tensor.py 50.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
26 27
import warnings
from ..data_feeder import convert_dtype
Y
Yu Yang 已提交
28 29

__all__ = [
L
li099 已提交
30 31 32
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
33
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
34
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
35 36 37
]


X
xuwei06 已提交
38
def create_tensor(dtype, name=None, persistable=False):
39
    """
W
wangchaochaohu 已提交
40
    Create a variable, which will hold a Tensor with data type dtype.
41 42

    Args:
W
wangchaochaohu 已提交
43 44 45 46
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
47
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
48
            default value is False.
49 50

    Returns:
W
wangchaochaohu 已提交
51
        Variable: The tensor to be created according to dtype.
52 53 54 55

    Examples:
        .. code-block:: python

56
          import paddle.fluid as fluid
57 58
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
59
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
60 61
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
62 63


64 65
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
66
                     name=None,
67 68 69 70
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
71
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
72 73 74 75 76
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

77 78 79 80 81 82 83
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
84 85 86
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
87
        default_initializer (Initializer, optional): Initializer for the parameter
88 89

    Returns:
90
        The created parameter.
Y
yuyang18 已提交
91 92

    Examples:
93 94
        .. code-block:: python

95
            import paddle.fluid as fluid
96 97
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
98
    """
Q
Qiao Longfei 已提交
99
    helper = LayerHelper("create_parameter", **locals())
100
    if attr is None:
X
xuwei06 已提交
101
        attr = ParamAttr(name=name)
102 103 104 105
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


106 107 108 109 110 111 112
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
113
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
114

115 116 117
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
118
                      variable will be filled with it.
119 120
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
121
                           Default: False
122
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
123
                         Default: False
124 125
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
126 127

    Returns:
128
        Variable: The created Variable
F
fengjiayi 已提交
129 130 131 132

    Examples:
        .. code-block:: python

133
            import paddle.fluid as fluid
134 135 136
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
137
    """
Q
Qiao Longfei 已提交
138 139
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
140 141 142 143 144
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
145 146 147
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
148

Q
Qiao Longfei 已提交
149 150 151
    return var


152
def cast(x, dtype):
Y
Yu Yang 已提交
153
    """
154 155 156
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
157 158

    Args:
159 160 161 162
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
163 164

    Returns:
165
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
166 167 168

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
169

170
            import paddle.fluid as fluid
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
193 194
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
195
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
196 197 198 199 200 201 202 203 204
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


205
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
206
    """
207 208
    **Concat**

209
    This OP concatenates the input along the axis.
210 211

    Args:
212 213 214 215 216 217 218 219
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
220 221

    Returns:
222
        Variable: A Tensor with the same data type as input's.
223 224 225

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
226

227
            import paddle.fluid as fluid
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
250 251
    """
    helper = LayerHelper('concat', **locals())
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
    for x in input:
        if not isinstance(x, Variable):
            raise TypeError(
                "The type of x in 'input' in concat must be Variable, but received %s."
                % (type(x)))
        if convert_dtype(x.dtype) in ['float16']:
            warnings.warn(
                "The data type of x in 'input' in concat only support float16 on GPU now."
            )
        if convert_dtype(x.dtype) not in [
                'float16', 'float32', 'float64', 'int32', 'int64'
        ]:
            raise TypeError(
                "The data type of x in 'input' in concat must be float16(only support on GPU), float32, float64, int32, int64, but received %s."
                % (convert_dtype(x.dtype)))
X
Xin Pan 已提交
272
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
273 274 275 276 277 278 279 280
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


281
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
282
    """
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
333 334

    Args:
335 336 337 338 339 340 341
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
342 343

    Returns:
344 345 346
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
347 348 349 350

    Examples:
        .. code-block:: python

351
            import paddle.fluid as fluid
352
            import numpy as np
353 354 355 356 357 358 359
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
360
    """
L
li099 已提交
361
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
362 363 364
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
365
        type='tensor_array_to_tensor',
L
li099 已提交
366 367 368
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
369 370
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
371 372 373
    return out, out_index


374
def sums(input, out=None):
F
fengjiayi 已提交
375
    """
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
397 398

    Args:
399 400 401 402
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
403 404

    Returns:
405 406
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
407 408

    Examples:
F
fengjiayi 已提交
409
        .. code-block:: python
K
kavyasrinet 已提交
410

411 412 413 414 415 416 417 418 419
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
420

421 422
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
423 424 425
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
426 427
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
428 429 430 431 432
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
433 434 435
    return out


F
fengjiayi 已提交
436
def assign(input, output=None):
437
    """
438
    The OP copies the :attr:`input` to the :attr:`output`.
439

440 441 442 443 444
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
445 446

