pybind.cc 53.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

89
bool IsCompiledWithBrpc() {
90
#ifndef PADDLE_WITH_DISTRIBUTE
91 92
  return false;
#endif
93 94 95 96 97 98

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
99 100
}

Y
update  
Yancey1989 已提交
101
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
102
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
103 104 105 106 107 108
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
109 110 111 112 113
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

114
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
115 116 117
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
118
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
119
  m.doc() = "C++ core of PaddlePaddle";
120

121 122 123 124
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

125
  BindException(&m);
Y
Yu Yang 已提交
126

S
sneaxiy 已提交
127
  m.def(
S
sneaxiy 已提交
128
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
129 130 131 132
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
133 134 135
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

136 137 138 139 140 141 142
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
143
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
144 145
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
146
      .def("_run_backward",
X
Xin Pan 已提交
147
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
148
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
149
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
150
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
151
      .def("_grad_ivar",
M
minqiyang 已提交
152
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
153
           py::return_value_policy::reference)
M
minqiyang 已提交
154
      .def("_copy_to",
P
Paddle CI 已提交
155
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
156 157 158 159 160
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
161
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
162
      .def("_copy_to",
P
Paddle CI 已提交
163
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
164 165 166 167 168
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
169
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
170
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
171
           py::return_value_policy::reference)
172 173 174 175 176 177 178 179 180 181 182
      .def_property("name",
                    [](const imperative::VarBase &self) { return self.name_; },
                    [](imperative::VarBase &self, const std::string &name) {
                      self.name_ = name;
                    })
      .def_property("block",
                    [](const imperative::VarBase &self) { return self.block_; },
                    [](imperative::VarBase &self, framework::BlockDesc *block) {
                      self.block_ = block;
                    },
                    py::return_value_policy::reference)
183 184 185 186 187 188
      .def_property(
          "persistable",
          [](const imperative::VarBase &self) { return self.persistable_; },
          [](imperative::VarBase &self, const bool persistable) {
            self.persistable_ = persistable;
          })
189 190 191 192 193 194
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
195 196 197
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
198
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
199
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
200
            self.SetStopGradient(stop_gradient);
201
          });
202

203
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
204
      .def(py::init<>())
205 206 207 208
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
209 210 211 212 213 214 215
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
216
          py::return_value_policy::reference)
M
minqiyang 已提交
217 218 219 220 221 222 223 224 225 226
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
227 228 229 230 231 232
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
233 234 235 236 237 238 239
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
240 241
          py::return_value_policy::reference);

X
Xin Pan 已提交
242
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
243
  layer.def(py::init<>())
X
Xin Pan 已提交
244 245 246
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
247
      });
X
Xin Pan 已提交
248

X
polish  
Xin Pan 已提交
249
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
250
      .def(py::init<>())
X
Xin Pan 已提交
251 252
      .def_static(
          "apply",
X
Xin Pan 已提交
253
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
254 255 256 257
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
258 259 260 261 262
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
263

264 265
  BindTracer(&m);

266 267 268
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
269
      .def("_get_dims",
270
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
271
      .def("_set_dims",
Q
qijun 已提交
272
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
273
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
274
           })
Y
yuyang18 已提交
275
      .def("_set_layout",
D
dzhwinter 已提交
276 277 278
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
279
      .def("_alloc_float",
D
dzhwinter 已提交
280
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
281
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
282
           })
Y
yuyang18 已提交
283
      .def("_alloc_float",
Y
Yu Yang 已提交
284
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
285
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
286
           })
Y
yuyang18 已提交
287
      .def("_alloc_int",
Y
Yu Yang 已提交
288
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
289
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
290
           })
Y
yuyang18 已提交
291
      .def("_alloc_int",
D
dzhwinter 已提交
292
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
293
             self.mutable_data<int>(place);
Q
qijun 已提交
294
           })
Y
yuyang18 已提交
295
      .def("_alloc_int",
C
chengduoZH 已提交
296 297 298
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
299
      .def("_alloc_float",
C
chengduoZH 已提交
300 301 302
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
303 304
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
305
      .def("set", PyCPUTensorSetFromArray<double>)
306
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
307
      .def("set", PyCPUTensorSetFromArray<bool>)
308
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
309
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
310
      .def("set", PyCPUTensorSetFromArray<int8_t>)
311
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
312 313
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
314
      .def("set", PyCUDATensorSetFromArray<double>)
315
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
316
      .def("set", PyCUDATensorSetFromArray<bool>)
317
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
318
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
319
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
320 321 322 323 324 325
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
326
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
327
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
328
#endif
329
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
330 331 332 333
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
334
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
335
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
336

