framework.py 192.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'ComplexVariable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
183 184 185 186
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
187
    This function checks whether the program runs in dynamic graph mode or not.
188 189 190
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
191 192

    Returns:
Y
Youwei Song 已提交
193
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198
            import paddle.fluid as fluid
L
lujun 已提交
199

200 201 202 203
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
204
    """
L
lujun 已提交
205
    return _dygraph_tracer_ is not None
206 207


208 209 210
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
211
        ), "We don't support %s in imperative mode" % func.__name__
212 213 214 215 216 217 218 219
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
220 221 222 223 224 225 226 227 228 229
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We only support '%s()' in static graph mode, please call 'paddle.enable_static()' to enter static graph mode." % func.__name__
230 231 232 233 234
        return func(*args, **kwargs)

    return __impl__


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


270 271
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
272
static_only = wrap_decorator(_static_only_)
273
fake_interface_only = wrap_decorator(_fake_interface_only_)
274 275


L
lujun 已提交
276 277
def _dygraph_tracer():
    return _dygraph_tracer_
278

W
Wu Yi 已提交
279

M
minqiyang 已提交
280
def _current_expected_place():
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
            _global_expected_place_ = core.CUDAPlace(0)
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
301 302


L
Leo Chen 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
320
def _cpu_num():
321
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
322 323 324 325 326 327 328 329
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
330
        os.environ['CPU_NUM'] = str(1)
331
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
332 333 334 335 336 337 338 339 340 341
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
342 343


344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
374
def cuda_places(device_ids=None):
L
lujun 已提交
375
    """
376 377 378 379 380
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
381 382

    If :code:`device_ids` is None, environment variable of
383
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
384 385 386
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
387
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
388 389

    If :code:`device_ids` is not None, it should be the device
390
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
391 392 393
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
394 395
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
396 397

    Returns:
398
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
399 400 401 402

    Examples:
        .. code-block:: python

403
            import paddle.fluid as fluid
L
lujun 已提交
404 405 406
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
407 408 409
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
410
        device_ids = _cuda_ids()
S
sneaxiy 已提交
411 412 413 414 415 416
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
417
    """
418
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
419 420 421
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
422 423
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
424 425
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
426

427 428
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
429 430

    Returns:
431
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
432 433 434 435

    Examples:
        .. code-block:: python

436
            import paddle.fluid as fluid
L
lujun 已提交
437 438 439
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
440 441 442 443 444 445
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
446
    """
447
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
448 449 450

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
451 452 453 454
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
455

456 457
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
458 459

    Returns:
460
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
461 462 463 464

    Examples:
        .. code-block:: python

465
            import paddle.fluid as fluid
L
lujun 已提交
466 467 468 469 470
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
471 472 473
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
474 475
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
476 477


478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
504
@signature_safe_contextmanager
505 506
def name_scope(prefix=None):
    """
507 508
    :api_attr: Static Graph

509 510
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
511 512 513
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
514 515

    Args:
T
Tao Luo 已提交
516
        prefix(str, optional): prefix. Default is none.
517 518 519

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
520

521
          import paddle.fluid as fluid
522
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
523 524 525 526 527 528
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
529
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
530
                f = fluid.layers.pow(d, 2.0)
531
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
551 552
    """
    # TODO(panyx0718): Only [0-9a-z].
553
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
554 555 556
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
557
        assert prefix, "namescope prefix can not be empty."
558 559
        global _name_scope
        _name_scope = _name_scope.child(prefix)
560 561 562 563
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
564 565 566 567 568 569 570 571 572 573 574 575


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
576 577 578
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
579 580 581 582


def grad_var_name(var_name):
    """
583 584
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
585 586 587
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
588

589
def convert_np_dtype_to_dtype_(np_dtype):
590 591
    """
    Convert the data type in numpy to the data type in Paddle
592

593
    Args:
594
        np_dtype(np.dtype): the data type in numpy.
595

596 597
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
598 599

    """
600 601
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
602
        return core.VarDesc.VarType.FP32
603
    elif dtype == np.float64:
604
        return core.VarDesc.VarType.FP64
605
    elif dtype == np.float16:
606
        return core.VarDesc.VarType.FP16
607
    elif dtype == np.int32:
608
        return core.VarDesc.VarType.INT32
609
    elif dtype == np.int16:
610
        return core.VarDesc.VarType.INT16
611
    elif dtype == np.int64:
612
        return core.VarDesc.VarType.INT64
613
    elif dtype == np.bool:
614
        return core.VarDesc.VarType.BOOL
615
    elif dtype == np.uint16:
616 617 618
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
619 620
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
621 622
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
623
    else:
M
minqiyang 已提交
624
        raise ValueError("Not supported numpy dtype %s" % dtype)
625 626 627


def dtype_is_floating(dtype):
628 629 630
    """
    Check the data type is floating or not.
    Args:
631
        dtype(np.dtype|core.VarDesc.VarType): data type.
632 633 634 635 636
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
637
    if not isinstance(dtype, core.VarDesc.VarType):
638 639
        dtype = convert_np_dtype_to_dtype_(dtype)

640 641 642 643
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
644 645


Y
Yang Yang(Tony) 已提交
646
def _debug_string_(proto, throw_on_error=True):
647 648 649 650 651 652 653 654 655 656 657
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
658
    error_fields = list()
Y
Yang Yang(Tony) 已提交
659
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
660 661
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
662 663 664
    return proto.__str__()


665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
722
    target_block = default_main_program().current_block()
723 724 725 726 727 728 729 730 731 732 733

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
734
            })
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
774
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
775
                fill_constant([1], 1, force_cpu=True, out=temp_1)
776
                temp_end = target_block.create_var(dtype=slice_item.dtype)
777
                target_block.append_op(
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
817

818
    # starts
L
Leo Chen 已提交
819
    if contain_var(slice_start):
820 821 822 823 824 825 826 827
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
828 829 830 831
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
832 833 834 835 836 837 838
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
839 840 841
    else:
        attrs['ends'] = slice_end

842 843
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
844
        if contain_var(slice_step):
845 846 847 848 849 850 851
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
852 853
        else:
            attrs['strides'] = slice_step
854 855 856 857 858 859
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
860
        slice_out_var = target_block.create_var(
861 862 863
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

864
        target_block.append_op(
865 866 867 868 869 870 871
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
872
        strided_slice_out_var = target_block.create_var(
873 874 875
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
876
        target_block.append_op(
877 878 879 880 881 882 883 884
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
885
        reverse_out_var = target_block.create_var(
886 887 888
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
889
        target_block.append_op(
890 891 892 893 894 895 896 897 898 899 900
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
901
class Variable(object):
902
    """
J
Jiabin Yang 已提交
903
    **Notes**:
904
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
905

906 907
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
908 909 910
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
911
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
912 913
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
914

915
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
916
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
917

T
tianshuo78520a 已提交
918
    Most of a Variable's member variables can be set to be None. It mean
919
    it is not available or will be specified later.
920

921
    Examples:
922 923
        In Static Graph Mode:

924 925
        .. code-block:: python

926
            import paddle.fluid as fluid
927
            cur_program = fluid.Program()
928 929 930 931
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
932
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
933 934 935 936 937 938 939 940 941

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

942 943
    """

