4502 4503 4504
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4505
        else:
4506
            p = Program()
G
gongweibao 已提交
4507 4508
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4509
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4510 4511 4512
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4513 4514

            p._current_role = self._current_role
4515
            p.__op_role_var = self.__op_role_var
4516
            p._appending_grad_times = self._appending_grad_times
4517 4518
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4519

4520 4521
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4522
            p._sync_with_cpp()
4523

W
Wu Yi 已提交
4524
        p._copy_param_info_from(self)
4525
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4526
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4527
        return p
4528

4529
    def _prune(self, targets):
Y
yuyang18 已提交
4530 4531 4532 4533 4534 4535 4536 4537
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4538
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4539 4540 4541 4542
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4543
        """
4544
        return self._prune_with_input([], targets)
4545 4546

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4547
        """
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4558
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4559 4560 4561 4562 4563 4564
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4565 4566 4567 4568
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4569 4570
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4571 4572
        if not isinstance(targets, list):
            targets = [targets]
4573 4574 4575

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4576 4577 4578
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4579

4580 4581 4582 4583
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4584 4585 4586
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4587
                else:
4588 4589 4590
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4591 4592 4593 4594 4595 4596 4597 4598

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4615 4616 4617 4618 4619 4620 4621 4622
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4623

4624
        res = Program()
4625 4626 4627
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4628 4629 4630
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4631
        res._sync_with_cpp()
4632 4633 4634 4635 4636

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4637 4638
        return res

X
Xin Pan 已提交
4639
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4640
        """
F
fengjiayi 已提交
4641 4642 4643 4644 4645
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4646
        3. change the :code:`is_test`
Y
yuyang18 已提交
4647 4648 4649
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4650
        Args:
X
Xin Pan 已提交
4651 4652
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4653

Y
yuyang18 已提交
4654 4655 4656 4657 4658 4659
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4660
        res = Program()
4661
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4662 4663 4664 4665

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4666
        if prune_read_op:
4667 4668 4669 4670 4671 4672 4673 4674 4675
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4676
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4677 4678

        # change all `is_test` attributes to True
M
minqiyang 已提交
4679
        for i in six.moves.range(res.desc.num_blocks()):
4680
            block = res.desc.block(i)
M
minqiyang 已提交
4681
            for j in six.moves.range(block.op_size()):
4682 4683
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4684
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4685 4686 4687
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4688
        res._sync_with_cpp()
4689 4690
        return res

4691 4692
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4693
        """
4694 4695 4696
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4697

4698 4699
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4700

J
Jiabin Yang 已提交
4701
        Args:
Y
yuyang18 已提交
4702

J
Jiabin Yang 已提交
4703
            binary_str_type (str): the binary prootbuf string.
4704

J
Jiabin Yang 已提交
4705 4706
        Returns:
            Program: A deserialized Program.
4707 4708 4709 4710

        Examples:
            .. code-block:: python

4711 4712 4713 4714
                import paddle
                import paddle.static as static

                paddle.enable_static()
4715

4716 4717 4718 4719
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4720

4721
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4722

4723
                    z = paddle.matmul(x=x, y=y)
4724

4725 4726
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4727

4728
                    print(static.default_main_program())
4729
                    print(prog_restored)
Y
yuyang18 已提交
4730
        """
4731 4732
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4733
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4734
        p._sync_with_cpp()
4735
        return p
Y
Yu Yang 已提交
4736

4737
    @staticmethod
4738
    def _construct_from_desc(desc):
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4754 4755
    @property
    def random_seed(self):
Y
yuyang18 已提交
4756
        """
J
Jiabin Yang 已提交
4757
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4758 4759
        the random seed from random device.

4760 4761
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4762 4763 4764

        Returns:
            int64: Random seed in current Program
4765

4766 4767 4768 4769

        Examples:
            .. code-block:: python

4770 4771 4772
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4773

4774 4775 4776
                paddle.enable_static()

                prog = static.default_main_program()
4777
                random_seed = prog.random_seed
4778
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4779 4780 4781
                print(random_seed)
                ## 0
                ## the default random seed is 0
4782 4783

                # Here we need to set random seed before we use fluid.layers.dropout
4784
                prog.random_seed = 1
4785
                z_var = F.dropout(x_var, 0.7)
4786

4787
                print(prog.random_seed)
4788 4789
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4790
        """
D
dzhwinter 已提交
4791 4792
        return self._seed

Q
qiaolongfei 已提交
4793 4794
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4795
        """
4796 4797
        The number of :ref:`api_guide_Block_en`  in this Program.

