control_flow.py 76.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
61
          x = fluid.layers.data(name='x', shape=[1])
62 63
          x.persistable = True

Q
qiaolongfei 已提交
64
          y = fluid.layers.data(name='y', shape=[1])
65 66
          y.persistable = True

Q
qiaolongfei 已提交
67
          out_true, out_false = fluid.layers.split_lod_tensor(
68
                input=x, mask=y, level=level)
69

70
    """
71
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
72 73
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
74 75 76 77 78 79 80 81 82 83 84 85
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


86
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
87 88 89 90 91
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
92 93 94
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
95 96 97 98 99 100 101

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
102
        level(int): The specific lod level to merge.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
122
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
123
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
124 125 126 127 128 129 130 131 132 133 134
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
135 136 137 138 139 140 141
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
142 143
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
154 155 156 157 158 159 160 161 162
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
163
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
164 165
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
166 167

    Returns:
168
        Variable: Output tensor.
Y
Yan Chunwei 已提交
169

170 171 172 173
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
174

Y
Yan Chunwei 已提交
175 176
    Examples:
        .. code-block:: python
177 178 179 180
           
           import paddle.fluid as fluid
           
           input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
181
           input = fluid.layers.Print(input, message = "The content of input layer:")
182 183 184
           # value = some_layer(...)
           # Print(value, summarize=10,
           #    message="The content of some_layer: ")
Y
Yan Chunwei 已提交
185 186

    '''
187 188
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
189 190
    helper.append_op(
        type='print',
Y
yangyaming 已提交
191
        inputs={'In': input},
192
        outputs={'Out': output},
Y
Yan Chunwei 已提交
193 194 195 196 197 198 199 200
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
201
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
202
        })
203
    return output
Y
Yan Chunwei 已提交
204 205


Y
Yu Yang 已提交
206 207
class BlockGuard(object):
    """
208 209 210 211
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
212 213
    """

214 215
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
216
            raise TypeError("BlockGuard takes a program")
217
        self.main_program = main_program
Y
Yu Yang 已提交
218 219

    def __enter__(self):
W
Wu Yi 已提交
220
        self.main_program._create_block()
Y
Yu Yang 已提交
221 222

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
223
        self.main_program._rollback()
Y
Yu Yang 已提交
224 225 226 227 228
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
229 230 231 232 233
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
234 235
    """

Y
Yu Yang 已提交
236
    def __init__(self, rnn):
X
Xin Pan 已提交
237
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
238
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
239
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
240 241 242 243
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
244
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
245 246

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
247 248
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
249
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
250
        self.rnn._complete_op()
Y
Yang Yang 已提交
251 252
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
253 254 255 256


class StaticRNNMemoryLink(object):
    """
257 258 259 260
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
261 262 263 264 265 266 267 268 269


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
279 280 281
    """
    StaticRNN class.

C
chengduo 已提交
282 283 284 285 286 287 288
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)

            result = rnn()
C
chengduo 已提交
312 313 314 315 316 317 318 319 320 321

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
322
    """
Y
Yu Yang 已提交
323 324 325 326
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

327 328
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
329 330 331 332 333 334 335 336
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
337 338 339
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
340
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
341 342 343 344 345

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

346 347 348 349 350 351 352
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
353
        """
C
chengduo 已提交
354 355 356 357 358 359
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

360
        Args:
C
chengduo 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
397
        """
Y
Yu Yang 已提交
398 399
        self._assert_in_rnn_block_('memory')
        if init is None:
400
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
401
                raise ValueError(
402
                    "if init is None, memory at least need shape and batch_ref")
403
            parent_block = self._parent_block()
404
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
405
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
406
            boot_var = parent_block.create_var(
407 408
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
409
                dtype=batch_ref.dtype,
410
                persistable=False)
Y
Yu Yang 已提交
411 412

            parent_block.append_op(
413 414
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
415 416 417
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
418
                    'shape': boot_var.shape,
F
fengjiayi 已提交
419
                    'dtype': boot_var.dtype,
420 421
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
422 423 424 425 426
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
427 428
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
429
                dtype=init.dtype,
Y
Yu Yang 已提交
430 431 432 433 434 435
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
436 437 438 439 440 441 442 443 444 445
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
446 447 448 449
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
450 451
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
452 453 454
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
455
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
456 457 458 459
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
460 461 462 463 464 465 466 467 468
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
469 470 471 472
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
473
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
474 475 476 477
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
478
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
479