Y
Yu Yang 已提交
944 945
    def __init__(self,
                 block,
Y
Yu Yang 已提交
946
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
947 948 949 950
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
951
                 capacity=None,
Q
QI JUN 已提交
952
                 persistable=None,
F
fengjiayi 已提交
953
                 error_clip=None,
Y
Yu Yang 已提交
954
                 stop_gradient=False,
F
fengjiayi 已提交
955
                 is_data=False,
H
Huihuang Zheng 已提交
956
                 need_check_feed=False,
H
hong 已提交
957
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
958
                 **kwargs):
Y
Yu Yang 已提交
959 960
        self.block = block
        if name is None:
Y
Yu Yang 已提交
961
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
962

Y
Yu Yang 已提交
963
        if dtype is not None:
964
            if not isinstance(dtype, core.VarDesc.VarType):
965
                dtype = convert_np_dtype_to_dtype_(dtype)
966

H
hong 已提交
967 968
        self.belong_to_optimizer = belong_to_optimizer

969 970 971 972 973
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
974

975 976 977
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
978

979 980 981 982 983 984 985
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
986

987
        if shape is not None:
988
            if is_new_var:
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1030

1031 1032
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1033

1034 1035 1036 1037 1038 1039 1040
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1041

1042 1043 1044 1045
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1046

1047
    @fake_interface_only
1048 1049
    def detach(self):
        """
J
Jiabin Yang 已提交
1050
        **Notes**:
T
tianshuo78520a 已提交
1051
            **This API is ONLY available in Dygraph mode**
1052

1053
        Returns a new Variable, detached from the current graph.
1054

1055
        Returns:
J
Jiabin Yang 已提交
1056
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1057

1058

1059 1060 1061 1062 1063
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1064
                from paddle.fluid.dygraph import Linear
1065 1066 1067 1068
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1069
                    linear = Linear(32, 64)
1070
                    data = to_variable(data)
1071
                    x = linear(data)
1072 1073 1074
                    y = x.detach()

        """
1075
        pass
1076

1077
    @fake_interface_only
1078
    def numpy(self):
1079
        """
J
Jiabin Yang 已提交
1080
        **Notes**:
T
tianshuo78520a 已提交
1081
            **This API is ONLY available in Dygraph mode**
1082

J
Jiabin Yang 已提交
1083
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1084 1085 1086 1087 1088

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1089
            ndarray: dtype is same as current Variable
1090 1091 1092 1093 1094 1095

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1096
                from paddle.fluid.dygraph import Linear
1097 1098 1099 1100
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1101
                    linear = Linear(32, 64)
1102
                    data = to_variable(data)
1103
                    x = linear(data)
1104 1105 1106
                    print(x.numpy())

        """
1107
        pass
1108

1109
    @fake_interface_only
1110 1111
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1112
        **Notes**:
T
tianshuo78520a 已提交
1113
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1125
                from paddle.fluid.dygraph import Linear
1126 1127
                import numpy as np

1128
                data = np.ones([3, 1024], dtype='float32')
1129
                with fluid.dygraph.guard():
1130
                    linear = fluid.dygraph.Linear(1024, 4)
1131
                    t = to_variable(data)
1132
                    linear(t)  # call with default weight
1133
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1134 1135
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1136 1137

        """
1138
        pass
1139

1140
    @fake_interface_only
1141
    def backward(self, retain_graph=False):
1142
        """
J
Jiabin Yang 已提交
1143
        **Notes**:
T
tianshuo78520a 已提交
1144
            **This API is ONLY available in Dygraph mode**
1145

1146
        Run backward of current Graph which starts from current Tensor.
1147

J
Jiabin Yang 已提交
1148
        Args:
1149 1150 1151 1152
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1153

J
Jiabin Yang 已提交
1154 1155
        Returns:
            NoneType: None
1156 1157 1158 1159 1160

        Examples:
            .. code-block:: python

                import numpy as np
1161 1162
                import paddle
                paddle.disable_static()
1163 1164

                x = np.ones([2, 2], np.float32)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
                loss = paddle.reduce_sum(ret)
                loss.backward()
1175 1176

        """
1177
        pass
1178

1179
    @fake_interface_only
1180
    def gradient(self):
1181
        """
J
Jiabin Yang 已提交
1182
        **Notes**:
T
tianshuo78520a 已提交
1183
            **This API is ONLY available in Dygraph mode**
1184 1185 1186

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1187
        Returns:
1188
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1189 1190 1191 1192 1193 1194 1195

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1196
                # example1: return ndarray
1197 1198 1199 1200 1201 1202 1203 1204 1205
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1206
                    loss2.backward()
1207 1208
                    print(loss2.gradient())

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1222
        """
1223
        pass
1224

1225
    @fake_interface_only
1226
    def clear_gradient(self):
1227
        """
J
Jiabin Yang 已提交
1228
        **Notes**:
T
tianshuo78520a 已提交
1229
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1230 1231

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1232

J
Jiabin Yang 已提交
1233
        Clear  (set to ``0`` ) the Gradient of Current Variable
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1252
                    loss2.backward()
1253 1254 1255 1256 1257
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1258
        pass
X
Xin Pan 已提交
1259

1260
    def __str__(self):
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1305

F
update  
fengjiayi 已提交
1306
    def to_string(self, throw_on_error, with_details=False):
1307 1308 1309
        """
        Get debug string.

J
Jiabin Yang 已提交
1310 1311 1312 1313 1314
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1315

1316 1317
        Returns:
            str: The debug string.
1318 1319 1320 1321 1322

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1323

1324 1325 1326 1327 1328
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1329
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1330
                print("=============with detail===============")
1331
                print(new_variable.to_string(True, True))
1332
        """
F
update  
fengjiayi 已提交
1333 1334
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1335
        protostr = self.desc.serialize_to_string()
1336
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1337 1338 1339 1340
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1341 1342 1343
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1344
        return res_str
1345 1346 1347

    __repr__ = __str__

1348
    @property
1349
    def stop_gradient(self):
J
Jiabin Yang 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1365 1366
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1367 1368 1369
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1370 1371
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1372 1373 1374 1375
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1376
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1377 1378
                assert (out1.gradient() == 0).all()
        """
1379
        return self._stop_gradient
1380

1381 1382
    @stop_gradient.setter
    def stop_gradient(self, s):
1383
        self._stop_gradient = s
1384

1385 1386
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1408
        return self.desc.persistable()
1409

Y
Yu Yang 已提交
1410 1411
    @persistable.setter
    def persistable(self, p):
1412
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1413

Y
Yu Yang 已提交
1414 1415
    @property
    def name(self):
J
Jiabin Yang 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1432
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1454 1455
    @name.setter
    def name(self, new_name):
1456
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1457

Y
Yu Yang 已提交
1458 1459
    @property
    def shape(self):
J
Jiabin Yang 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1477
        # convert to tuple, make it as same as numpy API.
1478
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1479 1480

    @property
F
fengjiayi 已提交
1481
    def dtype(self):
J
Jiabin Yang 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1498
        return self.desc.dtype()
Y
Yu Yang 已提交
1499 1500 1501

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1523 1524 1525
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1526
        return self.desc.lod_level()
Y
Yu Yang 已提交
1527

Y
Yu Yang 已提交
1528 1529
    @property
    def type(self):
J
Jiabin Yang 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1546
        return self.desc.type()
Y
Yu Yang 已提交
1547

W
Wu Yi 已提交
1548
    def _set_error_clip(self, error_clip):
1549 1550 1551 1552 1553 1554 1555 1556 1557
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1558 1559
        self.error_clip = error_clip

