tensor.py 46.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
31
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
32
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
33 34 35
]


X
xuwei06 已提交
36
def create_tensor(dtype, name=None, persistable=False):
37
    """
W
wangchaochaohu 已提交
38
    Create a variable, which will hold a Tensor with data type dtype.
39 40

    Args:
W
wangchaochaohu 已提交
41 42 43 44
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
45
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
46
            default value is False.
47 48

    Returns:
W
wangchaochaohu 已提交
49
        Variable: The tensor to be created according to dtype.
50 51 52 53

    Examples:
        .. code-block:: python

54
          import paddle.fluid as fluid
55 56
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
57
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
58 59
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
60 61


62 63
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
64
                     name=None,
65 66 67 68
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
69
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
70 71 72 73 74
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

75 76 77 78 79 80 81
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
82 83 84
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
85
        default_initializer (Initializer, optional): Initializer for the parameter
86 87

    Returns:
88
        The created parameter.
Y
yuyang18 已提交
89 90

    Examples:
91 92
        .. code-block:: python

93
            import paddle.fluid as fluid
94 95
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
96
    """
Q
Qiao Longfei 已提交
97
    helper = LayerHelper("create_parameter", **locals())
98
    if attr is None:
X
xuwei06 已提交
99
        attr = ParamAttr(name=name)
100 101 102 103
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
111
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
112

113 114 115
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
116
                      variable will be filled with it.
117 118
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
119
                           Default: False
120
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
121
                         Default: False
122 123
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
124 125

    Returns:
126
        Variable: The created Variable
F
fengjiayi 已提交
127 128 129 130

    Examples:
        .. code-block:: python

131
            import paddle.fluid as fluid
132 133 134
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
135
    """
Q
Qiao Longfei 已提交
136 137
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
138 139 140 141 142
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
143 144 145
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
146

Q
Qiao Longfei 已提交
147 148 149
    return var


150
def cast(x, dtype):
Y
Yu Yang 已提交
151
    """
152 153 154
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
155 156

    Args:
157 158 159 160
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
161 162

    Returns:
163
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
164 165 166

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
167

168
            import paddle.fluid as fluid
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
191 192
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
193
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


203
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
204
    """
205 206
    **Concat**

207
    This OP concatenates the input along the axis.
208 209

    Args:
210 211 212 213 214 215 216 217
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
218 219

    Returns:
220
        Variable: A Tensor with the same data type as input's.
221 222 223

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
224

225
            import paddle.fluid as fluid
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
248 249
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
250
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
251 252 253 254 255 256 257 258
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
259 260
def tensor_array_to_tensor(input, axis=1, name=None):
    """
261
    This OP concatenates the input LodTensorArray along the axis.
L
li099 已提交
262 263

    Args:
264 265 266 267 268 269 270 271
        input(Variable): A LodTensorArray with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 1.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
L
li099 已提交
272 273

    Returns:
274 275
        Variable: A LoDTensor with the same data type as input's
        Variable: The input LodTensorArray items' dims along the axis.
L
li099 已提交
276 277 278 279

    Examples:
        .. code-block:: python

280
            import paddle.fluid as fluid
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            import numpy as np

            place = fluid.CPUPlace()

            x1 = fluid.data(name="x", shape=[2,2], lod_level=0)
            tmp = fluid.layers.fill_constant(shape=[2,3], dtype="float32", value=1)
            x_arr = fluid.layers.create_array(dtype="float32")
            c0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            fluid.layers.array_write(x=tmp, i=c0, array=x_arr)
            c1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            fluid.layers.array_write(x=x1, i=c1, array=x_arr)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=x_arr, axis=1)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            feedx = fluid.LoDTensor()
            feedx.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            res = exe.run(fluid.default_main_program(), feed={'x':feedx}, fetch_list=[output], return_numpy=False)
            print(np.array(res[0]))
            # [[ 1.   1.   1.   1.3 -2.4]
            #  [ 1.   1.   1.   0.   4. ]]
L
li099 已提交
303
    """
L
li099 已提交
304
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
305 306 307
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
308
        type='tensor_array_to_tensor',
L
li099 已提交
309 310 311 312 313 314 315
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


316
def sums(input, out=None):
F
fengjiayi 已提交
317
    """
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
339 340

    Args:
341 342 343 344
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
345 346

    Returns:
347 348
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
349 350

    Examples:
F
fengjiayi 已提交
351
        .. code-block:: python
K
kavyasrinet 已提交
352

353 354 355 356 357 358 359 360 361
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
362

363 364
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
365 366 367
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
368 369
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
370 371 372 373 374
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
375 376 377
    return out