480
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
481 482
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
483
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
484 485 486 487

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
488 489 490 491 492 493 494 495 496
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
497 498 499 500
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
501 502 503 504 505 506 507 508 509 510 511
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
512 513 514 515
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

516
    def _parent_block(self):
517
        prog = self.helper.main_program
Y
Yu Yang 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

533
    def _complete_op(self):
534 535
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
536
        parent_block = self._parent_block()
Y
Yu Yang 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
551 552 553
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
570
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
571 572 573
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
574
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
575 576
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
577 578
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
579 580
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
581 582
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
583 584 585 586
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
587
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
601
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
602 603
                'ex_states': pre_memories,
                'states': memories,
604
                'sub_block': rnn_block
Y
Yu Yang 已提交
605
            })
Y
Yu Yang 已提交
606 607


Y
Yang Yang(Tony) 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
623
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
624 625 626 627
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
628 629 630 631
    """
    while loop control flow.

    Args:
632
        cond(Variable): condition used to compare.
C
chengduo 已提交
633
        is_test(bool): A flag indicating whether execution is in test phase.
634
        name(str): The name of this layer.
X
Xin Pan 已提交
635 636 637

    Examples:
          .. code-block:: python
638 639 640 641 642 643 644 645 646 647
            
            import paddle.fluid as fluid
            
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            d0 = fluid.layers.data("d0", shape=[10], dtype='float32')
            data_array = fluid.layers.array_write(x=d0, i=i)
            array_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=3)

            cond = fluid.layers.less_than(x=i, y=array_len)
            while_op = fluid.layers.While(cond=cond)
X
Xin Pan 已提交
648
            with while_op.block():
649 650 651
                d = fluid.layers.array_read(array=data_array, i=i)
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                fluid.layers.less_than(x=i, y=array_len, cond=cond)            
X
Xin Pan 已提交
652 653
    """

Y
Yang Yang(Tony) 已提交
654 655 656 657
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
658
    def __init__(self, cond, is_test=False, name=None):
659
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
660 661 662 663
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
664
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
665 666 667 668
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
669
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
670 671 672 673

    def block(self):
        return WhileGuard(self)

674
    def _complete(self):
Y
Yang Yang(Tony) 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
694 695 696
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
697 698 699 700 701 702 703

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
704 705 706 707
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
708 709 710 711
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
712 713
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
714 715


716
def lod_rank_table(x, level=0):
717 718
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
719 720
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
721
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
722 723 724
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
725 726 727 728

        .. code-block:: text

            x is a LoDTensor:
729 730
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
731 732
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
733 734 735
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
736

Y
yangyaming 已提交
737 738 739 740 741 742 743 744 745
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
746 747 748 749

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
750 751
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
752 753 754 755 756 757 758 759

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
760
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
761
            out = layers.lod_rank_table(x=x, level=0)
762
    """
Y
Yu Yang 已提交
763 764 765
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
766
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
767 768 769 770 771 772
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
773 774


Y
yuyang18 已提交
775
@templatedoc()
776
def max_sequence_len(rank_table):
Y
yuyang18 已提交
777 778 779 780 781 782 783 784
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
785 786

    Args:
Y
yuyang18 已提交
787
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
788 789

    Returns:
Y
yuyang18 已提交
790
        ${out_comment}.
F
fengjiayi 已提交
791 792
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
793
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
794 795 796 797 798 799 800
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


801
def lod_tensor_to_array(x, table):
802
    """
F
fengjiayi 已提交
803 804
    Convert a LoDTensor to a LoDTensorArray.

805 806 807 808 809
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
810
    Users should not use it directly.
811 812

    Args:
F
fengjiayi 已提交
813
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
814 815
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
816
                                descending order. It is generally generated
F
fengjiayi 已提交
817
                                by `layers.lod_rank_table()` API.
818 819

    Returns:
F
fengjiayi 已提交
820
        Variable: The LoDTensorArray that has been converted from the input tensor.
821 822 823 824 825 826 827

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
828
    """
829 830
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
831
        name=unique_name.generate("lod_tensor_to_array"),
832
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
833
        dtype=x.dtype)
834 835 836 837 838 839 840 841
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


842
def array_to_lod_tensor(x, table):
843
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
844 845