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1600
            raise ValueError("slice step can not be zero")
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1676
    def _cloneVar(self, copy=False):
1677 1678
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1679 1680
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1681 1682 1683 1684
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1685
        new_var = self._cloneVar()
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1696
        new_var = self._cloneVar()
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1707
                return self._cloneVar(True)
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1726
                return self._cloneVar(True)
1727
            index = int(item)
1728
            if (index > 0 and index >= self.shape[axis]) \
1729 1730 1731 1732 1733 1734 1735
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1736
        return _getitem_impl_(self, item)
1737

Y
Yu Yang 已提交
1738

F
fengjiayi 已提交
1739 1740 1741
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1742

1743 1744
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1745 1746 1747 1748
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1749
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1750 1751 1752 1753
        ret_values.append(op_proto)
    return ret_values


1754 1755
class ComplexVariable(object):
    """
1756 1757
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1758 1759 1760
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1761
        **The constructor of ComplexTensor should not be invoked directly.**
1762

1763
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1764 1765

    Args:
1766 1767
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1768 1769 1770 1771
    
    Examples:
        .. code-block:: python

1772
            import paddle
1773 1774
            import numpy as np

1775 1776 1777 1778 1779 1780 1781 1782
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1783 1784
    """

1785 1786 1787 1788 1789
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1836 1837 1838
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1839 1840 1841 1842

    __repr__ = __str__


F
fengjiayi 已提交
1843
class OpProtoHolder(object):
1844 1845 1846 1847
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1857
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1858 1859 1860 1861 1862 1863
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1864 1865 1866 1867 1868 1869 1870 1871
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1872 1873
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1874 1875
        return self.op_proto_map[type]

1876 1877 1878 1879 1880 1881
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1882 1883 1884 1885
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1886
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1887
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1888 1889
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1890 1891
        }

F
fengjiayi 已提交
1892

X
Xin Pan 已提交
1893
class Operator(object):
1894
    """
1895 1896 1897 1898 1899 1900 1901
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1902
        type(str): The type of operator. Default None.
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1923
        Block.append_op or Block._prepend_op instead.
1924 1925 1926 1927

    Examples:
        .. code-block:: python

1928
            import paddle.fluid as fluid
1929
            cur_program = fluid.Program()
1930 1931 1932 1933 1934
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1935
    """
1936
    OP_WITHOUT_KERNEL_SET = {
1937 1938
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1939 1940
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1941
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1942
    }
1943

Y
Yu Yang 已提交
1944 1945
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1946
                 desc,
Y
Yu Yang 已提交
1947 1948 1949
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1950
                 attrs=None):
L
lujun 已提交
1951
        if in_dygraph_mode():
1952 1953
            if type is None:
                raise ValueError(
1954
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1955
            self._type = type
M
minqiyang 已提交
1956
            self.attrs = attrs if attrs else {}
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1971
                )] = self.block.program._op_role
1972 1973 1974

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1975 1976
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1977 1978 1979 1980 1981 1982 1983 1984

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1985
                    "`type` to initialized an Operator can not be None.")
1986 1987
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1988 1989 1990 1991 1992 1993 1994
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1995 1996 1997 1998 1999 2000 2001

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2033
                        if not isinstance(in_args, (list, tuple)):
2034 2035 2036 2037 2038 2039
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2040
                        for index, arg in enumerate(in_args):
2041 2042 2043 2044
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2045
                            elif isinstance(arg, (Variable, core.VarBase)):
2046
                                in_arg_names.append(cpt.to_text(arg.name))
2047
                            else:
2048 2049 2050 2051
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2052 2053
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2080
                        if not in_dygraph_mode():
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2100
    def _has_kernel(self, op_type):
2101 2102
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2103
    def to_string(self, throw_on_error):
2104
        """
2105 2106
        Get debug string.

2107
        Args:
2108 2109
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2110

2111 2112
        Returns:
            str: The debug string.
2113 2114

        """
2115
        protostr = self.desc.serialize_to_string()
2116
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2117 2118
        return _debug_string_(proto, throw_on_error)

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2212
    def __str__(self):
2213
        return self._to_readable_code()
2214 2215 2216

    __repr__ = __str__

F
fengjiayi 已提交
2217 2218
    @property
    def type(self):
2219
        return self.desc.type()
F
fengjiayi 已提交
2220 2221

    def input(self, name):
2222
        """
2223
        Get the input arguments according to the input parameter name.
2224

2225 2226
        Args:
            name(str): The input parameter name.
2227

2228 2229 2230
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2231
        """
F
fengjiayi 已提交
2232 2233
        return self.desc.input(name)

W
Wu Yi 已提交
2234
    def _rename_input(self, old_name, new_name):
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2245
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2246

W
Wu Yi 已提交
2247
    def _rename_output(self, old_name, new_name):
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2258
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2259

F
fengjiayi 已提交
2260 2261 2262 2263
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2264 2265 2266 2267 2268 2269 2270 2271
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2272
    def output(self, name):
2273
        """
2274
        Get output arguments by the output parameter name.
2275

2276 2277
        Args:
            name(str): The output parameter name.
2278

2279 2280 2281
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2282
        """
F
fengjiayi 已提交
2283 2284 2285 2286 2287 2288
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2289 2290 2291 2292 2293 2294 2295 2296
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2297
    def has_attr(self, name):
2298
        """
2299 2300
        Whether this Operator has the attribute with name or not.

2301
        Args:
2302
            name(str): the attribute name.
2303

2304 2305
        Returns:
            bool: True if has this attribute.
2306 2307

        """
F
fengjiayi 已提交
2308 2309 2310
        return self.desc.has_attr(name)

    def attr_type(self, name):
2311
        """
2312
        Get the type of attribute by attribute's name.
2313

2314 2315
        Args:
            name(str): the attribute name.
2316

2317 2318
        Returns:
            core.AttrType: the attribute type.
2319
        """
F
fengjiayi 已提交
2320 2321
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2322
    def _set_attr(self, name, val):
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2333 2334
        self._update_desc_attr(name, val)

2335 2336 2337
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2349 2350
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2351 2352
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2353
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2354 2355 2356 2357
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2358
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2359

F
fengjiayi 已提交
2360 2361 2362 2363 2364
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2365
        """
2366 2367
        Get the attribute by name.

2368
        Args:
2369
            name(str): the attribute name.
2370

2371 2372
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2373 2374
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2375
        return self.desc.attr(name)
Y
Yu Yang 已提交
2376

W
Wu Yi 已提交
2377
    def _block_attr_id(self, name):
2378
        """
G
gongweibao 已提交
2379
        Get the block attribute's id by name.
2380

2381 2382
        Args:
            name(str): the attribute name.
2383

2384 2385
        Returns:
            int: the block index.
2386
        """
W
Wu Yi 已提交
2387
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2388

W
Wu Yi 已提交
2389
    def _block_attr(self, name):
G
gongweibao 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2400
        id = self._block_attr_id(name)
G
gongweibao 已提交
2401 2402 2403
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2404
    def _blocks_attr(self, name):
G
gongweibao 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2415
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2416 2417 2418 2419 2420
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2421
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2432
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2433

J
JiayiFeng 已提交
2434
    def all_attrs(self):
F
fengjiayi 已提交
2435
        """
2436 2437 2438
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2439
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2440 2441 2442 2443
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2444 2445
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2446
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2447 2448 2449
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2450
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2451 2452 2453 2454
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2455 2456
        return attr_map

2457 2458 2459
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2460 2461 2462 2463

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2464 2465 2466
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2467 2468 2469 2470 2471 2472 2473 2474

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2475 2476
            return False

2477 2478 2479 2480 2481 2482
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2483

Y
Yu Yang 已提交
2484
class Block(object):
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2499
        use `Program._create_block()` to create a block.
2500 2501 2502 2503

    Examples:
        .. code-block:: python

2504 2505 2506
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2507 2508 2509 2510 2511 2512 2513 2514 2515
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2516
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2517
        self.desc = program.desc.block(idx)
2518
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2519
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2520
        self.program = program
2521
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2522

2523
    def __str__(self):
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2570

F
fengjiayi 已提交
2571 2572
    def to_string(self, throw_on_error, with_details=False):
        """
2573 2574
        Get debug string.