4798 4799
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4800 4801 4802

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4803

4804 4805 4806 4807

        Examples:
            .. code-block:: python

4808 4809 4810 4811
                import paddle
                import paddle.static as static

                paddle.enable_static()
4812

4813
                prog = static.default_main_program()
4814 4815
                num_blocks = prog.num_blocks
                print(num_blocks)
4816

4817 4818
                # print result:
                # 1
Y
yuyang18 已提交
4819
        """
Q
qiaolongfei 已提交
4820 4821
        return self.desc.num_blocks()

D
dzhwinter 已提交
4822 4823 4824
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4825 4826 4827
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4828 4829
        self._seed = seed

Y
Yu Yang 已提交
4830
    def __repr__(self):
4831
        return self.__str__()
4832

Y
Yu Yang 已提交
4833
    def global_block(self):
Y
yuyang18 已提交
4834
        """
4835 4836
        .. note::
            This API has no effect in Dygraph mode.
4837 4838 4839

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4840 4841
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4842

4843 4844 4845 4846

        Examples:
            .. code-block:: python

4847 4848 4849 4850
                import paddle
                import paddle.static as static

                paddle.enable_static()
4851

4852
                prog = static.default_main_program()
4853 4854
                gb_block = prog.global_block()
                print(gb_block)
4855

Y
yuyang18 已提交
4856
        """
Y
Yu Yang 已提交
4857 4858
        return self.blocks[0]

Q
Qiao Longfei 已提交
4859
    def block(self, index):
Y
yuyang18 已提交
4860
        """
4861 4862
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4863

4864 4865
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4866 4867
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4868

J
Jiabin Yang 已提交
4869 4870
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4871 4872 4873 4874

        Examples:
            .. code-block:: python

4875 4876 4877 4878
                import paddle
                import paddle.static as static

                paddle.enable_static()
4879

4880
                prog = static.default_main_program()
4881 4882
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4883
        """
Q
Qiao Longfei 已提交
4884 4885
        return self.blocks[index]

Y
Yu Yang 已提交
4886
    def current_block(self):
Y
yuyang18 已提交
4887
        """
4888 4889
        .. note::
            This API has no effect in Dygraph mode.
4890

J
Jiabin Yang 已提交
4891 4892
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4893

J
Jiabin Yang 已提交
4894 4895
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4896

4897 4898 4899
        Examples:
            .. code-block:: python

4900 4901 4902 4903
                import paddle
                import paddle.static as static

                paddle.enable_static()
4904

4905
                prog = static.default_main_program()
4906 4907
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4908
        """
Y
Yu Yang 已提交
4909 4910
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4911
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4912 4913 4914 4915 4916
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4917

Y
yuyang18 已提交
4918 4919 4920 4921 4922
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4923
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4924 4925 4926
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4927 4928 4929 4930
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4931
    def _rollback(self):
Y
yuyang18 已提交
4932 4933 4934 4935 4936
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4937 4938
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4939
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4950 4951 4952
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4953
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4954

W
Wu Yi 已提交
4955
    def _copy_param_info_from(self, other):
4956
        """
4957
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4958

Y
yuyang18 已提交
4959 4960 4961
        Notes: This is a very low level API. Users should not invoke it
        directly.

4962 4963 4964 4965 4966 4967 4968
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4969 4970 4971
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4972

W
Wu Yi 已提交
4973
        self.global_block()._copy_param_info_from(other.global_block())
4974

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4986 4987 4988
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4989 4990
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4991
        self._parameters_on_pservers = other._parameters_on_pservers
4992
        self._endpoints = other._endpoints
4993
        self._ps_endpoint = other._ps_endpoint
4994 4995
        self._distributed_lookup_table = other._distributed_lookup_table

4996
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4997 4998
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4999

Y
yuyang18 已提交
5000 5001 5002
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5003 5004
        Args:
            other(Program): Other program
5005 5006 5007 5008
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5009 5010 5011 5012 5013

        Returns:
            None
        """
        if not isinstance(other, Program):
5014 5015 5016
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5017

5018 5019 5020 5021 5022
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5023 5024 5025

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5026 5027
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5028
            for var in list(block.vars.values()):
5029 5030 5031 5032 5033 5034 5035
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5036

5037
    def list_vars(self):
Y
yuyang18 已提交
5038
        """
5039
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5040

J
Jiabin Yang 已提交
5041
        Returns:
5042
            iterable Tensors: The Generator will yield every Tensor in this program.
5043 5044 5045 5046

        Examples:
            .. code-block:: python

5047 5048
                import paddle
                import paddle.static as static
5049