X
Xin Pan 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
350
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
351
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
352
     columns, hence [5, 2].
X
Xin Pan 已提交
353 354 355

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
356 357
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
381 382
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
383 384 385 386 387 388 389 390 391 392 393 394 395 396
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
397
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
398 399 400 401 402
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
403
      .def("set_lod",
404
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
405
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
406
             LoD new_lod;
407 408
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
409 410
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
411
             self.set_lod(new_lod);
S
sneaxiy 已提交
412 413 414 415 416 417 418
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
434 435 436 437
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
438
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
439 440
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
441 442

           Args:
443
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
444
           )DOC")
445 446 447 448 449 450 451 452
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
453 454 455 456 457 458 459
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
460
      // Set above comments of set_lod.
461 462 463 464 465 466 467 468
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
469 470 471 472 473
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
474
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
488

Q
qijun 已提交
489 490 491 492 493 494 495 496 497 498 499
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
500 501
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
502 503
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
504 505 506 507 508 509 510 511 512
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
513
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
514
      .def("rows", [](SelectedRows &self) {
515 516 517 518 519
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
520
      });
Q
qijun 已提交
521

522
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
523 524 525

All parameter, weight, gradient are variables in Paddle.
)DOC")
526
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
527
      .def("set_int",
528 529
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
530 531 532 533 534 535 536
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
537
      .def("get_tensor",
538 539
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
540 541
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
542 543 544
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
545 546 547 548 549
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
550 551 552
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
553
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
554 555 556 557 558
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
559
#endif
Y
Refine  
Yu Yang 已提交
560 561 562 563 564
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
565
           py::return_value_policy::reference);
566

Y
Refine  
Yu Yang 已提交
567
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
568
      .def("start", &framework::ReaderHolder::Start)
569
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
570

S
sneaxiy 已提交
571 572 573 574
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
575 576
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
577
      .def("push",
S
sneaxiy 已提交
578
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
579
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
580
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
581
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
582
           })
S
sneaxiy 已提交
583 584 585 586
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
587

S
sneaxiy 已提交
588
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
589 590 591 592 593 594
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
595
        py::return_value_policy::copy);
S
sneaxiy 已提交
596

S
sneaxiy 已提交
597
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
617 618
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
619
      .def("var",
620
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
621
             return self.Var(name);
Y
Yu Yang 已提交
622
           },
S
sneaxiy 已提交
623 624
           py::arg("name"),
           R"DOC(
625
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
626

627
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
628
           current scope, the variable would be created. Otherwise,
629
           return the existing variable.
S
sneaxiy 已提交
630 631

           Args:
632 633
               name (str): the variable name.

S
sneaxiy 已提交
634
           Returns:
635
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
636 637 638 639
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
640
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
641
           its parent scope. Return None if not found.
642

S
sneaxiy 已提交
643 644
           Args:
               name (str): the variable name.
645

S
sneaxiy 已提交
646
           Returns:
647
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
648
           )DOC",
649
           py::return_value_policy::reference)
650
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
651 652 653 654 655 656
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
657
           py::return_value_policy::reference)
S
sneaxiy 已提交
658 659 660 661
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
662

S
sneaxiy 已提交
663 664 665 666 667 668
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
669 670
        R"DOC(
        Create a new scope.
671

S
sneaxiy 已提交
672 673 674
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
675 676
        py::return_value_policy::reference);

Y
Yu Yang 已提交
677 678
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
679 680
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
681 682 683 684 685 686 687 688 689 690
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
691 692
    return ret_values;
  });
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
709
  m.def("prune", [](const ProgramDesc &origin,
710
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
711
    ProgramDesc prog_with_targets(origin);
712
    for (const auto &t : targets) {
713
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
714
    }
715
    proto::ProgramDesc pruned_desc;
716
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
717
    return new ProgramDesc(pruned_desc);
718
  });
719 720 721 722
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
723 724 725
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
726 727
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
728
  // clang-format off
Y
Yu Yang 已提交
729
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
730 731
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
732
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
733 734 735
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
736
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
737
                      -> paddle::platform::DeviceContext* {
738
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
739
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
740
#else
Q
qijun 已提交
741
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
742
#endif
C
chengduoZH 已提交
743 744 745 746 747 748 749 750 751 752 753
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
754
// clang-format on
P
peizhilin 已提交
755
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
756 757
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
758
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
759 760 761 762 763 764 765 766 767 768 769 770
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
771 772 773 774 775
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
776
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
777

778 779
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
780 781 782 783 784
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
785
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
786