    Returns:
447
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
448 449 450

    Examples:
        .. code-block:: python
451

452
          import paddle.fluid as fluid
453 454 455 456 457 458
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
459
    """
Y
Yu Yang 已提交
460
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
461
    if isinstance(input, Variable):
462
        if convert_dtype(input.dtype) not in [
463
                'float32', 'float64', 'int32', 'int64', 'bool'
464 465 466
        ]:
            raise TypeError(
                "When the type of 'input' in assign is Variable, the data "
467 468
                "type of 'input' must be float32, float64, int32, int64 or "
                "bool, but received %s." % convert_dtype(input.dtype))
469 470 471
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
472
        helper.append_op(
R
robot 已提交
473
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
474 475
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
476
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
477
            value_name = "fp32_values"
478
            values = [float(v) for v in input.flat]
479
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
480
            value_name = "int32_values"
481
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
482
        else:
483 484 485 486
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
487 488 489
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
490 491 492
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
493 494 495 496 497 498
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
499
                value_name: values
X
xuwei06 已提交
500 501
            })
    else:
502 503
        raise TypeError("The type of 'input' in assign must be Variable or "
                        "numpy.ndarray, but received %s" % type(input))
X
xuwei06 已提交
504

Y
Yu Yang 已提交
505 506 507
    return output


Q
QI JUN 已提交
508
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
509
    """
W
wangchaochaohu 已提交
510
    This OP creates a Tensor with specified `shape` and `dtype`, and
511
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
512

W
wangchaochaohu 已提交
513
    The attribute `stop_gradient` of the created Tensor is setted to True.
514 515

    Args:
W
wangchaochaohu 已提交
516 517 518 519 520 521 522 523
        shape(tuple|list): Shape of the Tensor to be created.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
524 525

    Returns:
W
wangchaochaohu 已提交
526 527 528 529 530
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
531 532 533 534

    Examples:
        .. code-block:: python

535
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
536 537 538
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) 
          #data1=[[5], [5]] data2=[[5], [5]]
Y
Yu Yang 已提交
539 540
    """
    helper = LayerHelper("fill_constant", **locals())
541 542 543 544 545 546 547
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
L
liym27 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "The type of 'shape' in fill_constant must be Variable, list or tuple, but "
            "received %s." % (type(shape)))

    inputs = {}
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

    def _contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in fill_constant can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
        if _contain_var(shape):
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)

Y
Yu Yang 已提交
598
    if out is None:
X
Xin Pan 已提交
599
        out = helper.create_variable_for_type_inference(dtype=dtype)
600 601 602 603 604 605
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
L
liym27 已提交
606
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
607 608
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
609
        inputs=inputs,
Y
Yu Yang 已提交
610
        outputs={'Out': [out]},
L
liym27 已提交
611
        attrs=attrs,
M
minqiyang 已提交
612
        stop_gradient=True)
Y
Yu Yang 已提交
613 614 615 616
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
617
@templatedoc()
Y
Yu Yang 已提交
618 619 620 621 622
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
623 624
                                  output_dim_idx=0,
                                  force_cpu=False):
625
    """
W
wangchaochaohu 已提交
626 627 628 629 630
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
631 632

    Args:
W
wangchaochaohu 已提交
633 634 635 636 637 638 639 640 641 642 643
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
644
        force_cpu(bool): data should be on CPU if it's true, defalut value is False.
Y
yuyang18 已提交
645 646

    Returns:
W
wangchaochaohu 已提交
647
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
648 649 650 651 652

    Examples:

        .. code-block:: python

653
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
654
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
655
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
656
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
657

658
    """
Y
Yu Yang 已提交
659
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
660
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
661 662 663 664 665 666 667 668 669
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
670 671
            'output_dim_idx': output_dim_idx,
            'force_cpu': force_cpu or force_init_on_cpu()
Y
Yu Yang 已提交
672 673 674 675 676
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
677 678 679 680
def argmin(x, axis=0):
    """
    **argmin**

681 682
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
683 684

    Args:
685 686 687 688 689
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
690

S
sneaxiy 已提交
691
    Returns:
692
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
693

S
sneaxiy 已提交
694 695
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
696

697
            import paddle.fluid as fluid
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
725 726
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
727
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
728 729 730 731 732 733 734 735 736 737 738 739
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

740 741
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
742 743

    Args:
744 745 746 747 748
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
749

S
sneaxiy 已提交
750
    Returns:
751
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
752

S
sneaxiy 已提交
753 754
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
755

756
            import paddle.fluid as fluid
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
784 785
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
786
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
787 788 789 790 791 792 793 794
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


795
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
796
    """
797 798 799
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
800 801

    Args:
802 803 804 805 806 807 808 809
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
810 811

    Returns:
812 813 814
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
815 816 817 818

    Examples:
        .. code-block:: python

819
            import paddle.fluid as fluid
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
861 862
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
863 864 865 866
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
867 868 869 870
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
871 872
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
873 874 875
    return out, ids


Y
Yang Yu 已提交
876
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
877
    """
878 879
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
880

881 882 883 884 885 886 887
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
888 889

    Returns:
890
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
891 892 893 894

