tensor.py 38.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
31
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
32
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
33 34 35
]


X
xuwei06 已提交
36
def create_tensor(dtype, name=None, persistable=False):
37
    """
W
wangchaochaohu 已提交
38
    Create a variable, which will hold a Tensor with data type dtype.
39 40

    Args:
W
wangchaochaohu 已提交
41 42 43 44
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
45
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
46
            default value is False.
47 48

    Returns:
W
wangchaochaohu 已提交
49
        Variable: The tensor to be created according to dtype.
50 51 52 53

    Examples:
        .. code-block:: python

54
          import paddle.fluid as fluid
55 56
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
57
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
58 59
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
60 61


62 63
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
64
                     name=None,
65 66 67 68
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
69
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
70 71 72 73 74
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

75 76 77 78 79 80 81
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
82 83 84
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
85
        default_initializer (Initializer, optional): Initializer for the parameter
86 87

    Returns:
88
        The created parameter.
Y
yuyang18 已提交
89 90

    Examples:
91 92
        .. code-block:: python

93
            import paddle.fluid as fluid
94 95
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
96
    """
Q
Qiao Longfei 已提交
97
    helper = LayerHelper("create_parameter", **locals())
98
    if attr is None:
X
xuwei06 已提交
99
        attr = ParamAttr(name=name)
100 101 102 103
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
111
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
112

113 114 115
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
116
                      variable will be filled with it.
117 118
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
119
                           Default: False
120
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
121
                         Default: False
122 123
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
124 125

    Returns:
126
        Variable: The created Variable
F
fengjiayi 已提交
127 128 129 130

    Examples:
        .. code-block:: python

131
            import paddle.fluid as fluid
132 133 134
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
135
    """
Q
Qiao Longfei 已提交
136 137
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
138 139 140 141 142
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
143 144 145
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
146

Q
Qiao Longfei 已提交
147 148 149
    return var


150
def cast(x, dtype):
Y
Yu Yang 已提交
151
    """
M
minqiyang 已提交
152
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
153 154
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
155 156 157 158 159 160 161 162 163 164

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
165

166
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
167 168
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
169 170
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
171
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
172 173 174 175 176 177 178 179 180
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


181
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
182
    """
183 184 185
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
186
    and returns that as the output.
187 188 189 190

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
191 192
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
193 194 195 196 197 198

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
199

200
            import paddle.fluid as fluid
201 202 203 204 205
            a = fluid.layers.data(name='a', shape=[2, 13], dtype='float32')
            b = fluid.layers.data(name='b', shape=[2, 3], dtype='float32')
            c = fluid.layers.data(name='c', shape=[2, 2], dtype='float32')
            d = fluid.layers.data(name='d', shape=[2, 5], dtype='float32')
            out = fluid.layers.concat(input=[a, b, c, d], axis=2)
Y
Yu Yang 已提交
206 207
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
208
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
209 210 211 212 213 214 215 216
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
217 218 219 220 221 222
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
223

L
li099 已提交
224
    .. code-block:: text
M
minqiyang 已提交
225

L
li099 已提交
226 227 228 229 230 231 232 233
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
234

L
li099 已提交
235
        axis = 1
M
minqiyang 已提交
236

L
li099 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

257 258 259
            import paddle.fluid as fluid
            tensor_array = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
            output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
L
li099 已提交
260
    """
L
li099 已提交
261
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
262 263 264
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
265
        type='tensor_array_to_tensor',
L
li099 已提交
266 267 268 269 270 271 272
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


273
def sums(input, out=None):
F
fengjiayi 已提交
274 275
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
276 277 278 279 280
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
281
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
282
                             Default: None
K
kavyasrinet 已提交
283 284

    Returns:
F
fengjiayi 已提交
285
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
286 287

    Examples:
F
fengjiayi 已提交
288
        .. code-block:: python
K
kavyasrinet 已提交
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
          import paddle.fluid as fluid

          # sum of several tensors
          a0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
          a1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
          a2 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=3)
          sums = fluid.layers.sums(input=[a0, a1, a2])

          # sum of a tensor array
          array = fluid.layers.create_array('int64')
          i = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)
          fluid.layers.array_write(a0, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a1, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a2, array=array, i=i)
          sums = fluid.layers.sums(input=array)
Y
Yu Yang 已提交
307 308 309
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
310 311
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
312 313 314 315 316
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
317 318 319
    return out