F
fengjiayi 已提交
2575 2576
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2577
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2578
            with_details(bool): more details about variables and parameters
2579 2580
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2581

2582 2583
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2584 2585 2586 2587
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2588
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2589 2590
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2591
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2592
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2593
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2594
            for op in self.ops:
F
fengjiayi 已提交
2595 2596
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2597 2598 2599
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2600 2601
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2602 2603
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2604 2605 2606

    __repr__ = __str__

Y
Yu Yang 已提交
2607 2608
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2609
        return self.desc.parent
Y
Yu Yang 已提交
2610

Y
Yu Yang 已提交
2611 2612 2613 2614
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2615
    def _set_forward_block_idx(self, idx):
2616 2617 2618 2619 2620 2621 2622 2623 2624
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2625
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2626

2627 2628 2629 2630 2631 2632 2633 2634
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2635 2636
    @property
    def idx(self):
Y
Yu Yang 已提交
2637
        return self.desc.id
Y
Yu Yang 已提交
2638

Q
Qiao Longfei 已提交
2639
    def var(self, name):
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2653
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2654 2655 2656
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2657 2658
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2659
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2660
        return v
Q
Qiao Longfei 已提交
2661

X
Xin Pan 已提交
2662
    def _find_var_recursive(self, name):
2663 2664 2665 2666 2667 2668 2669
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2670
            Variable: the Variable with the giving name. Or None if not found.
2671
        """
Y
Yu Yang 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2696
        return None
Y
Yu Yang 已提交
2697

X
Xin Pan 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2717

Q
Qiao Longfei 已提交
2718
    def all_parameters(self):
2719
        return list(self.iter_parameters())
2720

2721
    def iter_parameters(self):
M
minqiyang 已提交
2722
        return (item[1] for item in six.iteritems(self.vars)
2723
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2724

Y
Yu Yang 已提交
2725
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2726 2727 2728
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2729 2730 2731
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2732
        return var
Y
Yu Yang 已提交
2733

Q
Qiao Longfei 已提交
2734 2735 2736
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2737
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2738 2739
        """
        Rename variable in vars and ops' inputs and outputs
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2752
        """
M
minqiyang 已提交
2753 2754
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2755

T
typhoonzero 已提交
2756
        if not self.has_var(name):
2757
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2758 2759
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2760
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2761 2762 2763 2764 2765 2766
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2767
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2768 2769 2770 2771
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2772
        orig_var_type = v.type
M
minqiyang 已提交
2773
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2774
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2775
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2776
        if var_type == "Parameter":
L
Leo Chen 已提交
2777 2778
            if in_dygraph_mode():
                var = ParamBase(
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2789 2790
                var = Parameter(
                    self,
2791 2792 2793 2794 2795 2796 2797 2798 2799
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2800
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2801 2802
            var = Variable(
                self,
T
typhoonzero 已提交
2803
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2804 2805 2806 2807
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2808
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2809 2810 2811
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2812
        self._sync_with_cpp()
2813
        return var
T
typhoonzero 已提交
2814

W
Wu Yi 已提交
2815 2816
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2817
        self.desc._remove_var(cpt.to_bytes(name))
2818 2819
        del self.vars[name]

Y
Yu Yang 已提交
2820 2821
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2822
        param = None
L
Leo Chen 已提交
2823
        if in_dygraph_mode():
2824
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2825 2826
        else:
            param = Parameter(global_block, *args, **kwargs)
2827
        if 'initializer' in kwargs:
2828 2829 2830 2831 2832

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2833 2834 2835 2836 2837
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2849
                # TODO already inited, do nothing, should log a warning
2850 2851 2852
                pass
            else:
                initializer(param, self)
2853
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2854
        return param
Y
Yu Yang 已提交
2855

Y
Yu Yang 已提交
2856
    def append_op(self, *args, **kwargs):
2857 2858 2859 2860 2861 2862
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2863
        if in_dygraph_mode():
2864
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2865
            type = kwargs.get("type", None)
2866 2867 2868
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2869
                type=type,
M
minqiyang 已提交
2870 2871
                inputs=None,
                outputs=None,
2872
                attrs=attrs)
2873

M
minqiyang 已提交
2874 2875 2876
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2877
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2878 2879

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2880
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2881 2882
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2883
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2884
        else:
2885 2886 2887 2888 2889 2890 2891 2892 2893
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2894
            self.ops.append(op)
M
minqiyang 已提交
2895

2896 2897
        return op

W
Wu Yi 已提交
2898
    def _insert_op(self, index, *args, **kwargs):
2899 2900 2901 2902 2903 2904 2905 2906 2907
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2908 2909
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2910 2911 2912 2913
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2914
    def _remove_op(self, index):
2915 2916 2917 2918 2919 2920 2921 2922 2923
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2924 2925
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2926 2927
        del self.ops[index]

W
Wu Yi 已提交
2928
    def _slice_ops(self, start, end):
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2939
        return self.ops[start:end]
Y
Yancey1989 已提交
2940

W
Wu Yi 已提交
2941
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2942
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2943 2944
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2945
            op = Operator(
J
Jiabin Yang 已提交
2946
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2947

J
Jiabin Yang 已提交
2948
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2949
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2950 2951
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2952
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2953
        else:
2954 2955 2956 2957 2958 2959 2960 2961
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2962
            self.ops.insert(0, op)
2963

Y
Yu Yang 已提交
2964 2965
        return op

W
Wu Yi 已提交
2966
    def _sync_with_cpp(self):
2967
        """
2968 2969
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2970
        """
Q
Qiao Longfei 已提交
2971 2972 2973 2974 2975
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2976
        # sync variables removed from c++ end
2977
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2978
            if not self.desc.find_var(cpt.to_bytes(var)):
2979 2980
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2981
        # sync operators from cpp
2982 2983 2984 2985
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3002 3003 3004 3005 3006

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3007
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3008 3009 3010 3011 3012 3013 3014

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3028 3029 3030 3031
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3032
    def _copy_param_info_from(self, other):
3033
        """
3034 3035
        Copy the information of parameters from the other block.