    Examples:
        .. code-block:: python

895
          import paddle.fluid as fluid
896
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
897
    """
C
chengduozh 已提交
898 899 900 901
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
902 903 904
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
905
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
906
    """
907 908
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
909

910 911 912 913 914 915 916
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
917 918

    Returns:
919
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
920 921 922 923

    Examples:
        .. code-block:: python

924
          import paddle.fluid as fluid
925
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
926
    """
927 928 929 930 931 932 933
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in zeros must be one of bool, float16, float32,"
            " float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
934
    return fill_constant(value=0.0, **locals())
935 936


F
fengjiayi 已提交
937 938
def reverse(x, axis):
    """
939
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
940

941 942 943 944 945
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
946 947

    Returns:
948
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
949 950 951 952

    Examples:
        .. code-block:: python

953
          import paddle.fluid as fluid
954 955 956 957
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
958 959 960 961
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
962
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
963 964
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
965
        inputs={'X': x},
F
fengjiayi 已提交
966 967 968 969 970
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


971 972 973 974 975 976 977
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
978 979 980
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
996 997
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
998
        file_path(str): The file path where variables will be saved.
999
        overwrite(bool): Whether or not cover the given file when it has already
1000 1001
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1002 1003 1004 1005 1006 1007 1008 1009

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1010
            import paddle.fluid as fluid
1011 1012 1013 1014 1015 1016 1017
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1042 1043 1044 1045 1046 1047 1048


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
1049
       x (Variable): The Tensor/LoDTensor to be checked.
1050 1051

    Returns:
1052
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1053 1054 1055 1056 1057 1058 1059 1060
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1061 1062
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1063
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1064 1065 1066 1067 1068 1069 1070 1071 1072
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
1073
       x (Variable): The Tensor/LoDTensor to be checked.
1074 1075

    Returns:
1076
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1077 1078 1079 1080 1081 1082 1083 1084
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1085 1086
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1087
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1088 1089 1090 1091 1092 1093
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1094
    Test if any of x contains an infinity / nan number. If all the elements are finite,
1095 1096
    returns true, else false.

1097 1098 1099
    Note: The input to this operator Tensor / LoDTensor data type must be one of
    int32 / float / double.

1100
    Args:
1101
       x(Variable): The Tensor / LoDTensor to be checked.
1102 1103 1104

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1105 1106 1107 1108 1109

    Examples:

        .. code-block:: python

1110
            import paddle.fluid as fluid
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
            import numpy

            # Graph Organizing
            var = fluid.data(name="data", shape=(4, 6), dtype="float32")
            output = fluid.layers.isfinite(var)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            img = numpy.ones((4, 6)).astype(numpy.float32)
            res, = exe.run(fluid.default_main_program(), feed={'data':img}, fetch_list=[output])
            print(res)  # Output Value: [ True]
1124 1125
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1126
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1127 1128
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1138 1139 1140 1141
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1142
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1143 1144 1145
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1146
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
1147
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1148

L
Liufang Sang 已提交
1149 1150 1151
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1152 1153 1154 1155 1156

    examples:

        .. code-block:: python

1157
             import paddle.fluid as fluid
W
whs 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1178
    out.stop_gradient = True
W
whs 已提交
1179
    return out
Z
zhoukunsheng 已提交
1180 1181


Z
zhoukunsheng 已提交
1182 1183
def linspace(start, stop, num, dtype):
    """
1184
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1185 1186

    Args:
1187 1188 1189 1190 1191 1192 1193
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1194 1195

    Returns:
1196 1197 1198
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1199

Z
zhoukunsheng 已提交
1200
    Examples:
Z
zhoukunsheng 已提交
1201 1202
        .. code-block:: python

1203
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1204 1205
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1226 1227


Z
zhoukunsheng 已提交
1228 1229
def zeros_like(x, out=None):
    """
1230
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1231 1232 1233
    with `x`.

    Args:
1234 1235 1236 1237
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1238 1239

    Returns:
1240 1241
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1242 1243 1244 1245

    Examples:
        .. code-block:: python

1246
          import paddle.fluid as fluid
1247
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1248 1249
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1259 1260 1261 1262


def diag(diagonal):
    """
1263
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1264 1265

    Args:
1266 1267
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1268 1269

    Returns:
1270 1271
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1272 1273 1274 1275 1276 1277 1278

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1279 1280 1281

          import paddle.fluid as fluid
          import numpy as np
1282 1283 1284
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1300 1301


1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1314 1315
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1316 1317

    Returns:
1318
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1319 1320 1321 1322 1323

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1324 1325
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1326
          #  [0, 1, 0]
1327 1328
          #  [0, 0, 1]]

1329
          data = fluid.layers.eye(2, 3, dtype='int32')
1330
          # [[1, 0, 0]
1331
          #  [0, 1, 0]]
1332 1333

          data = fluid.layers.eye(2, batch_shape=[3])
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1386
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out