    Args:
846
        x (Variable|list): The lod tensor array to be converted to a tensor.
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
862
    """
863
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
864
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
865 866 867 868 869 870 871 872
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


873
def increment(x, value=1.0, in_place=True):
874
    """
S
sneaxiy 已提交
875
    This function performs an operation that increments the value in the
876
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
877 878
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
879 880 881 882 883 884 885

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
886
        Variable: The elementwise-incremented object.
887 888 889 890

    Examples:
        .. code-block:: python

891
          import paddle.fluid as fluid
S
sneaxiy 已提交
892 893
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
894
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
895
    """
Y
Yu Yang 已提交
896
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
897
    if not in_place:
X
Xin Pan 已提交
898
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
899 900
    else:
        out = x
Y
Yu Yang 已提交
901 902 903
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
904
        outputs={'Out': [out]},
905
        attrs={'step': float(value)})
Y
Yang Yu 已提交
906
    return out
Y
Yu Yang 已提交
907 908


909
def array_write(x, i, array=None):
910 911 912 913 914
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
915 916 917

    Args:
        x (Variable|list): The input tensor from which the data will be read.
918 919 920 921 922 923 924 925
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

926
    Returns:
927
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
928 929

    Examples:
D
dzhwinter 已提交
930
        .. code-block:: python
931

932
          import paddle.fluid as fluid
933 934
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
935
          arr = fluid.layers.array_write(tmp, i=i)
936
    """
Y
Yu Yang 已提交
937 938 939 940 941
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
942
            dtype=x.dtype)
Y
Yu Yang 已提交
943 944 945 946 947 948 949 950
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


951
def create_array(dtype):
952
    """
Q
qiaolongfei 已提交
953
    **Create LoDTensorArray**
954

Q
qiaolongfei 已提交
955 956
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
957 958

    Args:
Q
qiaolongfei 已提交
959
        dtype (int|float): The data type of the elements in the lod_tensor_array.
960 961

    Returns:
962
        Variable: The lod_tensor_array variable storing the elements of data type.
963 964 965 966 967 968 969

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
970 971 972 973 974 975 976
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
977
@templatedoc()
978
def less_than(x, y, force_cpu=None, cond=None):
979
    """
Y
yuyang18 已提交
980
    ${comment}
981 982

    Args:
Y
yuyang18 已提交
983 984 985
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
986 987 988
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
989
        ${out_comment}.
990 991 992 993 994 995 996

    Examples:
        .. code-block:: python

          label = fluid.layers.data(name='y', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], dtype='int64', value=5)
          cond = fluid.layers.less_than(x=label, y=limit)
997
    """
Y
Yang Yang(Tony) 已提交
998 999
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1000
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1001 1002
        cond.stop_gradient = True

Y
yuyang18 已提交
1003 1004 1005 1006 1007 1008
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1009
    helper.append_op(
J
JiayiFeng 已提交
1010 1011 1012 1013
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1014
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1015 1016 1017
    return cond


Z
zhoukunsheng 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
@templatedoc()
def less_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x <= y` elementwise, which is equivalent to the overloaded operator `<=`.

    Args:
        x(Variable): First operand of *less_equal*
        y(Variable): Second operand of *less_equal*
        cond(Variable|None): Optional output variable to store the result of *less_equal*

    Returns:
        Variable: The tensor variable storing the output of *less_equal*.

    Examples:
        .. code-block:: python

1034 1035 1036 1037
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
          out = fluid.layers.less_equal(x=label, y=limit)
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x > y` elementwise, which is equivalent to the overloaded operator `>`.

    Args:
        x(Variable): First operand of *greater_than*
        y(Variable): Second operand of *greater_than*
        cond(Variable|None): Optional output variable to store the result of *greater_than*

    Returns:
        Variable: The tensor variable storing the output of *greater_than*.

    Examples:
        .. code-block:: python

1074 1075 1076 1077
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
          out = fluid.layers.greater_than(x=label, y=limit)
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x >= y` elementwise, which is equivalent to the overloaded operator `>=`.

    Args:
        x(Variable): First operand of *greater_equal*
        y(Variable): Second operand of *greater_equal*
        cond(Variable|None): Optional output variable to store the result of *greater_equal*

    Returns:
        Variable: The tensor variable storing the output of *greater_equal*.