3036
        Args:
3037 3038 3039 3040 3041
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3042 3043 3044 3045 3046

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3047 3048
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3049
        for p in other.iter_parameters():
3050 3051 3052
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3053 3054
                # if the Parameter is pruned, v may be None
                continue
3055
            assert isinstance(v, Variable)
3056
            new_p = None
L
Leo Chen 已提交
3057 3058
            if in_dygraph_mode():
                new_p = ParamBase(
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3070 3071
                new_p = Parameter(
                    block=self,
3072 3073 3074
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3075 3076
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3077 3078 3079 3080 3081 3082
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3083 3084
            self.vars[new_p.name] = new_p

3085
    def _clone_variable(self, var, force_persistable=True):
3086 3087
        """
        Clone a variable into current block.
3088

3089 3090
        Args:
            var: the variable to be cloned.
3091 3092 3093
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3094 3095

        Returns:
3096
            Variable: the new  variable cloned from 'var' in current block.
3097 3098
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3099 3100 3101 3102 3103
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3104 3105
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3106
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3107 3108 3109 3110 3111 3112
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3113
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3114 3115
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3116 3117 3118 3119 3120 3121 3122
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3123
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3124 3125
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3126
        return ret_var
3127

Y
Yu Yang 已提交
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3224
    def remove_input_by_id(self, node_id):
3225 3226 3227 3228 3229 3230
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3231
        self.node.remove_input(node_id)
3232

3233
    def remove_input(self, node):
3234 3235 3236 3237
        """
        Remove a node from inputs.

        Args:
3238
            node(IrNode): the node being removed.
3239
        """
3240
        self.node.remove_input(node.node)
3241

3242
    def append_input(self, node):
3243 3244 3245 3246
        """
        Append a node in inputs.

        Args:
3247
            node(IrNode): the node being appended.
3248
        """
3249
        self.node.append_input(node.node)
3250 3251 3252 3253 3254 3255 3256 3257

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3258
    def remove_output_by_id(self, node_id):
3259 3260 3261 3262 3263 3264
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3265
        self.node.remove_output(node_id)
3266

3267
    def remove_output(self, node):
3268 3269 3270 3271
        """
        Remove a node from outputs.

        Args:
3272
            node(IrNode): the node being removed.
3273
        """
3274
        self.node.remove_output(node.node)
3275

3276
    def append_output(self, node):
3277 3278 3279 3280
        """
        Append a node in outputs.

        Args:
3281
            node(IrNode): the node being appended.
3282
        """
3283
        self.node.append_output(node.node)
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3331
            "The node variable description can not be None."
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3342
            "The node variable description can not be None."
3343 3344
        return self.node.var().persistable()

3345 3346 3347 3348 3349 3350 3351 3352
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3353
            "The node variable description can not be None."
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3364
            "The node variable description can not be None."
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3375
            "The node variable description can not be None."
3376 3377
        return self.node.var().shape()

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3425
            "The node operator description can not be None."
3426 3427
        self.node.op()._rename_input(old_input_name, new_input_name)

3428 3429 3430 3431 3432 3433 3434 3435 3436
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3437
            "The node operator description can not be None."
3438 3439
        self.node.op()._rename_output(old_output_name, new_output_name)

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3451
            "The node operator description can not be None."
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3465
            "The node operator description can not be None."
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3476
            "The node operator description can not be None."
3477 3478
        return self.node.op().set_type(new_type)

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3494
            "The node operator description can not be None."
3495 3496 3497 3498
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3499
                all(isinstance(v, Block) for v in val):
3500 3501
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3502
                isinstance(val, core.ProgramDesc):
3503 3504 3505 3506
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3507 3508 3509 3510 3511 3512 3513 3514
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3515
            "The node operator description can not be None."
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3526
            "The node operator description can not be None."
3527 3528
        return self.node.op().output_arg_names()

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3550 3551
class IrGraph(object):
    """
3552
    Python IrGraph. Beneath it is a core.Graph, which is used for
3553
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3554 3555
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3556 3557 3558 3559
    """

    def __init__(self, graph, for_test=False):
        """
3560 3561
        Construct an IrGraph using core.Graph.

3562 3563 3564 3565 3566 3567 3568 3569 3570
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3571 3572 3573 3574
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3575 3576 3577
        Warns:
            The method only clones the graph structure, not its attributes.

3578 3579 3580
        Returns:
            IrGraph: A new and duplicated graph.
        """
3581
        g = self.graph.clone()
3582 3583
        return IrGraph(g, self._for_test)

3584
    def is_test(self):
3585 3586 3587
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3588 3589
        return self._for_test

W
WangZhen 已提交
3590
    def all_nodes(self):
3591 3592 3593
        """
        Return all nodes included in the graph as a set.
        """
3594
        return {IrNode(node) for node in self.graph.nodes()}
3595

3596
    def all_var_nodes(self):
3597 3598 3599
        """
        Return all variable nodes included in the graph as a set.
        """
3600
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3601

3602
    def all_persistable_nodes(self):
3603 3604 3605
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3606 3607 3608 3609 3610
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3611
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3612

3613
    def all_op_nodes(self):
3614 3615 3616
        """
        Return all operator nodes included in the graph as a set.
        """
3617
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3618

3619
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3631
            IrVarNode: the created persistable variable node.
3632
        """
3633 3634 3635 3636 3637
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3638
        return IrVarNode(self.graph.create_var_node(var_desc))
3639 3640

    def create_var_node(self, name, var_type, shape, var_dtype):
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3652
            IrVarNode: the created variable node.
3653 3654
        """

3655 3656 3657 3658
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3659
        return IrVarNode(self.graph.create_var_node(var_desc))
3660

3661 3662 3663 3664 3665 3666
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3667
    def create_var_node_from_desc(self, var_desc):
3668 3669 3670 3671 3672 3673 3674 3675
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3676
            IrVarNode: the created variable node.
3677
        """
3678
        return IrVarNode(self.graph.create_var_node(var_desc))
3679 3680

    def create_op_node(self, op_type, attrs, inputs, outputs):
3681 3682 3683 3684 3685 3686 3687
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3688
            outputs(dict): the outputs of the operator node.
3689 3690

        Returns:
3691
            IrOpNode: the created operator node.
3692
        """
3693 3694
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3695
        for attr, value in six.iteritems(attrs):
3696
            self._update_desc_attr(op_desc, attr, value)
3697
        for input_name, var_nodes in six.iteritems(inputs):
3698 3699 3700 3701
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3702
        for output_name, var_nodes in six.iteritems(outputs):
3703 3704 3705 3706
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3707
        return IrOpNode(self.graph.create_op_node(op_desc))
3708 3709

    def create_op_node_from_desc(self, op_desc):
3710 3711 3712 3713 3714 3715 3716
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3717
            IrOpNode: the created operator node.
3718
        """
3719
        return IrOpNode(self.graph.create_op_node(op_desc))
3720 3721

    def update_input_link(self, old_input_node, new_input_node, op_node):
3722 3723 3724 3725
        """
        Update the input's link of a operator node.

        Args:
3726 3727 3728
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3729
        """
3730
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3731 3732
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3733 3734 3735 3736
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3737
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3738

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3749 3750
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3751 3752 3753 3754 3755 3756
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3757
    def link_to(self, node_in, node_out):
3758 3759 3760 3761
        """
        Connect two nodes.

