pybind.cc 48.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

89
bool IsCompiledWithBrpc() {
90
#ifndef PADDLE_WITH_DISTRIBUTE
91 92
  return false;
#endif
93 94 95 96 97 98

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
99 100
}

Y
update  
Yancey1989 已提交
101
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
102
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
103 104 105 106 107 108
  return true;
#else
  return false;
#endif
}

109
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
110 111 112
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
113
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
114
  m.doc() = "C++ core of PaddlePaddle";
115

116 117 118 119
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

120
  BindException(&m);
Y
Yu Yang 已提交
121

S
sneaxiy 已提交
122
  m.def(
S
sneaxiy 已提交
123
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
124 125 126 127
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
128 129 130
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

131 132 133 134 135 136 137
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
138
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
139
      // .def(py::init<>())
M
minqiyang 已提交
140
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
141
      .def("_run_backward",
X
Xin Pan 已提交
142
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
143
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
144
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
145
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
146
      .def("_grad_ivar",
M
minqiyang 已提交
147
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
148
           py::return_value_policy::reference)
M
minqiyang 已提交
149
      .def("_copy_to",
P
Paddle CI 已提交
150
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
151 152 153 154 155
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
156
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
157
      .def("_copy_to",
P
Paddle CI 已提交
158
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
159 160 161 162 163
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
164
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
165
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
166
           py::return_value_policy::reference)
167 168 169 170 171 172
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
173 174 175
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
176
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
177
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
178
            self.SetStopGradient(stop_gradient);
179
          });
180

181
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
182 183 184 185 186 187 188 189
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
190 191 192 193 194 195 196
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
197 198 199 200 201 202 203
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
204 205
          py::return_value_policy::reference);

X
Xin Pan 已提交
206
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
207
  layer.def(py::init<>())
X
Xin Pan 已提交
208 209 210
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
211
      });
X
Xin Pan 已提交
212

X
polish  
Xin Pan 已提交
213
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
214
      .def(py::init<>())
X
Xin Pan 已提交
215 216
      .def_static(
          "apply",
X
Xin Pan 已提交
217
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
218 219 220 221
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
222 223 224 225 226
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
227

228 229
  BindTracer(&m);

230 231 232
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
233
      .def("_get_dims",
234
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
235
      .def("_set_dims",
Q
qijun 已提交
236
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
237
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
238
           })
Y
yuyang18 已提交
239
      .def("_set_layout",
D
dzhwinter 已提交
240 241 242
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
243
      .def("_alloc_float",
D
dzhwinter 已提交
244
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
245
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
246
           })
Y
yuyang18 已提交
247
      .def("_alloc_float",
Y
Yu Yang 已提交
248
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
249
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
250
           })
Y
yuyang18 已提交
251
      .def("_alloc_int",
Y
Yu Yang 已提交
252
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
253
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
254
           })
Y
yuyang18 已提交
255
      .def("_alloc_int",
D
dzhwinter 已提交
256
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
257
             self.mutable_data<int>(place);
Q
qijun 已提交
258
           })
Y
yuyang18 已提交
259
      .def("_alloc_int",
C
chengduoZH 已提交
260 261 262
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
263
      .def("_alloc_float",
C
chengduoZH 已提交
264 265 266
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
267 268
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
269
      .def("set", PyCPUTensorSetFromArray<double>)
270
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
271
      .def("set", PyCPUTensorSetFromArray<bool>)
272
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
273
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
274
      .def("set", PyCPUTensorSetFromArray<int8_t>)
275
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
276 277
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
278
      .def("set", PyCUDATensorSetFromArray<double>)
279
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
280
      .def("set", PyCUDATensorSetFromArray<bool>)
281
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
282
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
283
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
284 285 286 287 288 289
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
290
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
291
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
292
#endif
293
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
294 295 296 297
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
298
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
299
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
300

X
Xin Pan 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
314
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
315
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
316
     columns, hence [5, 2].
X
Xin Pan 已提交
317 318 319