    Examples:
        .. code-block:: python

1114 1115 1116 1117
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1118
          out = fluid.layers.greater_equal(x=label, y=limit)
1119

Z
zhoukunsheng 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1139
def equal(x, y, cond=None):
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

1154 1155 1156
          import paddle.fluid as fluid
          label = fluid.layers.data(name="label", shape=[3,10,32,32], dtype="float32")
          limit = fluid.layers.data(name="limit", shape=[3,10,32,32], dtype="float32")
1157 1158 1159 1160
          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1161
        cond = helper.create_variable_for_type_inference(dtype='bool')
1162 1163 1164 1165 1166 1167 1168 1169
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
def not_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x != y` elementwise, which is equivalent to the overloader operator `!=`.

    Args:
        x(Variable): First operand of *not_equal*
        y(Variable): Second operand of *not_equal*
        cond(Variable|None): Optional output variable to store the result of *not_equal*

    Returns:
        Variable: The tensor variable storing the output of *not_equal*.

    Examples:
        .. code-block:: python

1185 1186 1187 1188
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1202
def array_read(array, i):
1203 1204
    """
    This function performs the operation to read the data in as an
1205
    LOD_TENSOR_ARRAY.
1206 1207 1208 1209 1210 1211

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1212

1213
        And:
1214

1215 1216 1217 1218 1219 1220
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1221
    Args:
1222 1223 1224
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1225 1226
    Returns:
        Variable: The tensor type variable that has the data written to it.
1227

K
kavyasrinet 已提交
1228
    Examples:
1229 1230
        .. code-block:: python

1231
          import paddle.fluid as fluid
Z
zhaoyuchen 已提交
1232
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1233
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1234
          item = fluid.layers.array_read(array, i)
1235
    """
Y
Yu Yang 已提交
1236 1237 1238 1239 1240
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1241
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1248 1249


1250
def shrink_memory(x, i, table):
1251
    """
Y
yuyang18 已提交
1252
    This function creates an operator to shrink rnn memory using the RankTable
1253
    as mentioned in the input parameter.
Y
yuyang18 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1274
    """
Y
Yang Yu 已提交
1275
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1276
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1277
    helper.append_op(
Y
Yang Yu 已提交
1278
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1279 1280 1281 1282 1283 1284
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1285 1286


1287
def array_length(array):
1288
    """
Q
qiaolongfei 已提交
1289
    **Get the Length of Input LoDTensorArray**
1290 1291

    This function performs the operation to find the length of the input
1292
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1293

1294 1295
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1296 1297 1298 1299 1300 1301 1302 1303
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1304
        .. code-block:: python
K
kavyasrinet 已提交
1305

1306
          import paddle.fluid as fluid
K
kavyasrinet 已提交
1307 1308 1309 1310
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1311

1312
    """
Y
Yang Yu 已提交
1313
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1314
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1315 1316 1317 1318
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1319 1320 1321


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1322
    """
1323 1324 1325
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1326 1327 1328
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1370
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1371 1372 1373 1374
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1375
        self.is_scalar_condition = is_scalar_condition
1376
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1401
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1402 1403 1404
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1405 1406 1407 1408 1409
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1410 1411

        step_scope = parent_block.create_var(
1412
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1413 1414 1415
        parent_block.append_op(
            type='conditional_block',
            inputs={
1416 1417
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1418 1419 1420
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1421 1422 1423 1424 1425 1426 1427
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1428
    """
Q
qiaolongfei 已提交
1429 1430
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1431 1432 1433 1434

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1435

Q
qiaolongfei 已提交
1436
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1437 1438 1439 1440

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1441 1442 1443

    Examples:
        .. code-block:: python
1444 1445
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1446

1447
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1448 1449 1450 1451 1452
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1453 1454 1455
            zero_var = fluid.layers.fill_constant(
                 shape=[1], dtype='float32', value=0.0)
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1456
                shape=[1], dtype='float32', value=1.0)
1457 1458 1459 1460 1461
            two_var = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=2.0) 

            global_step = fluid.layers.autoincreased_step_counter(
                   counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1462 1463

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1464
                with switch.case(global_step == zero_var):
1465
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1466
                with switch.default():
1467
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1468 1469 1470

    """