5050 5051 5052 5053 5054
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5055 5056
                for var in prog.list_vars():
                    print(var)
5057 5058 5059
                
                # var img : fluid.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5060
        """
5061
        for each_block in self.blocks:
5062
            for each_var in list(each_block.vars.values()):
5063 5064
                yield each_var

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5075 5076 5077 5078
                import paddle
                import paddle.static as static

                paddle.enable_static()
5079

5080 5081
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5082
                hidden = static.nn.fc(x=data, size=10)
5083 5084
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5085 5086 5087 5088 5089 5090 5091

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5092 5093
                # persist trainable param fc_0.w_0 : fluid.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : fluid.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5104

5105
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5106
class Parameter(Variable):
5107
    """
5108
    Parameter is derived from Variable. A parameter is a persistable
5109
    Variable, and will be updated by optimizers after each iteration.
5110
    The training of a neural network is essentially the updating of
5111 5112
    its parameters.

5113
    Relative to a general Variable, a Parameter has several its own
5114 5115
    member variables:

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5126 5127
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5128 5129
    """

5130 5131 5132 5133 5134 5135
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5136 5137 5138 5139 5140
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5141
        if len(shape) == 0:
5142 5143
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5144 5145 5146

        for each in shape:
            if each < 0:
5147 5148 5149
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5150 5151

        Variable.__init__(
5152 5153 5154 5155 5156 5157 5158
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5159 5160 5161 5162
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5163 5164
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5165
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5166

5167 5168
        self.need_clip = kwargs.get('need_clip', True)

5169 5170
        self.is_distributed = False

F
fengjiayi 已提交
5171
    def __str__(self):
5172
        return self._to_readable_code()
F
fengjiayi 已提交
5173

F
update  
fengjiayi 已提交
5174 5175 5176
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5177

F
update  
fengjiayi 已提交
5178 5179 5180 5181 5182 5183 5184 5185
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5186 5187 5188 5189 5190 5191 5192 5193 5194
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5195 5196 5197 5198 5199 5200
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5201
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5202
            for attr_name in additional_attr:
5203 5204
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5205 5206
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5207 5208 5209 5210
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5211

5212 5213
class ParamBase(core.VarBase):
    """
5214 5215 5216
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5217 5218 5219
    The training of a neural network is essentially the updating of
    its ParamBase.

5220
    Relative to a general Tensor, a ParamBase has several its own
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5233 5234
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5265 5266
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5267 5268 5269 5270 5271 5272 5273

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5274 5275
        self.need_clip = kwargs.get('need_clip', True)

5276
        self.is_distributed = False
5277
        # self.block = default_main_program().global_block()
5278

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5292
    def __str__(self):
5293
        """
5294
        Convert a ParamBase object to a readable string.
5295

5296
        Returns(str): A readable string.
5297 5298 5299 5300

        Examples:
            .. code-block:: python

5301
                import paddle
5302
                paddle.disable_static()
5303 5304 5305 5306 5307 5308 5309 5310
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5311
                paddle.enable_static()
5312
        """
5313 5314
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5315 5316 5317 5318

    __repr__ = __str__


Y
Yu Yang 已提交
5319
# program is a global instance.
Y
Yu Yang 已提交
5320 5321
_main_program_ = Program()
_startup_program_ = Program()
5322

5323

5324
def default_startup_program():
Y
Yu Yang 已提交
5325
    """
Y
yuyang18 已提交
5326 5327
    Get default/global startup program.

5328 5329 5330 5331 5332
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
  
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5333

5334 5335
    Returns:
        Program: current default startup program.
5336

5337
    Returns type: 
5338 5339 5340 5341

    Examples:
        .. code-block:: python

5342
            import paddle
5343

5344 5345 5346 5347 5348 5349
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program=main_program, startup_program=startup_program):
                x = paddle.data(name="x", shape=[-1, 784], dtype='float32')
                y = paddle.data(name="y", shape=[-1, 1], dtype='int32')
5350
                z = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
5351

5352 5353
                print("main program is: {}".format(paddle.static.default_main_program()))
                print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5354
    """
Y
Yu Yang 已提交
5355
    return _startup_program_
5356

5357

5358
def default_main_program():
Y
Yu Yang 已提交
5359
    """
5360
    This API can be used to get ``default main program`` which store the 
5361
    descriptions of Ops and tensors.
5362
    
5363 5364
    For example ``z = paddle.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5365

5366 5367
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5368
    :code:`default_main_program` when the program is not specified.
5369

5370
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
5371
    
Y
Yu Yang 已提交
5372
    Returns:
5373
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5374 5375 5376 5377