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
320 321
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
345 346
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
347 348 349 350 351 352 353 354 355 356 357 358 359 360
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
361
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
362 363 364 365 366
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
367
      .def("set_lod",
368
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
369
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
370
             LoD new_lod;
371 372
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
373 374
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
375
             self.set_lod(new_lod);
D
dangqingqing 已提交
376
           })
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
402
      // Set above comments of set_lod.
403 404 405 406 407 408 409 410 411 412 413 414 415
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
416 417
      });

Q
qijun 已提交
418 419 420 421 422 423 424 425 426 427 428
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
429 430
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
431 432
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
433 434 435 436 437 438 439 440 441
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
442
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
443
      .def("rows", [](SelectedRows &self) {
444 445 446 447 448
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
449
      });
Q
qijun 已提交
450

451
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
452 453 454

All parameter, weight, gradient are variables in Paddle.
)DOC")
455
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
456
      .def("set_int",
457 458
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
459 460 461 462 463 464 465
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
466
      .def("get_tensor",
467 468
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
469 470
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
471 472 473
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
474 475 476 477 478
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
479 480 481
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
482
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
483 484 485 486 487
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
488
#endif
Y
Refine  
Yu Yang 已提交
489 490 491 492 493
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
494
           py::return_value_policy::reference);
495

Y
Refine  
Yu Yang 已提交
496
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
497
      .def("start", &framework::ReaderHolder::Start)
498
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
499

S
sneaxiy 已提交
500 501 502 503
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
504 505
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
506
      .def("push",
S
sneaxiy 已提交
507
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
508
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
509
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
510
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
511
           })
S
sneaxiy 已提交
512 513 514 515
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
516

S
sneaxiy 已提交
517
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
518 519 520 521 522 523
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
524
        py::return_value_policy::copy);
S
sneaxiy 已提交
525

S
sneaxiy 已提交
526
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
546 547
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
548
      .def("var",
549
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
550
             return self.Var(name);
Y
Yu Yang 已提交
551
           },
552
           py::return_value_policy::reference)
553
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
554
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
555
           py::return_value_policy::reference)
Y
Yu Yang 已提交
556
      .def("drop_kids", &Scope::DropKids);
557

S
sneaxiy 已提交
558 559 560 561 562 563 564 565
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
566 567
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
568 569
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
570 571 572 573 574 575 576 577 578 579
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
580 581
    return ret_values;
  });
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
598
  m.def("prune", [](const ProgramDesc &origin,
599
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
600
    ProgramDesc prog_with_targets(origin);
601
    for (const auto &t : targets) {
602
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
603
    }
604
    proto::ProgramDesc pruned_desc;
605
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
606
    return new ProgramDesc(pruned_desc);
607
  });
608 609 610 611
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
612 613 614
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
615 616
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
617
  // clang-format off
Y
Yu Yang 已提交
618
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
619 620
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
621
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
622 623 624
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
625
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
626
                      -> paddle::platform::DeviceContext* {
627
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
628
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
629
#else
Q
qijun 已提交
630
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
631
#endif
C
chengduoZH 已提交
632 633 634 635 636 637 638 639 640 641 642
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
643
// clang-format on
P
peizhilin 已提交
644
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
645 646
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
647
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
648 649 650 651 652 653 654 655 656 657 658 659
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
D
dzhwinter 已提交
660
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
661

662 663 664
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
665

C
chengduoZH 已提交
666
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
667 668 669 670 671 672
      .def("__init__",
           [](platform::CUDAPinnedPlace &) {
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
           })
C
chengduoZH 已提交
673 674
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
675 676
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
X
xuezhong 已提交
677 678 679 680 681 682
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
683 684 685 686 687
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
688
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
689
             self = gpu_place;
C
chengduoZH 已提交
690 691
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
692 693
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
694
      });
Y
Yu Yang 已提交
695

Y
Yu Yang 已提交
696 697 698
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
699
                    proto::OpDesc desc;
Y
Yu Yang 已提交
700 701 702 703 704
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
705
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
706
                  })
707
      .def("run",
708
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
709 710 711
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
712
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
713 714 715 716 717
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
718 719 720 721 722 723 724
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
725 726
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
727
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
728
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
729 730 731 732
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
733

F
fengjiayi 已提交
734
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
735
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
736
      .def("close", &Executor::Close)
S
sneaxiy 已提交
737 738 739 740 741
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
742