        Args:
3762 3763
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3764
        """
3765
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3766
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3767 3768
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3769 3770

    def safe_remove_nodes(self, remove_nodes):
3771 3772 3773 3774 3775 3776 3777
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3778
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3779 3780 3781 3782
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3783 3784
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3785

Z
Zhen Wang 已提交
3786 3787 3788 3789 3790 3791 3792 3793
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3794
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3795 3796 3797 3798
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3799
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3800 3801 3802
                        ]
                    else:
                        var_nodes[each_var_name].append(
3803 3804
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3805 3806
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3807
    def has_circle(self):
3808 3809 3810 3811 3812 3813
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3814 3815 3816
        return core.has_circle(self.graph)

    def graph_num(self):
3817 3818 3819 3820 3821 3822
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3823 3824 3825
        return core.graph_num(self.graph)

    def topology_sort(self):
3826 3827 3828
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3829
        Notes: the `graph` can not contain a circle.
3830 3831

        Returns:
Z
Zhen Wang 已提交
3832
            list(IrNode): nodes in topology order.
3833
        """
3834
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3835
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3836 3837

    def build_adjacency_list(self):
3838 3839 3840 3841
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3842
            dict{IrNode: set(IrNode)}: the adjacency list.
3843
        """
3844 3845 3846 3847 3848
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3849

3850 3851 3852 3853 3854 3855 3856 3857
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3858
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3859 3860 3861 3862 3863
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3864 3865 3866
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3867
                                          + ' -o ' + pdf_save_path, shell=True)
3868 3869 3870 3871 3872
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3873
        remove_ctr_vars = set()
3874
        if remove_ctr_var:
3875
            for node in self.all_var_nodes():
3876 3877 3878
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3879 3880
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3881 3882
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3883 3884 3885 3886 3887 3888
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3889 3890 3891 3892
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3893 3894
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3895 3896 3897 3898 3899 3900 3901
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3902 3903 3904
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3905
        WARN: When the graph includes backward operator nodes, the
3906 3907 3908 3909 3910 3911
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3912
        convert_pass = core.get_pass('graph_to_program_pass')
3913 3914
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3915 3916 3917 3918
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3946
class Program(object):
D
dzhwinter 已提交
3947
    """
3948 3949
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3950
    it will contain nested block.
3951

J
Jiabin Yang 已提交
3952 3953 3954
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3955

J
Jiabin Yang 已提交
3956
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3957
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3958 3959 3960 3961 3962 3963 3964
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3965 3966 3967 3968
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3969 3970

    Returns:
J
Jiabin Yang 已提交
3971
        Program: An empty Program.
D
dzhwinter 已提交
3972 3973

    Examples:
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3987 3988 3989

    """

3990 3991
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3992 3993
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3994 3995
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3996
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3997
        self.__op_role_var = []
T
tangwei12 已提交
3998

3999 4000
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4001
        self._is_distributed = False
4002
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4003
        self._is_chief = False
4004 4005 4006
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4007
        self._endpoints = []
4008 4009 4010
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4011
        self._trainers_endpoints = []
4012
        # the distributed lookup table names
T
tangwei12 已提交
4013
        self._distributed_lookup_table = None
4014 4015 4016

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4017 4018
        self._use_lamb = False

4019 4020 4021
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4022

4023 4024 4025
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4026
        self._program_config = None
4027

H
hutuxian 已提交
4028 4029 4030
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4031 4032 4033
        # appending gradients times
        self._appending_grad_times = 0

4034 4035 4036 4037
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4038 4039 4040
        # compiled program, i.e. Graph
        self._graph = None

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4068
    @property
4069
    def _op_role(self):
Y
yuyang18 已提交
4070 4071 4072 4073 4074 4075 4076 4077
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4078
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4079 4080 4081 4082
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4083 4084
        return self._current_role

4085 4086
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4087 4088 4089
        self._current_role = role

    @property
4090
    def _op_role_var(self):
Y
yuyang18 已提交
4091
        """
4092
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4093

4094
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4095 4096 4097

        Notes: This is a very low-level API. Users should not use it directly.
        """
4098
        return self.__op_role_var
Y
yuyang18 已提交
4099

4100
    @signature_safe_contextmanager
4101 4102 4103 4104 4105
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4106 4107 4108 4109
        try:
            yield
        finally:
            self._current_role = tmp_role
4110

S
rename  
sneaxiy 已提交
4111
    @signature_safe_contextmanager
W
Wu Yi 已提交
4112
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4113 4114 4115 4116 4117 4118 4119
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4120
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4121 4122 4123

        Examples:

4124
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4125
            >>> p, g = backward(...)
W
Wu Yi 已提交
4126
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4127 4128
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4129
        tmp_role = self._current_role
4130
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4131

Y
yuyang18 已提交
4132 4133
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4134
        self.__op_role_var = [
4135 4136 4137
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4138 4139 4140 4141 4142
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4143

S
rename  
sneaxiy 已提交
4144
    @signature_safe_contextmanager
X
Xin Pan 已提交
4145
    def _lr_schedule_guard(self, is_with_opt=False):
4146 4147 4148 4149 4150 4151 4152
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4153 4154 4155 4156
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4157 4158 4159

        Examples:

4160
            >>> import paddle.fluid as fluid
4161 4162 4163 4164
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4165 4166

        tmp_role = self._current_role
4167
        tmp_var = self.__op_role_var
4168

4169 4170
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4171 4172
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4173
        # TODO(typhoonzero): how to set target learning rate var
4174
        self.__op_role_var = []
4175 4176 4177 4178 4179
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4180

4181
    def __str__(self):
Y
yuyang18 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4230
            program_str += '\n'
4231
        return program_str
Y
Yang Yang(Tony) 已提交
4232

F
fengjiayi 已提交
4233 4234 4235
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4236

J
Jiabin Yang 已提交
4237 4238 4239
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4240

J
Jiabin Yang 已提交
4241
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4242

H
haowang101779990 已提交
4243
        Returns:
J
Jiabin Yang 已提交
4244
            str: The debug string describe current Program.
Y
yuyang18 已提交
4245 4246

        Raises:
J
Jiabin Yang 已提交
4247
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4248

4249 4250 4251 4252 4253 4254
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4255 4256
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4257
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4258
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4259
                print("program string without detail: {}".format(prog_string))
4260
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4261
        """
4262 4263 4264 4265 4266 4267 4268 4269 4270
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4271 4272 4273 4274 4275 4276
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4277 4278
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4279 4280
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4281

W
Wu Yi 已提交
4282
    def _get_desc(self):
Y
yuyang18 已提交
4283 4284 4285 4286 4287 4288 4289
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4290 4291
        return self.desc

X
version  
Xin Pan 已提交
4292 4293 4294
    def _version(self):
        return self.desc._version()

4295
    def clone(self, for_test=False):
Y
yuyang18 已提交
4296
        """
4297
        **Notes**:
J
Jiabin Yang 已提交
4298 4299 4300 4301
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4302
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4303

4304
        Create a new Program with forward content of original one when ``for_test=True``.
4305
        Create a new Program as same as the original one when ``for_test=False``.
4306

J
Jiabin Yang 已提交
4307
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4308 4309 4310
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4311

4312 4313
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4314 4315
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4316
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4317

J
Jiabin Yang 已提交
4318
        For Example:
4319
          ::
L
Luo Tao 已提交
4320

4321 4322 4323 4324 4325 4326 4327 4328
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4329

J
Jiabin Yang 已提交
4330
        Args:
4331

4332 4333
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4334

J
Jiabin Yang 已提交
4335
        Returns:
4336
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4337

Y
yuyang18 已提交
4338 4339 4340

        Examples:

J
Jiabin Yang 已提交
4341
        **Notes: The Program's order maybe different after** :code:`clone` **and
4342
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4343
        example we give you an simple method** :code:`print_prog(program)` **to
4344
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4345
        after** :code:`clone`:
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4382 4383 4384

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4385 4386 4387 4388 4389 4390 4391 4392 4393
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4394
                            test_program = train_program.clone(for_test=True)
4395
                    print_prog(test_program)
J
Jiabin Yang 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4427 4428
                    
                    def network():
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4443 4444 4445
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4446
                    # the test startup program is not used.
4447
                    with fluid.program_guard(test_program_2, startup_program_2):
4448
                        with fluid.unique_name.guard():
4449 4450
                            avg_loss = network()
                    print_prog(test_program_2)
4451 4452

        The two code snippets above will generate and print same programs.
4453
        """
4454 4455 4456 4457 4458

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4459
        pruned_origin_block_id_map = None
4460
        if for_test:
4461 4462 4463 4464 4465 4466 4467 4468 4469
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4470
        else:
4471
            p = Program()
G
gongweibao 已提交
4472 4473
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4474
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4475 4476 4477
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4478 4479

            p._current_role = self._current_role
4480
            p.__op_role_var = self.__op_role_var
4481
            p._appending_grad_times = self._appending_grad_times
4482 4483
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4484

4485 4486
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4487
            p._sync_with_cpp()
4488

W
Wu Yi 已提交
4489
        p._copy_param_info_from(self)
4490
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4491
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4492
        return p
4493

4494
    def _prune(self, targets):
Y
yuyang18 已提交
4495 4496 4497 4498 4499 4500 4501 4502
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4503
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4504 4505 4506 4507
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4508
        """
4509
        return self._prune_with_input([], targets)
4510 4511

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4512
        """
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4523
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4524 4525 4526 4527 4528 4529
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4530 4531 4532 4533
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4534 4535
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4536 4537
        if not isinstance(targets, list):
            targets = [targets]
4538 4539 4540

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4541 4542 4543
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4544

4545 4546 4547 4548
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4549 4550 4551
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4552
                else:
4553 4554 4555
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4556 4557 4558 4559 4560 4561 4562 4563

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4580 4581 4582 4583 4584 4585 4586 4587
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4588

4589
        res = Program()
4590 4591 4592
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4593 4594 4595
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4596
        res._sync_with_cpp()
4597 4598 4599 4600 4601

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4602 4603
        return res

X
Xin Pan 已提交
4604
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4605
        """
F
fengjiayi 已提交
4606 4607 4608 4609 4610
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4611
        3. change the :code:`is_test`
Y
yuyang18 已提交
4612 4613 4614
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4615
        Args:
X
Xin Pan 已提交
4616 4617
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4618

Y
yuyang18 已提交
4619 4620 4621 4622 4623 4624
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4625
        res = Program()
4626
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4627 4628 4629 4630

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4631
        if prune_read_op:
4632 4633 4634 4635 4636 4637 4638 4639 4640
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4641
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4642 4643

        # change all `is_test` attributes to True
M
minqiyang 已提交
4644
        for i in six.moves.range(res.desc.num_blocks()):
4645
            block = res.desc.block(i)
M
minqiyang 已提交
4646
            for j in six.moves.range(block.op_size()):
4647 4648
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4649
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4650 4651 4652
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4653
        res._sync_with_cpp()
4654 4655
        return res

4656 4657
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4658
        """
J
Jiabin Yang 已提交
4659 4660 4661 4662
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4663

4664 4665
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4666

J
Jiabin Yang 已提交
4667
        Args:
Y
yuyang18 已提交
4668

J
Jiabin Yang 已提交
4669
            binary_str_type (str): the binary prootbuf string.
4670

J
Jiabin Yang 已提交
4671 4672
        Returns:
            Program: A deserialized Program.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4695
        """
4696 4697
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4698
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4699
        p._sync_with_cpp()
4700
        return p
Y
Yu Yang 已提交
4701

4702
    @staticmethod
4703
    def _construct_from_desc(desc):
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4719 4720
    @property
    def random_seed(self):
Y
yuyang18 已提交
4721
        """
J
Jiabin Yang 已提交
4722
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4723 4724
        the random seed from random device.

J
Jiabin Yang 已提交
4725 4726 4727 4728
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4729

4730 4731 4732 4733 4734 4735 4736 4737

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4738
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4739 4740 4741
                print(random_seed)
                ## 0
                ## the default random seed is 0
4742 4743

                # Here we need to set random seed before we use fluid.layers.dropout
4744
                prog.random_seed = 1
4745 4746
                z_var = fluid.layers.dropout(x_var, 0.7)

4747
                print(prog.random_seed)
4748 4749
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4750
        """
D
dzhwinter 已提交
4751 4752
        return self._seed

Q
qiaolongfei 已提交
4753 4754
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4755
        """
4756 4757
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4758 4759 4760 4761
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4762

4763 4764 4765 4766 4767 4768 4769 4770 4771

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4772 4773


Y
yuyang18 已提交
4774
        """
Q
qiaolongfei 已提交
4775 4776
        return self.desc.num_blocks()

D
dzhwinter 已提交
4777 4778 4779
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4780 4781 4782
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4783 4784
        self._seed = seed

Y
Yu Yang 已提交
4785
    def __repr__(self):
4786
        return self.__str__()
4787

Y
Yu Yang 已提交
4788
    def global_block(self):
Y
yuyang18 已提交
4789
        """
J
Jiabin Yang 已提交
4790 4791
        **Notes**:
            **This API has no effect in Dygraph mode**
4792 4793 4794

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4795 4796
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4797

4798 4799 4800 4801 4802 4803 4804 4805 4806

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4807

Y
yuyang18 已提交
4808
        """
Y
Yu Yang 已提交
4809 4810
        return self.blocks[0]

Q
Qiao Longfei 已提交
4811
    def block(self, index):
Y
yuyang18 已提交
4812
        """
J
Jiabin Yang 已提交
4813 4814
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4815

4816 4817
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4818 4819
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4820

J
Jiabin Yang 已提交
4821 4822
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4823 4824 4825 4826 4827 4828 4829 4830 4831

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4832
        """
Q
Qiao Longfei 已提交
4833 4834
        return self.blocks[index]

Y
Yu Yang 已提交
4835
    def current_block(self):
Y
yuyang18 已提交
4836
        """
J
Jiabin Yang 已提交
4837 4838
        **Notes**:
            **This API has no effect in Dygraph mode**
4839

J
Jiabin Yang 已提交
4840 4841
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4842

J
Jiabin Yang 已提交
4843 4844
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4845

4846 4847 4848 4849 4850 4851 4852 4853
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4854
        """
Y
Yu Yang 已提交
4855 4856
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4857
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4858 4859 4860 4861 4862
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4863

Y
yuyang18 已提交
4864 4865 4866 4867 4868
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4869
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4870 4871 4872
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4873 4874 4875 4876
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4877
    def _rollback(self):
Y
yuyang18 已提交
4878 4879 4880 4881 4882
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4883 4884
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4885
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4896 4897 4898
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4899
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4900

W
Wu Yi 已提交
4901
    def _copy_param_info_from(self, other):
4902
        """
4903
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4904

Y
yuyang18 已提交
4905 4906 4907
        Notes: This is a very low level API. Users should not invoke it
        directly.