C
chengduoZH 已提交
787
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
788
      .def("__init__",
S
sneaxiy 已提交
789
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
790 791 792
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
793
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
794
           })
S
sneaxiy 已提交
795 796 797 798 799 800 801
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
802 803
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
804 805
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
806 807 808 809
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
810 811 812 813 814 815
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
816 817 818 819 820
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
821
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
822
             self = gpu_place;
C
chengduoZH 已提交
823 824
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
825 826
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
827
      });
Y
Yu Yang 已提交
828

Y
Yu Yang 已提交
829 830 831
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
832
                    proto::OpDesc desc;
Y
Yu Yang 已提交
833 834 835 836 837
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
838
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
839
                  })
840
      .def("run",
841
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
842 843 844
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
845
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
846 847 848 849 850
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
851 852 853 854 855 856 857
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
858 859
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
860
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
861
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
862 863 864 865
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
866

F
fengjiayi 已提交
867
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
868
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
869
      .def("close", &Executor::Close)
S
sneaxiy 已提交
870 871 872 873 874
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
875

D
dzhwinter 已提交
876
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
877
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
878 879
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
880

881
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
882
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
883
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
884 885 886 887 888 889
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
890

891
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
892
  m.def("get_fetch_variable", framework::GetFetchVariable);
893
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
894

X
Xin Pan 已提交
895 896
  m.def("_is_program_version_supported", IsProgramVersionSupported);

897 898 899 900 901
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
902

Y
Yu Yang 已提交
903 904 905 906 907 908 909 910 911
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
912
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
913 914
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
915 916 917 918 919 920 921 922 923 924
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
925 926 927 928 929 930 931
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
932

D
dzhwinter 已提交
933 934 935
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
936
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
937
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
938
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
939

P
peizhilin 已提交
940
#ifndef _WIN32
D
dangqingqing 已提交
941 942 943
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
944
#endif
P
peizhilin 已提交
945
#endif
Y
Yu Yang 已提交
946

947 948 949 950
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
951
      .value("kAll", platform::ProfilerState::kAll)
952 953 954 955 956 957 958 959 960 961 962 963 964
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
965
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
966
  m.def("reset_profiler", platform::ResetProfiler);
967
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
968 969 970
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
971

972 973
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
974
      .def("has", &ir::Pass::Has)
975 976 977
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
978
           })
979
      .def(
980
          "set",
981 982 983
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
984 985
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
986 987 988 989
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
990
        optim_graph.release();
F
flame 已提交
991
      });
992

X
fix  
Xin Pan 已提交
993 994
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1009
  // -- python binds for parallel executor.
Y
yuyang18 已提交
1010
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1011 1012 1013 1014
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1026 1027 1028

        )DOC");

Y
yuyang18 已提交
1029
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1030 1031 1032 1033 1034
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1045
      .def_property(
1046 1047 1048 1049
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1050 1051 1052 1053
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1054 1055 1056 1057 1058
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1059 1060 1061 1062
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1063 1064 1065 1066 1067 1068 1069
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1081 1082 1083 1084 1085 1086
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1087

Y
yuyang18 已提交
1088
  exec_strategy.def_property(
Y
yuyang18 已提交
1089 1090 1091 1092 1093 1094 1095
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1096 1097
      });

C
chengduo 已提交
1098 1099 1100 1101
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1113
)DOC");
Y
yuyang18 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1130
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1131
            self.reduce_ = strategy;
C
chengduo 已提交
1132 1133 1134 1135 1136 1137 1138
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1139 1140 1141 1142 1143
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1144
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1145
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1146 1147 1148 1149 1150 1151
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1152 1153 1154 1155
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1156
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1157
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1158 1159 1160 1161
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1162 1163 1164 1165 1166 1167
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1168
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1178
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1179 1180
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1181
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1182 1183 1184 1185 1186 1187
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1200 1201 1202 1203 1204 1205
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1206
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1207 1208 1209 1210 1211
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1226 1227 1228 1229
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1230 1231 1232 1233
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1234
      .def_property(
D
dzhwinter 已提交
1235 1236 1237
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1238
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1239
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1240 1241 1242 1243 1244
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1245 1246 1247

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1248
                  const std::string &, Scope *, std::vector<Scope *> &,
1249
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1250 1251 1252 1253
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1254 1255 1256 1257 1258
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1259 1260 1261 1262
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1263 1264 1265 1266 1267 1268
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1269

1270
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1271
  BindAsyncExecutor(&m);
F
flame 已提交
1272 1273
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1274
  BindInferenceApi(&m);
L
Luo Tao 已提交
1275
}
1276
}  // namespace pybind
1277
}  // namespace paddle