creation.py 39.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

18
from ..fluid.layers import tensor
L
Li Fuchen 已提交
19
from ..fluid.framework import Variable
20 21 22
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
23 24 25 26 27
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
28
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
29

30
# TODO: define functions to get create a tensor  
31
from ..fluid.layers import linspace  #DEFINE_ALIAS
32
import paddle
33

W
wangchaochaohu 已提交
34
__all__ = [
35
    'to_tensor',
36 37
    'diag',
    #       'get_tensor_from_selected_rows',
38
    'linspace',
39 40 41 42
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
43
    'arange',
44
    'eye',
W
wangchaochaohu 已提交
45
    'full',
P
Pei Yang 已提交
46
    'full_like',
47
    'empty',
48
    'empty_like',
W
WuHaobo 已提交
49 50
    'triu',
    'tril',
51 52
    'meshgrid',
    'assign',
W
wangchaochaohu 已提交
53 54 55
]


56 57
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
58
    r"""
59 60
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
61 62 63

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
L
Leo Chen 已提交
64
    and returned. 
65 66

    Args:
67 68
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
69
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
70 71
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
72
            except for python float number which gets dtype from ``get_default_type`` .
73 74 75 76 77
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
78
        Tensor: A Tensor constructed from ``data`` .
79 80

    Raises:
81
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor
82 83
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
84
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace
85 86 87 88 89 90 91 92 93 94 95

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
96 97
        # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #        [1])
98 99 100

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
101 102
        # Tensor(shape=[1], dtype=int32, place=CPUPlace, stop_gradient=True,
        #        [1])
103 104

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
105 106
        # Tensor(shape=[1], dtype=float32, place=CUDAPinnedPlace, stop_gradient=True,
        #        [1])
107 108

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
109 110 111
        # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
112

113 114
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.VarBase'>
115 116

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
117 118 119
        # Tensor(shape=[2, 2], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
120 121 122 123
    """

    if place is None:
        place = _current_expected_place()
124 125
    elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
                                core.CUDAPlace)):
126
        raise ValueError(
127
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        else:
            raise TypeError(
156
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor".
157
                format(type(data)))
158 159 160 161 162 163 164 165 166 167 168 169
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
        data = data.astype(dtype)
170

171 172 173 174 175 176
    return paddle.Tensor(
        value=data,
        place=place,
        persistable=False,
        zero_copy=False,
        stop_gradient=stop_gradient)
177 178


179
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
180
    """
S
swtkiwi 已提交
181

182 183
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
184

P
Pei Yang 已提交
185
    Args:
186 187
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
188
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
189 190
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
191 192
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
193
    Returns:
194
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
195
    
P
Pei Yang 已提交
196 197
    Examples:
        .. code-block:: python
198

P
Pei Yang 已提交
199 200
          import paddle
          import numpy as np
201 202
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
203
          output = paddle.full_like(input, 2.0)
204 205
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
206 207 208
    """

    if dtype is None:
209
        dtype = x.dtype
210
    else:
211 212 213 214 215
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
216

217
    helper = LayerHelper("full_like", **locals())
218 219 220
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
221 222
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
223
                'full_like/zeros_like/ones_like')
224
    out = helper.create_variable_for_type_inference(dtype=dtype)
225

P
Pei Yang 已提交
226 227
    helper.append_op(
        type='fill_any_like',
228
        inputs={'X': [x]},
229
        attrs={'value': fill_value,
230
               "dtype": dtype},
P
Pei Yang 已提交
231
        outputs={'Out': [out]})
232
    out.stop_gradient = True
P
Pei Yang 已提交
233 234 235
    return out


236
def ones(shape, dtype=None, name=None):
237
    """
S
swtkiwi 已提交
238

239 240 241
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
242
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
243
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
244 245 246
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
247
    Returns:
248
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
249 250 251 252

    Examples:
        .. code-block:: python

253 254
          import paddle 
          
255
          # default dtype for ones OP
256 257 258 259 260 261 262 263 264
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
265
          # shape is a Tensor
266
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
267 268 269
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
270
    """
271 272 273
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
274 275


276
def ones_like(x, dtype=None, name=None):
277
    """
278 279
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
280 281

    Args:
282 283 284 285 286 287 288 289 290 291
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

292
    Returns:
293 294 295 296 297
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
298
        float64, int32 or int64.
299 300 301 302

    Examples:
        .. code-block:: python

303
            import paddle
304

305
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
306 307
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
308

309 310
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
311 312


313
def zeros(shape, dtype=None, name=None):
314 315 316 317
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
318
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
319
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
320 321 322
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
323 324

    Returns:
325
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
326 327 328 329 330

    Examples:
        .. code-block:: python

          import paddle
331
          
332 333 334 335 336 337 338 339 340
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
341
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
342
          data3 = paddle.zeros(shape=shape, dtype='int32') 
343 344
          # [[0 0]
          #  [0 0]]
345
    """
346 347 348
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
349 350


351
def zeros_like(x, dtype=None, name=None):
352
    """
353 354
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
355 356

    Args:
357 358 359 360 361 362
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
363 364 365
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
366 367