4908 4909 4910 4911 4912 4913 4914
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4915 4916 4917
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4918

W
Wu Yi 已提交
4919
        self.global_block()._copy_param_info_from(other.global_block())
4920

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4932 4933 4934
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4935 4936
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4937
        self._parameters_on_pservers = other._parameters_on_pservers
4938
        self._endpoints = other._endpoints
4939
        self._ps_endpoint = other._ps_endpoint
4940 4941
        self._distributed_lookup_table = other._distributed_lookup_table

4942
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4943 4944
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4945

Y
yuyang18 已提交
4946 4947 4948
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4949 4950
        Args:
            other(Program): Other program
4951 4952 4953 4954
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4955 4956 4957 4958 4959

        Returns:
            None
        """
        if not isinstance(other, Program):
4960 4961 4962
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4963

4964 4965 4966 4967 4968
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4969 4970 4971

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4972 4973
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4974
            for var in list(block.vars.values()):
4975 4976 4977 4978 4979 4980 4981
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4982

4983
    def list_vars(self):
Y
yuyang18 已提交
4984
        """
J
Jiabin Yang 已提交
4985
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4986

J
Jiabin Yang 已提交
4987 4988
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
5000
        """
5001
        for each_block in self.blocks:
5002
            for each_var in list(each_block.vars.values()):
5003 5004
                yield each_var

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5063

5064
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5065
class Parameter(Variable):
5066
    """
5067
    Parameter is derived from Variable. A parameter is a persistable
5068
    Variable, and will be updated by optimizers after each iteration.
5069
    The training of a neural network is essentially the updating of
5070 5071
    its parameters.

5072
    Relative to a general Variable, a Parameter has several its own
5073 5074
    member variables:

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5085 5086
    """

5087 5088 5089 5090 5091 5092
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5093 5094 5095 5096 5097
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5098
        if len(shape) == 0:
5099 5100
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5101 5102 5103

        for each in shape:
            if each < 0:
5104 5105 5106
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5107 5108

        Variable.__init__(
5109 5110 5111 5112 5113 5114 5115
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5116 5117 5118 5119
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5120 5121
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5122
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5123

5124 5125
        self.is_distributed = False

F
fengjiayi 已提交
5126
    def __str__(self):
5127
        return self._to_readable_code()
F
fengjiayi 已提交
5128

F
update  
fengjiayi 已提交
5129 5130 5131
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5132

F
update  
fengjiayi 已提交
5133 5134 5135 5136 5137 5138 5139 5140
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5141 5142 5143 5144 5145 5146 5147 5148 5149
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5150 5151 5152 5153 5154 5155
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5156
                               "do_model_average")
F
update  
fengjiayi 已提交
5157
            for attr_name in additional_attr:
5158 5159
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5160 5161
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5162 5163 5164 5165
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5166

5167 5168
class ParamBase(core.VarBase):
    """
5169 5170 5171
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5172 5173 5174
    The training of a neural network is essentially the updating of
    its ParamBase.

5175
    Relative to a general Tensor, a ParamBase has several its own
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5218 5219
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5220 5221 5222 5223 5224 5225 5226 5227

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5228
        # self.block = default_main_program().global_block()
5229

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5243
    def __str__(self):
5244
        """
5245
        Convert a ParamBase object to a readable string.
5246

5247
        Returns(str): A readable string.
5248 5249 5250 5251

        Examples:
            .. code-block:: python

5252
                import paddle
5253
                paddle.disable_static()
5254 5255 5256 5257 5258 5259 5260 5261
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5262
                paddle.enable_static()
5263
        """
5264 5265
        return "Parameter containing:\n  {}\n  - stop_gradient: {}".format(
            super(ParamBase, self).__str__(), self.stop_gradient)
5266 5267 5268 5269

    __repr__ = __str__


Y
Yu Yang 已提交
5270
# program is a global instance.
Y
Yu Yang 已提交
5271 5272
_main_program_ = Program()
_startup_program_ = Program()
5273

5274

5275
def default_startup_program():
Y
Yu Yang 已提交
5276
    """
Y
yuyang18 已提交
5277 5278
    Get default/global startup program.

J
Jiabin Yang 已提交
5279 5280 5281
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5282 5283 5284
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5285
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5286

J
Jiabin Yang 已提交
5287
    Returns: current default startup :ref:`api_fluid_Program`
5288

J
Jiabin Yang 已提交
5289
    Returns type: :ref:`api_fluid_Program`
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5305
    """
Y
Yu Yang 已提交
5306
    return _startup_program_
5307

5308

5309
def default_main_program():
Y
Yu Yang 已提交
5310
    """
5311 5312 5313 5314 5315
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5316

5317 5318
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5319
    :code:`default_main_program` when the program is not specified.
5320

5321 5322
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5323
    Returns:
5324
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5325 5326 5327 5328 5329

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5330

5331
            # Sample Network:
5332 5333
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5353
            #print the number of blocks in the program, 1 in this case
5354
            print(fluid.default_main_program().num_blocks)
5355 5356

            #print the description of variable 'image'
5357
            print(fluid.default_main_program().blocks[0].var('image'))
5358

Y
Yu Yang 已提交
5359
    """
Y
Yu Yang 已提交
5360
    return _main_program_
Y
Yu Yang 已提交
5361 5362 5363 5364 5365


def switch_main_program(program):
    """
    Switch the main program to a new program.
5366

Y
Yu Yang 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5381
    Switch the startup program to a new program
Y
Yu Yang 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5394
@signature_safe_contextmanager
Y
Yu Yang 已提交
5395 5396
def program_guard(main_program, startup_program=None):
    """
5397 5398
    :api_attr: Static Graph

5399 5400
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5401
    variables to the new main programs.
5402

G
guofei 已提交
5403 5404 5405 5406 5407 5408 5409
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5410
    Examples:
5411 5412 5413
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5414

5415 5416 5417
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5418
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5419
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5420 5421 5422

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5423

Y
Yu Yang 已提交
5424
    Examples:
5425
       .. code-block:: python
Y
yuyang18 已提交
5426

5427 5428 5429 5430 5431
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5432 5433
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5434
    """
5435 5436
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5437 5438
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5439 5440
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5441
        startup_program = switch_startup_program(startup_program)
5442 5443 5444 5445 5446 5447
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5448 5449


W
Wu Yi 已提交
5450
def _get_var(name, program=None):
X
xuwei06 已提交
5451
    """
Y
yuyang18 已提交
5452
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5453

X
xuwei06 已提交
5454 5455 5456
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5457
        If None, default_global_program() will be used.
X
xuwei06 已提交
5458 5459 5460 5461 5462 5463 5464

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5465
    assert isinstance(program, Program)
X
xuwei06 已提交
5466 5467

    return program.global_block().var(name)
5468 5469


S
rename  
sneaxiy 已提交
5470
@signature_safe_contextmanager
L
lujun 已提交
5471 5472 5473 5474
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5475
    core._switch_tracer(tracer)
M
minqiyang 已提交
5476

5477 5478 5479 5480 5481
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5482 5483


S
rename  
sneaxiy 已提交
5484
@signature_safe_contextmanager
L
lujun 已提交
5485
def _dygraph_place_guard(place):
5486 5487 5488
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5489

5490 5491 5492
    try:
        yield
    finally:
5493
        _global_expected_place_ = tmp_place
5494 5495 5496 5497


def load_op_library(lib_filename):
    """
5498 5499
    :api_attr: Static Graph
    
5500 5501 5502
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5503
    Please note, the type of custom operators can't have the same type
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5570 5571 5572 5573 5574
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5575 5576 5577 5578
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5579 5580
    if index:
        device = ":".join([device, index])
5581
    pre_device = switch_device(device)
5582 5583 5584 5585
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value