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1565

1566 1567 1568 1569
            import paddle.fluid as fluid

            image = fluid.layers.data(name="X", shape=[2, 5, 5], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
X
improve  
Xin Pan 已提交
1570
            limit = fluid.layers.fill_constant_batch_size_like(
1571
                 input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1572 1573
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1574 1575
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1576 1577
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1578 1579 1580 1581
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1582 1583 1584
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1585 1586 1587
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1588 1589 1590 1591
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1592
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1593 1594
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1595
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1607
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1608
            out_true = parent_block.create_var(
1609 1610
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1611
                dtype=x.dtype)
Y
Yu Yang 已提交
1612 1613

            out_false = parent_block.create_var(
1614 1615
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1616
                dtype=x.dtype)
Y
Yu Yang 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1635
    def _parent_block(self):
Y
Yu Yang 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1651
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1652 1653 1654 1655 1656
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1657
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1658
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1659
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1660 1661 1662
            out_table.append(outside_out)

            # assign local var to outside
1663
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1664 1665 1666 1667

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1668
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1687
                    level=0))
Y
Yu Yang 已提交
1688
        return rlist
1689 1690 1691


class DynamicRNN(object):
Y
yuyang18 已提交
1692
    """
Y
yuyang18 已提交
1693 1694 1695
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1696

1697
    The input lod must be set. Please reference to `lod_tensor`.
Y
yuyang18 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
1707

C
chengduoZH 已提交
1708 1709 1710
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          sentence = fluid.layers.data(name='sentence', shape=[1], dtype='int64', lod_level=1)
          embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)
    
          drnn = fluid.layers.DynamicRNN()
          with drnn.block():
              word = drnn.step_input(embedding)
              prev = drnn.memory(shape=[200])
              hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
              drnn.update_memory(prev, hidden)  # set prev to hidden
              drnn.output(hidden)

          # Get the last time step of rnn. It is the encoding result.
          rnn_output = drnn()
          last = fluid.layers.sequence_last_step(rnn_output)
Y
yuyang18 已提交
1731
    """
1732 1733 1734 1735
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1736 1737
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1738 1739 1740 1741
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1742
        self.zero_idx = None
1743 1744 1745
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1746
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1747 1748 1749 1750 1751
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1752
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1753 1754
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1755

Y
yuyang18 已提交
1756
        Args:
1757 1758
            x (Variable): The input sequence which should have lod information.
            level (int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1759 1760 1761 1762

        Returns:
            The current timestep in the input sequence.
        """
1763 1764 1765
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1766
                "step_input() can only take a Variable as its input.")
1767 1768 1769
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1770
                name=unique_name.generate('lod_rank_table'),
1771 1772 1773 1774 1775
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1776 1777
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1778
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1779 1780
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1791 1792
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1793 1794

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1795
            name=unique_name.generate('dynamic_rnn_input_array'),
1796 1797 1798 1799 1800 1801 1802 1803
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1804
        return array_read(array=input_array, i=self.step_idx)
1805

Y
yangyaming 已提交
1806
    def static_input(self, x):
Y
yuyang18 已提交
1807 1808
        """
        Mark a variable as a RNN input. The input will not be scattered into
1809
        time steps. It is optional.
H
haowang101779990 已提交
1810

Y
yuyang18 已提交
1811
        Args:
1812
            x (Variable): The input variable.
Y
yuyang18 已提交
1813 1814 1815

        Returns:
            The input variable that can access in RNN.
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              encoder_proj = fluid.layers.data(name='encoder_proj', dtype='float32', shape=[32], lod_level=1)
              decoder_boot = fluid.layers.data(name='boot', dtype='float32', shape=[10], lod_level=1)

              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  current_word = drnn.step_input(sentence)
                  encoder_word = drnn.static_input(encoder_proj)
                  hidden_mem = drnn.memory(init=decoder_boot, need_reorder=True)
                  fc_1 = fluid.layers.fc(input=encoder_word, size=30, bias_attr=False)
                  fc_2 = fluid.layers.fc(input=current_word, size=30, bias_attr=False)
                  decoder_inputs = fc_1 + fc_2
                  h, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=hidden_mem, size=30)
                  drnn.update_memory(hidden_mem, h)
                  out = fluid.layers.fc(input=h, size=10, bias_attr=True, act='softmax') 
                  drnn.output(out)

              rnn_output = drnn()
Y
yuyang18 已提交
1840
        """
Y
yangyaming 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1850
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1860
    @signature_safe_contextmanager
1861
    def block(self):
Y
yuyang18 已提交
1862
        """
1863
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1864
        """
1865 1866
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1867 1868
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1869 1870 1871 1872
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1873
            increment(x=self.step_idx, value=1.0, in_place=True)
1874 1875

            for new_mem, mem_array in self.mem_link:
1876 1877
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1878 1879 1880 1881 1882
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1883 1884 1885 1886 1887