F
fengjiayi 已提交
378
def assign(input, output=None):
379
    """
380
    The OP copies the :attr:`input` to the :attr:`output`.
381

382 383 384 385 386
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
387 388

    Returns:
389
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
390 391 392

    Examples:
        .. code-block:: python
393

394
          import paddle.fluid as fluid
395 396 397 398 399 400
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
401
    """
Y
Yu Yang 已提交
402
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
403
    if isinstance(input, Variable):
404 405 406 407 408 409 410 411 412 413
        if convert_dtype(input.dtype) not in [
                'float32', 'float64', 'int32', 'int64'
        ]:
            raise TypeError(
                "When the type of 'input' in assign is Variable, the data "
                "type of 'input' must be float32, float64, int32 or int64, "
                "but received %s." % convert_dtype(input.dtype))
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
414
        helper.append_op(
R
robot 已提交
415
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
416 417
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
418
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
419
            value_name = "fp32_values"
420
            values = [float(v) for v in input.flat]
421
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
422
            value_name = "int32_values"
423
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
424
        else:
425 426 427 428
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
429 430 431
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
432 433 434
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
435 436 437 438 439 440
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
441
                value_name: values
X
xuwei06 已提交
442 443
            })
    else:
444 445
        raise TypeError("The type of 'input' in assign must be Variable or "
                        "numpy.ndarray, but received %s" % type(input))
X
xuwei06 已提交
446

Y
Yu Yang 已提交
447 448 449
    return output


Q
QI JUN 已提交
450
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
451
    """
W
wangchaochaohu 已提交
452
    This OP creates a Tensor with specified `shape` and `dtype`, and
453
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
454

W
wangchaochaohu 已提交
455
    The attribute `stop_gradient` of the created Tensor is setted to True.
456 457

    Args:
W
wangchaochaohu 已提交
458 459 460 461 462 463 464 465
        shape(tuple|list): Shape of the Tensor to be created.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
466 467

    Returns:
W
wangchaochaohu 已提交
468 469 470 471 472
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
473 474 475 476

    Examples:
        .. code-block:: python

477
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
478 479 480
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) 
          #data1=[[5], [5]] data2=[[5], [5]]
Y
Yu Yang 已提交
481
    """
482

Y
Yu Yang 已提交
483
    helper = LayerHelper("fill_constant", **locals())
484 485 486 487 488 489 490
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
491
    if out is None:
X
Xin Pan 已提交
492
        out = helper.create_variable_for_type_inference(dtype=dtype)
493 494 495 496 497 498
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
Y
Yu Yang 已提交
499 500 501 502
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
503 504 505 506
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
507
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
508 509
        },
        stop_gradient=True)
Y
Yu Yang 已提交
510 511 512 513
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
514
@templatedoc()
Y
Yu Yang 已提交
515 516 517 518 519
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
520
                                  output_dim_idx=0):
521
    """
W
wangchaochaohu 已提交
522 523 524 525 526
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
527 528

    Args:
W
wangchaochaohu 已提交
529 530 531 532 533 534 535 536 537 538 539
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
Y
yuyang18 已提交
540 541

    Returns:
W
wangchaochaohu 已提交
542
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
543 544 545 546 547

    Examples:

        .. code-block:: python

548
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
549
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
550
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
551
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
552

553
    """
Y
Yu Yang 已提交
554
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
555
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
571 572 573 574
def argmin(x, axis=0):
    """
    **argmin**

575 576
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
577 578

    Args:
579 580 581 582 583
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
584

S
sneaxiy 已提交
585
    Returns:
586
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
587

S
sneaxiy 已提交
588 589
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
590

591
            import paddle.fluid as fluid
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
619 620
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
621
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
622 623 624 625 626 627 628 629 630 631 632 633
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

634 635
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
636 637

    Args:
638 639 640 641 642
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
643

S
sneaxiy 已提交
644
    Returns:
645
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
646

S
sneaxiy 已提交
647 648
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
649

650
            import paddle.fluid as fluid
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
678 679
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
680
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
681 682 683 684 685 686 687 688
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


689
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
690
    """
691 692 693
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
694 695

    Args:
696 697 698 699 700 701 702 703
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
704 705

    Returns:
706 707 708
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
709 710 711 712

    Examples:
        .. code-block:: python

713
            import paddle.fluid as fluid
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
755 756
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
757 758 759 760
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
761 762 763 764
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
765 766
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
767 768 769
    return out, ids


Y
Yang Yu 已提交
770
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
771
    """
772 773
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
774

775 776 777 778 779 780 781
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
782 783

    Returns:
784
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
785 786 787 788