    Examples:
        ..  code-block:: python

5378 5379 5380
            import paddle
            
            paddle.enable_static()
5381
            # Sample Network:
5382 5383
            data = paddle.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = paddle.data(name='label', shape=[None, 1], dtype='int64')
5384
            
5385 5386 5387 5388 5389 5390
            conv1 = paddle.static.nn.conv2d(data, 4, 5, 1, act=None)
            bn1 = paddle.static.nn.batch_norm(conv1, act='relu')
            pool1 = paddle.nn.functional.pool2d(bn1, 2, 'max', 2)
            conv2 = paddle.static.nn.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = paddle.static.nn.batch_norm(conv2, act='relu')
            pool2 = paddle.nn.functional.pool2d(bn2, 2, 'max', 2)
5391
            
5392 5393
            fc1 = paddle.static.nn.fc(x=pool2, size=50, activation='relu')
            fc2 = paddle.static.nn.fc(x=fc1, size=102, activation='softmax')
5394
            
5395 5396 5397
            loss = paddle.nn.functional.loss.cross_entropy(input=fc2, label=label)
            loss = paddle.mean(loss)
            opt = paddle.optimizer.Momentum(
5398 5399
                learning_rate=0.1,
                momentum=0.9,
5400
                weight_decay=paddle.regularizer.L2Decay(1e-4))
5401 5402
            opt.minimize(loss)
            
5403
            #print the number of blocks in the program, 1 in this case
5404
            print(paddle.static.default_main_program().num_blocks) #[1]
5405 5406

            #print the description of variable 'image'
5407
            print(paddle.static.default_main_program())
5408

Y
Yu Yang 已提交
5409
    """
Y
Yu Yang 已提交
5410
    return _main_program_
Y
Yu Yang 已提交
5411 5412 5413 5414 5415


def switch_main_program(program):
    """
    Switch the main program to a new program.
5416

Y
Yu Yang 已提交
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5431
    Switch the startup program to a new program
Y
Yu Yang 已提交
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5444
@signature_safe_contextmanager
Y
Yu Yang 已提交
5445 5446
def program_guard(main_program, startup_program=None):
    """
5447 5448
    :api_attr: Static Graph

5449 5450 5451
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5452

G
guofei 已提交
5453
    Args:
5454 5455
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5456 5457 5458 5459
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5460
    Examples:
5461 5462
       .. code-block:: python
       
5463
          import paddle
Y
yuyang18 已提交
5464

5465 5466 5467 5468 5469
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5470
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5471 5472 5473

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5474

Y
Yu Yang 已提交
5475
    Examples:
5476
       .. code-block:: python
Y
yuyang18 已提交
5477

5478
          import paddle
5479

5480 5481 5482 5483 5484
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5485
    
Y
Yu Yang 已提交
5486
    """
5487
    from .data_feeder import check_type
5488 5489
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5490 5491
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5492
        check_type(startup_program, 'startup_program', Program,
5493
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5494
        startup_program = switch_startup_program(startup_program)
5495 5496 5497 5498 5499 5500
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5501 5502


W
Wu Yi 已提交
5503
def _get_var(name, program=None):
X
xuwei06 已提交
5504
    """
Y
yuyang18 已提交
5505
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5506

X
xuwei06 已提交
5507 5508 5509
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5510
        If None, default_global_program() will be used.
X
xuwei06 已提交
5511 5512 5513 5514 5515 5516 5517

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5518
    assert isinstance(program, Program)
X
xuwei06 已提交
5519 5520

    return program.global_block().var(name)
5521 5522


S
rename  
sneaxiy 已提交
5523
@signature_safe_contextmanager
L
lujun 已提交
5524 5525 5526 5527
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5528
    core._switch_tracer(tracer)
M
minqiyang 已提交
5529

5530 5531 5532 5533 5534
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5535 5536


S
rename  
sneaxiy 已提交
5537
@signature_safe_contextmanager
L
lujun 已提交
5538
def _dygraph_place_guard(place):
5539 5540 5541
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5542

5543 5544 5545
    try:
        yield
    finally:
5546
        _global_expected_place_ = tmp_place
5547 5548 5549 5550


def load_op_library(lib_filename):
    """
5551 5552
    :api_attr: Static Graph
    
5553 5554 5555
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5556
    Please note, the type of custom operators can't have the same type
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5623 5624 5625 5626 5627
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5628 5629 5630 5631
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5632 5633
    if index:
        device = ":".join([device, index])
5634
    pre_device = switch_device(device)
5635 5636 5637 5638
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value