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1888
                    x=each_array, table=self.lod_rank_table))
1889 1890

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1891 1892 1893
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1894
        if self.status != DynamicRNN.AFTER_RNN:
1895 1896
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1897 1898 1899 1900 1901
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1902 1903 1904 1905 1906 1907
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1908
        """
Y
yuyang18 已提交
1909
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1910 1911 1912 1913 1914 1915

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', shape=[32], dtype='float32', lod_level=1)
              boot_memory = fluid.layers.data(name='boot', shape=[10], dtype='float32', lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(init=boot_memory, need_reorder=True)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)

              rnn_output = drnn()
Y
yuyang18 已提交
1933 1934 1935 1936 1937


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

1938 1939
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
1940

1941
              import paddle.fluid as fluid
Y
yuyang18 已提交
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951
              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(shape=[10], dtype='float32', value=0)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)
Y
yuyang18 已提交
1952

1953
              rnn_output = drnn()
Y
yuyang18 已提交
1954 1955


1956 1957 1958
        Args:
            init(Variable|None): The initialized variable.
            shape(list|tuple): The memory shape. The shape does not contain batch_size.
Y
yuyang18 已提交
1959
            value(float): the initalized value.
H
haowang101779990 已提交
1960
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1961 1962 1963
            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1964
            The memory variable.
Y
yuyang18 已提交
1965
        """
1966
        self._assert_in_rnn_block_('memory')
1967
        self._init_zero_idx_()
1968 1969 1970 1971 1972
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1973 1974 1975 1976 1977 1978 1979 1980
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1981
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1992
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1993
                name=unique_name.generate('dynamic_rnn_mem_array'),
1994 1995 1996 1997
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1998
                inputs={'X': init_tensor,
1999 2000
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
2001
            retv = array_read(array=mem_array, i=self.step_idx)
2002
            retv = shrink_memory(
2003
                x=retv, i=self.step_idx, table=self.lod_rank_table)
2004 2005 2006 2007 2008 2009 2010 2011 2012
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
2013
                name=unique_name.generate('mem_init'), dtype=dtype)
2014
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
2015 2016
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2034 2035 2036
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
2037
        
Y
yuyang18 已提交
2038 2039 2040 2041 2042 2043 2044
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2062
        """
2063
        Mark the RNN output variables.
Y
yuyang18 已提交
2064 2065 2066 2067 2068 2069 2070

        Args:
            outputs: The output variables.

        Returns:
            None
        """
2071 2072 2073 2074
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2075
                name=unique_name.generate_with_ignorable_key("_".join(
2076 2077 2078 2079 2080 2081
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2110 2111


2112
@templatedoc()
Y
Yang Yu 已提交
2113
def reorder_lod_tensor_by_rank(x, rank_table):
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
    """
    ${comment}

    Args:
    
        x(${x_type}): ${x_comment}
        rank_table(${rank_table_type}): ${rank_table_type}
    
    Returns:
        out(${out_type}): ${out_comment} 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2137 2138 2139 2140
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2141
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2142 2143 2144 2145 2146 2147
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2148 2149


2150
def is_empty(x, cond=None):
2151
    """
F
fengjiayi 已提交
2152
    Test whether a Variable is empty.
2153 2154

    Args:
F
fengjiayi 已提交
2155
        x (Variable): The Variable to be tested.
2156
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2157
                              of given 'x'. Default: None
2158 2159

    Returns:
F
fengjiayi 已提交
2160
        Variable: A bool scalar. True if 'x' is an empty Variable.
2161 2162 2163

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2164
                   not bool.
2165 2166 2167 2168

    Examples:
        .. code-block:: python

2169 2170
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2171 2172
          res = fluid.layers.is_empty(x=input)
          # or:
2173 2174
          # fluid.layers.is_empty(x=input, cond=res)

2175 2176 2177
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2178
        cond = helper.create_variable_for_type_inference(dtype='bool')
2179 2180 2181 2182 2183 2184 2185 2186 2187
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond