未验证 提交 8ea490f1 编写于 作者: W wopeizl 提交者: GitHub

cherry-pick optimize the api test=develop test=release/1.6 (#20350)

上级 ed0c721b
......@@ -65,24 +65,26 @@ def create_parameter(shape,
is_bias=False,
default_initializer=None):
"""
Create a parameter. The parameter is a learnable variable, which can have
This function creates a parameter. The parameter is a learnable variable, which can have
gradient, and can be optimized.
NOTE: this is a very low-level API. This API is useful when you create
operator by your self. instead of using layers.
Args:
shape(list[int]): shape of the parameter
dtype(string): element type of the parameter
attr(ParamAttr): attributes of the parameter
is_bias(bool): This can affect which default initializer is chosen
Parameters:
shape (list of int): Shape of the parameter
dtype (str): Data type of the parameter
name (str, optional): For detailed information, please refer to
:ref:`api_guide_Name` . Usually name is no need to set and None by default.
attr (ParamAttr, optional): Attributes of the parameter
is_bias (bool, optional): This can affect which default initializer is chosen
when default_initializer is None. If is_bias,
initializer.Constant(0.0) will be used. Otherwise,
Xavier() will be used.
default_initializer(Initializer): initializer for the parameter
default_initializer (Initializer, optional): Initializer for the parameter
Returns:
the created parameter.
The created parameter.
Examples:
.. code-block:: python
......@@ -105,23 +107,22 @@ def create_global_var(shape,
force_cpu=False,
name=None):
"""
Create a new tensor variable with value in the global block(block 0).
This function creates a new tensor variable with value in the global block(block 0).
Args:
shape(list[int]): shape of the variable
value(float): the value of the variable. The new created
Parameters:
shape (list of int): Shape of the variable
value (float): The value of the variable. The new created
variable will be filled with it.
dtype(string): data type of the variable
persistable(bool): if this variable is persistable.
dtype (str): Data type of the variable
persistable (bool, optional): If this variable is persistable.
Default: False
force_cpu(bool): force this variable to be on CPU.
force_cpu (bool, optional): Force this variable to be on CPU.
Default: False
name(str|None): The name of the variable. If set to None the variable
name will be generated automatically.
Default: None
name (str, optional): For detailed information, please refer to
:ref:`api_guide_Name` . Usually name is no need to set and None by default.
Returns:
Variable: the created Variable
Variable: The created Variable
Examples:
.. code-block:: python
......
......@@ -695,12 +695,13 @@ class SGDOptimizer(Optimizer):
param\_out = param - learning\_rate * grad
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Parameters:
learning_rate (float|Variable): The learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
Optional, default is None.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Examples:
.. code-block:: python
......@@ -778,14 +779,15 @@ class MomentumOptimizer(Optimizer):
&\quad param = param - learning\_rate * velocity
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
momentum (float): momentum factor
use_nesterov (bool): enables Nesterov momentum
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Parameters:
learning_rate (float|Variable): The learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
momentum (float): Momentum factor
use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
Optional, default is None.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Examples:
.. code-block:: python
......@@ -1142,16 +1144,16 @@ class LarsMomentumOptimizer(Optimizer):
& param = param - velocity
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
momentum (float): momentum factor
lars_coeff (float): defines how much we trust the layer to change its weights.
lars_weight_decay (float): weight decay coefficient for decaying using LARS.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Parameters:
learning_rate (float|Variable): The learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element. \
momentum (float): momentum factor
lars_coeff (float): Defines how much we trust the layer to change its weights.
lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
Optional, default is None.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Examples:
.. code-block:: python
......@@ -2015,20 +2017,21 @@ class RMSPropOptimizer(Optimizer):
from 1e-4 to 1e-8.
Args:
learning_rate(float): global learning rate.
rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
Parameters:
learning_rate(float): Global learning rate.
rho(float): rho is :math: `\\rho` in equation, default is 0.95.
epsilon(float): :math: `\\epsilon` in equation is smoothing term to
avoid division by zero, set 1e-6 by default.
avoid division by zero, default is 1e-6.
momentum(float): :math:`\\beta` in equation is the momentum term,
set 0.0 by default.
default is 0.0.
centered(bool): If True, gradients are normalized by the estimated variance of
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
Optional, default is None.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Raises:
ValueError: If learning_rate, rho, epsilon, momentum are None.
......@@ -2180,14 +2183,15 @@ class FtrlOptimizer(Optimizer):
&squared\_accum += grad^2
Args:
learning_rate (float|Variable): global learning rate.
l1 (float): L1 regularization strength.
l2 (float): L2 regularization strength.
lr_power (float): Learning Rate Power.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Parameters:
learning_rate (float|Variable): Global learning rate.
l1 (float): L1 regularization strength, default is 0.0.
l2 (float): L2 regularization strength, default is 0.0.
lr_power (float): Learning Rate Power, default is -0.5.
regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
Optional, default is None.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Raises:
ValueError: If learning_rate, rho, epsilon, momentum are None.
......@@ -2220,7 +2224,7 @@ class FtrlOptimizer(Optimizer):
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Notes:
NOTE:
Currently, FtrlOptimizer doesn't support sparse parameter optimization.
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册