    Examples:
        .. code-block:: python

789
          import paddle.fluid as fluid
790
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
791
    """
C
chengduozh 已提交
792 793 794 795
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
796 797 798
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
799
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
800
    """
801 802
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
803

804 805 806 807 808 809 810
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
811 812

    Returns:
813
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
814 815 816 817

    Examples:
        .. code-block:: python

818
          import paddle.fluid as fluid
819
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
820 821
    """
    return fill_constant(value=0.0, **locals())
822 823


F
fengjiayi 已提交
824 825
def reverse(x, axis):
    """
826
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
827

828 829 830 831 832
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
833 834

    Returns:
835
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
836 837 838 839

    Examples:
        .. code-block:: python

840
          import paddle.fluid as fluid
841 842 843 844
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
845 846 847 848
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
849
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
850 851
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
852
        inputs={'X': x},
F
fengjiayi 已提交
853 854 855 856 857
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


858 859 860 861 862 863 864
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
865 866 867
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
883 884
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
885
        file_path(str): The file path where variables will be saved.
886
        overwrite(bool): Whether or not cover the given file when it has already
887 888
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
889 890 891 892 893 894 895 896

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

897
            import paddle.fluid as fluid
898 899 900 901 902 903 904
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
929 930 931 932 933 934 935


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
936
       x (Variable): The Tensor/LoDTensor to be checked.
937 938

    Returns:
939
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
940 941 942 943 944 945 946 947
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

948 949
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
950
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
951 952 953 954 955 956 957 958 959
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
960
       x (Variable): The Tensor/LoDTensor to be checked.
961 962

    Returns:
963
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
964 965 966 967 968 969 970 971
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

972 973
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
974
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
975 976 977 978 979 980
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
981
    Test if any of x contains an infinity / nan number. If all the elements are finite,
982 983
    returns true, else false.

984 985 986
    Note: The input to this operator Tensor / LoDTensor data type must be one of
    int32 / float / double.

987
    Args:
988
       x(Variable): The Tensor / LoDTensor to be checked.
989 990 991

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
992 993 994 995 996

    Examples:

        .. code-block:: python

997
            import paddle.fluid as fluid
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
            import numpy

            # Graph Organizing
            var = fluid.data(name="data", shape=(4, 6), dtype="float32")
            output = fluid.layers.isfinite(var)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            img = numpy.ones((4, 6)).astype(numpy.float32)
            res, = exe.run(fluid.default_main_program(), feed={'data':img}, fetch_list=[output])
            print(res)  # Output Value: [ True]
1011 1012
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1013
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1014 1015
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1025 1026 1027 1028
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1029
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1030 1031 1032
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1033
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
1034
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1035

L
Liufang Sang 已提交
1036 1037 1038
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1039 1040 1041 1042 1043

    examples:

        .. code-block:: python

1044
             import paddle.fluid as fluid
W
whs 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1065
    out.stop_gradient = True
W
whs 已提交
1066
    return out
Z
zhoukunsheng 已提交
1067 1068


Z
zhoukunsheng 已提交
1069 1070
def linspace(start, stop, num, dtype):
    """
1071
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1072 1073

    Args:
1074 1075 1076 1077 1078 1079 1080
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1081 1082

    Returns:
1083 1084 1085
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1086

Z
zhoukunsheng 已提交
1087
    Examples:
Z
zhoukunsheng 已提交
1088 1089
        .. code-block:: python

1090
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1091 1092
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1113 1114


Z
zhoukunsheng 已提交
1115 1116
def zeros_like(x, out=None):
    """
1117
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1118 1119 1120
    with `x`.

    Args:
1121 1122 1123 1124
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1125 1126

    Returns:
1127 1128
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1129 1130 1131 1132

    Examples:
        .. code-block:: python

1133
          import paddle.fluid as fluid
1134
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1135 1136
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1146 1147 1148 1149


def diag(diagonal):
    """
1150
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1151 1152

    Args:
1153 1154
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1155 1156

    Returns:
1157 1158
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1159 1160 1161 1162 1163 1164 1165

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1166 1167 1168

          import paddle.fluid as fluid
          import numpy as np
1169 1170 1171
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1187 1188


1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1201 1202
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1203 1204

    Returns:
1205
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1206 1207 1208 1209 1210

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1211 1212
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1213
          #  [0, 1, 0]
1214 1215
          #  [0, 0, 1]]

1216
          data = fluid.layers.eye(2, 3, dtype='int32')
1217
          # [[1, 0, 0]
1218
          #  [0, 1, 0]]
1219 1220

          data = fluid.layers.eye(2, batch_shape=[3])
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1273
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out