F
fengjiayi 已提交
320
def assign(input, output=None):
321 322 323 324 325 326
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
327
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
328
        output(Variable|None): The destination variable
329 330 331 332 333 334

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
335

336 337
          import paddle.fluid as fluid
          data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
338 339 340 341
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
342
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
343
    if output is None:
X
Xin Pan 已提交
344
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
345 346
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
347
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
348 349
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
350
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
351
            value_name = "fp32_values"
352
            values = [float(v) for v in input.flat]
353
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
354
            value_name = "int32_values"
355
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
356 357
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
358 359 360
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
361 362 363 364 365 366 367

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
368
                value_name: values
X
xuwei06 已提交
369 370 371 372
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
373 374 375
    return output


Q
QI JUN 已提交
376
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
377
    """
W
wangchaochaohu 已提交
378
    This OP creates a Tensor with specified `shape` and `dtype`, and
379
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
380

W
wangchaochaohu 已提交
381
    The attribute `stop_gradient` of the created Tensor is setted to True.
382 383

    Args:
W
wangchaochaohu 已提交
384 385 386 387 388 389 390 391
        shape(tuple|list): Shape of the Tensor to be created.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
392 393

    Returns:
W
wangchaochaohu 已提交
394 395 396 397 398
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
399 400 401 402

    Examples:
        .. code-block:: python

403
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
404 405 406
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) 
          #data1=[[5], [5]] data2=[[5], [5]]
Y
Yu Yang 已提交
407
    """
408

Y
Yu Yang 已提交
409
    helper = LayerHelper("fill_constant", **locals())
410 411 412 413 414 415 416
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
417
    if out is None:
X
Xin Pan 已提交
418
        out = helper.create_variable_for_type_inference(dtype=dtype)
419 420 421 422 423 424
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
Y
Yu Yang 已提交
425 426 427 428
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
429 430 431 432
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
433
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
434 435
        },
        stop_gradient=True)
Y
Yu Yang 已提交
436 437 438 439
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
440
@templatedoc()
Y
Yu Yang 已提交
441 442 443 444 445
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
446
                                  output_dim_idx=0):
447
    """
W
wangchaochaohu 已提交
448 449 450 451 452
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
453 454

    Args:
W
wangchaochaohu 已提交
455 456 457 458 459 460 461 462 463 464 465
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
Y
yuyang18 已提交
466 467

    Returns:
W
wangchaochaohu 已提交
468
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
469 470 471 472 473

    Examples:

        .. code-block:: python

474
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
475
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
476
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
477
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
478

479
    """
Y
Yu Yang 已提交
480
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
481
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
497 498 499 500
def argmin(x, axis=0):
    """
    **argmin**

501
    This function computes the indices of the min elements
S
sneaxiy 已提交
502 503 504 505 506 507
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
508

S
sneaxiy 已提交
509 510
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
511

S
sneaxiy 已提交
512 513
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
514

515
            import paddle.fluid as fluid
516 517 518
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmin(x, axis=0)
            out = fluid.layers.argmin(x, axis=-1)
S
sneaxiy 已提交
519 520
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
521
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
522 523 524 525 526 527 528 529 530 531 532 533
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

534
    This function computes the indices of the max elements
S
sneaxiy 已提交
535 536 537 538 539 540
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
541

S
sneaxiy 已提交
542 543
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
544

S
sneaxiy 已提交
545 546
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
547

548
            import paddle.fluid as fluid
549 550 551
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmax(x, axis=0)
            out = fluid.layers.argmax(x, axis=-1)
S
sneaxiy 已提交
552 553
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
554
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
555 556 557 558 559 560 561 562
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


563
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
564
    """
M
minqiyang 已提交
565 566
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
567 568 569
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
570

Y
Yibing Liu 已提交
571 572 573 574 575 576 577 578 579 580 581 582
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
583
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
584 585 586 587
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
588 589
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
590
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
591
        name(str|None): (optional) A name for this layer. If set None, the
592
                   layer will be named automatically.
Y
Yibing Liu 已提交
593 594 595 596 597 598 599

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

600
            import paddle.fluid as fluid
601 602
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out, indices = fluid.layers.argsort(input=x, axis=0)
Y
Yibing Liu 已提交
603 604
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
605 606 607 608
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
609 610 611 612
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
613 614
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
615 616 617
    return out, ids


Y
Yang Yu 已提交
618
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
619
    """
620 621 622 623 624 625 626 627
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
628
        shape(tuple|list): Shape of output tensor
629
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
630 631 632 633 634 635 636

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

637
          import paddle.fluid as fluid
638
          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
639
    """
C
chengduozh 已提交
640 641 642 643
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
644 645 646
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
647
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
648
    """
649 650 651 652 653 654 655 656
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
657 658 659
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
660 661

    Returns:
W
wanghaoshuang 已提交
662
        Variable: The tensor variable storing the output.
663 664 665 666

    Examples:
        .. code-block:: python

667
          import paddle.fluid as fluid
668
          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
669 670
    """
    return fill_constant(value=0.0, **locals())
671 672


F
fengjiayi 已提交
673 674 675 676 677 678 679 680
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
681 682 683
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
684 685 686 687 688 689 690

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

691 692 693
          import paddle.fluid as fluid
          data = fluid.layers.data(name="data", shape=[4, 8], dtype="float32")
          out = fluid.layers.reverse(x=data, axis=0)
F
fengjiayi 已提交
694
          # or:
695
          out = fluid.layers.reverse(x=data, axis=[0,1])
F
fengjiayi 已提交
696 697 698 699
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
700
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
701 702
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
703
        inputs={'X': x},
F
fengjiayi 已提交
704 705 706 707 708
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


709 710 711 712 713 714 715
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
716 717 718
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
734 735
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
736
        file_path(str): The file path where variables will be saved.
737
        overwrite(bool): Whether or not cover the given file when it has already
738 739
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
740 741 742 743 744 745 746 747

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

748
            import paddle.fluid as fluid
749 750 751 752 753 754 755
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
780 781 782 783 784 785 786


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
787
       x (Variable): The Tensor/LoDTensor to be checked.
788 789

    Returns:
790
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
791 792 793 794 795 796 797 798
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

799 800
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
801
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
802 803 804 805 806 807 808 809 810
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
811
       x (Variable): The Tensor/LoDTensor to be checked.
812 813

    Returns:
814
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
815 816 817 818 819 820 821 822
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

823 824
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
825
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
826 827 828 829 830 831 832 833 834 835 836 837 838 839
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
840 841 842 843 844

    Examples:

        .. code-block:: python

845
            import paddle.fluid as fluid
846 847 848
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
849
            out = fluid.layers.isfinite(var)
850 851
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
852
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
853 854
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
855 856 857 858 859 860 861 862 863


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
864 865 866 867
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
868
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
869 870 871
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
872
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
873
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
874

L
Liufang Sang 已提交
875 876 877
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
878 879 880 881 882

    examples:

        .. code-block:: python

883
             import paddle.fluid as fluid
W
whs 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
904
    out.stop_gradient = True
W
whs 已提交
905
    return out
Z
zhoukunsheng 已提交
906 907


Z
zhoukunsheng 已提交
908 909
def linspace(start, stop, num, dtype):
    """
910
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
911 912

    Args:
913 914 915 916 917 918 919
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
920 921

    Returns:
922 923 924
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
925

Z
zhoukunsheng 已提交
926
    Examples:
Z
zhoukunsheng 已提交
927 928
        .. code-block:: python

929
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
930 931
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
952 953


Z
zhoukunsheng 已提交
954 955
def zeros_like(x, out=None):
    """
956
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
957 958 959
    with `x`.

    Args:
960 961 962 963
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
964 965

    Returns:
966 967
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
968 969 970 971

    Examples:
        .. code-block:: python

972
          import paddle.fluid as fluid
973
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
974 975
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
976 977 978 979 980 981 982 983 984
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
985 986 987 988


def diag(diagonal):
    """
989
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
990 991

    Args:
992 993
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
994 995

    Returns:
996 997
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
998 999 1000 1001 1002 1003 1004

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1005 1006 1007

          import paddle.fluid as fluid
          import numpy as np
1008 1009 1010
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1026 1027


1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1040 1041
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1042 1043

    Returns:
1044
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1045 1046 1047 1048 1049

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1050 1051
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1052
          #  [0, 1, 0]
1053 1054
          #  [0, 0, 1]]

1055
          data = fluid.layers.eye(2, 3, dtype='int32')
1056
          # [[1, 0, 0]
1057
          #  [0, 1, 0]]
1058 1059

          data = fluid.layers.eye(2, batch_shape=[3])
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1112
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out