D
dzhwinter 已提交
743
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
744
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
745 746
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
747

748
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
749
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
750
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
751 752 753 754 755 756
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
757

758
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
759
  m.def("get_fetch_variable", framework::GetFetchVariable);
760
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
761

X
Xin Pan 已提交
762 763
  m.def("_is_program_version_supported", IsProgramVersionSupported);

764 765 766 767 768
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
769

Y
Yu Yang 已提交
770 771 772 773 774 775 776 777 778
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
779
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
780 781
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
798 799 800
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
801
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
802
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
803
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
804

P
peizhilin 已提交
805
#ifndef _WIN32
D
dangqingqing 已提交
806 807 808
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
809
#endif
P
peizhilin 已提交
810
#endif
Y
Yu Yang 已提交
811

812 813 814 815
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
816
      .value("kAll", platform::ProfilerState::kAll)
817 818 819 820 821 822 823 824 825 826 827 828 829
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
830
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
831
  m.def("reset_profiler", platform::ResetProfiler);
W
WangZhen 已提交
832 833 834 835 836
  m.def("get_pass", [](const py::bytes &binary_str) {
    std::string pass_type(binary_str);
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
837

838 839
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
840
      .def("has", &ir::Pass::Has)
841
      .def("set",
W
WangZhen 已提交
842 843 844 845
           [](ir::Pass &self, const std::string &attr_name,
              const ProgramDesc &attr) {
             return self.Set(attr_name, new ProgramDesc(attr));
           })
846
      .def(
847
          "set",
848 849 850
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
851 852
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
W
WangZhen 已提交
853
      .def("get_program", &ir::Pass::Get<ProgramDesc>)
F
flame 已提交
854 855 856 857
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
858
        optim_graph.release();
F
flame 已提交
859
      });
860

X
fix  
Xin Pan 已提交
861 862
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
863 864 865 866 867 868 869 870 871 872 873 874 875 876
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
877
  // -- python binds for parallel executor.
Y
yuyang18 已提交
878
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
879 880 881 882
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
883 884 885 886 887 888 889 890 891 892 893
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
894 895 896

        )DOC");

Y
yuyang18 已提交
897
  exec_strategy.def(py::init())
Y
yuyang18 已提交
898 899 900 901 902
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
903 904 905 906 907 908 909 910 911 912
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
913
      .def_property(
914 915 916 917
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
918 919 920 921
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
922 923 924 925 926
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
927 928 929 930
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
931 932 933 934 935 936 937
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
938 939 940 941 942 943 944 945 946 947 948
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
949 950 951 952 953 954
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
955

Y
yuyang18 已提交
956
  exec_strategy.def_property(
Y
yuyang18 已提交
957 958 959 960 961 962 963
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
964 965
      });

C
chengduo 已提交
966 967 968 969
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
970 971 972 973 974 975 976 977 978 979 980
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
981
)DOC");
Y
yuyang18 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
998
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
999
            self.reduce_ = strategy;
C
chengduo 已提交
1000 1001 1002 1003 1004 1005 1006
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1007 1008 1009 1010 1011
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1012
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1013
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1014 1015 1016 1017 1018 1019
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1020 1021 1022 1023
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1024
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1025
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1026 1027 1028 1029
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1030 1031 1032 1033 1034 1035
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1036
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1046
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1047 1048
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1049
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1050 1051 1052 1053 1054 1055
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1068 1069 1070 1071 1072 1073
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1074
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1075 1076 1077 1078 1079
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1094 1095 1096 1097
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1098 1099 1100 1101
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1102 1103 1104 1105
      .def_property(
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1106
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1107
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1108 1109 1110 1111 1112
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1113 1114 1115

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1116
                  const std::string &, Scope *, std::vector<Scope *> &,
1117
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1118 1119 1120 1121
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1122 1123 1124 1125 1126
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1127 1128 1129 1130
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1131 1132 1133 1134 1135 1136
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1137

1138
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1139
  BindAsyncExecutor(&m);
F
flame 已提交
1140 1141
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1142
  BindInferenceApi(&m);
L
Luo Tao 已提交
1143
}
1144
}  // namespace pybind
1145
}  // namespace paddle