    Returns:
368 369
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
370

371
    Raise:
372
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
373
        float64, int32 or int64.
374

375 376 377
    Examples:
        .. code-block:: python

378
            import paddle
379

Z
zhupengyang 已提交
380
            x = paddle.to_tensor([1, 2, 3])
381 382
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
383

384 385
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
386 387


388
def eye(num_rows, num_columns=None, dtype=None, name=None):
389
    """
390
    
391
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
392

393
    Args:
394 395
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
396
            If None, default: num_rows.
W
wangchaochaohu 已提交
397
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
398 399
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
400 401
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
402

403
    Returns:
404
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
405

406 407
    Examples:
        .. code-block:: python
408
          
409
          import paddle
410

411
          data = paddle.eye(3, dtype='int32')
412 413 414
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
415
          data = paddle.eye(2, 3, dtype='int32')
416 417
          # [[1 0 0]
          #  [0 1 0]]
418 419
    """

420 421 422
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
423
        num_columns = num_rows
424 425 426 427 428
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
429 430


431
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
432
    """
S
swtkiwi 已提交
433

434
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
435 436
    
    Args:
437
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
438 439
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
440 441 442
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
443
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
444
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
445
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
446 447 448
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
449
    Returns:
450
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
451

W
wangchaochaohu 已提交
452 453 454
    Examples:
        .. code-block:: python

455
          import paddle
W
wangchaochaohu 已提交
456

457 458 459
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
460

461
          # attr shape is a list which contains Tensor.
462
          positive_2 = paddle.full([1], 2, "int32")
463 464
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
465

466
          # attr shape is a Tensor.
467
          shape = paddle.full([2], 2, "int32")
468 469 470
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
471
          
472
          # attr fill_value is a Tensor.
473
          val = paddle.full([1], 2.0, "float32")
474 475 476
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
477 478 479 480 481
    """

    if dtype is None:
        dtype = 'float32'

482
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
483 484


485
def arange(start=0, end=None, step=1, dtype=None, name=None):
486
    """
487
    This OP returns a 1-D Tensor with spaced values within a given interval.
488

489 490
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
491

492 493
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
494 495

    Parameters:
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
514

515 516
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
517 518
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
519

520
    Raises:
521
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
522

Z
zhupengyang 已提交
523
    Examples:
524 525
        .. code-block:: python

Z
zhupengyang 已提交
526
            import paddle
527

Z
zhupengyang 已提交
528 529
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
530

Z
zhupengyang 已提交
531 532
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
533

Z
zhupengyang 已提交
534 535 536
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
537

Z
zhupengyang 已提交
538 539 540
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
541 542 543 544 545 546 547
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
548

549
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
550 551 552 553 554 555


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
556
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
557 558 559 560 561

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
562
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
586
def tril(x, diagonal=0, name=None):
587
    r"""
W
WuHaobo 已提交
588
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
589
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
590 591 592 593
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
594
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
595 596 597 598 599 600 601 602 603 604 605 606
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
607
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
608
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
609 610 611

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
612
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
613 614 615 616 617

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
618
            import paddle
W
WuHaobo 已提交
619 620 621 622 623 624

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

Y
yaoxuefeng 已提交
625

626
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
627 628
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
629 630 631 632 633
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
634
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
635 636 637 638 639
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
640
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
641 642 643 644
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

645 646 647
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
648
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
649 650 651 652

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
653
def triu(x, diagonal=0, name=None):
654
    r"""
W
WuHaobo 已提交
655
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
656
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
657 658 659 660
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
661
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
662 663 664 665 666 667 668 669 670 671 672 673
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
674
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
675
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
676 677 678

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
679
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
680 681 682 683 684

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
685
            import paddle
W
WuHaobo 已提交
686 687 688 689 690

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
691

W
WuHaobo 已提交
692 693

            # example 1, default diagonal
694
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
695
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
696 697 698 699 700
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
701
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
702 703 704 705 706
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
707
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
708 709 710 711 712
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
713 714
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
715
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
716 717

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
718 719


720
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
721
    """
722
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
723 724 725
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
726
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
727
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
728 729
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
730 731 732
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
733
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
734 735 736 737 738 739

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
740 741 742 743
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
744

Y
yaoxuefeng 已提交
745 746
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
747 748 749 750 751 752

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

753 754
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
755
    if in_dygraph_mode():
756 757
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
758 759
        return out

760
    name = kwargs.get("name", None)
S
suytingwan 已提交
761 762
    helper = LayerHelper('meshgrid', **locals())

763 764
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
765

766
    for id, input_ in enumerate(args):
S
suytingwan 已提交
767 768 769 770
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

771
    num = len(args)
S
suytingwan 已提交
772
    out = [
773
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
774 775
        for i in range(num)
    ]
776 777
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
778 779

    return out
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
856 857 858 859 860 861 862
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

863 864 865 866 867 868 869 870 871 872 873 874 875
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = core.ops.empty('shape', shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        out = core.ops.empty('shape', x.shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059


def assign(x, output=None):
    """
 
 
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
        x (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float16, float32, float64, int32 and int64.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    check_type(x, 'x', (Variable, numpy.ndarray), 'assign')
1060
    return tensor.assign(x, output)