tensor.py 46.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
31
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
32
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
33 34 35
]


X
xuwei06 已提交
36
def create_tensor(dtype, name=None, persistable=False):
37
    """
W
wangchaochaohu 已提交
38
    Create a variable, which will hold a Tensor with data type dtype.
39 40

    Args:
W
wangchaochaohu 已提交
41 42 43 44
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
45
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
46
            default value is False.
47 48

    Returns:
W
wangchaochaohu 已提交
49
        Variable: The tensor to be created according to dtype.
50 51 52 53

    Examples:
        .. code-block:: python

54
          import paddle.fluid as fluid
55 56
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
57
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
58 59
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
60 61


62 63
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
64
                     name=None,
65 66 67 68
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
69
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
70 71 72 73 74
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

75 76 77 78 79 80 81
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
82 83 84
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
85
        default_initializer (Initializer, optional): Initializer for the parameter
86 87

    Returns:
88
        The created parameter.
Y
yuyang18 已提交
89 90

    Examples:
91 92
        .. code-block:: python

93
            import paddle.fluid as fluid
94 95
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
96
    """
Q
Qiao Longfei 已提交
97
    helper = LayerHelper("create_parameter", **locals())
98
    if attr is None:
X
xuwei06 已提交
99
        attr = ParamAttr(name=name)
100 101 102 103
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
111
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
112

113 114 115
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
116
                      variable will be filled with it.
117 118
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
119
                           Default: False
120
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
121
                         Default: False
122 123
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
124 125

    Returns:
126
        Variable: The created Variable
F
fengjiayi 已提交
127 128 129 130

    Examples:
        .. code-block:: python

131
            import paddle.fluid as fluid
132 133 134
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
135
    """
Q
Qiao Longfei 已提交
136 137
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
138 139 140 141 142
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
143 144 145
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
146

Q
Qiao Longfei 已提交
147 148 149
    return var


150
def cast(x, dtype):
Y
Yu Yang 已提交
151
    """
152 153 154
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
155 156

    Args:
157 158 159 160
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
161 162

    Returns:
163
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
164 165 166

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
167

168
            import paddle.fluid as fluid
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
191 192
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
193
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


203
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
204
    """
205 206
    **Concat**

207
    This OP concatenates the input along the axis.
208 209

    Args:
210 211 212 213 214 215 216 217
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
218 219

    Returns:
220
        Variable: A Tensor with the same data type as input's.
221 222 223

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
224

225
            import paddle.fluid as fluid
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
248 249
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
250
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
251 252 253 254 255 256 257 258
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
259 260
def tensor_array_to_tensor(input, axis=1, name=None):
    """
261
    This OP concatenates the input LodTensorArray along the axis.
L
li099 已提交
262 263

    Args:
264 265 266 267 268 269 270 271
        input(Variable): A LodTensorArray with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 1.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
L
li099 已提交
272 273

    Returns:
274 275
        Variable: A LoDTensor with the same data type as input's
        Variable: The input LodTensorArray items' dims along the axis.
L
li099 已提交
276 277 278 279

    Examples:
        .. code-block:: python

280
            import paddle.fluid as fluid
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            import numpy as np

            place = fluid.CPUPlace()

            x1 = fluid.data(name="x", shape=[2,2], lod_level=0)
            tmp = fluid.layers.fill_constant(shape=[2,3], dtype="float32", value=1)
            x_arr = fluid.layers.create_array(dtype="float32")
            c0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            fluid.layers.array_write(x=tmp, i=c0, array=x_arr)
            c1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            fluid.layers.array_write(x=x1, i=c1, array=x_arr)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=x_arr, axis=1)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            feedx = fluid.LoDTensor()
            feedx.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            res = exe.run(fluid.default_main_program(), feed={'x':feedx}, fetch_list=[output], return_numpy=False)
            print(np.array(res[0]))
            # [[ 1.   1.   1.   1.3 -2.4]
            #  [ 1.   1.   1.   0.   4. ]]
L
li099 已提交
303
    """
L
li099 已提交
304
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
305 306 307
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
308
        type='tensor_array_to_tensor',
L
li099 已提交
309 310 311 312 313 314 315
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


316
def sums(input, out=None):
F
fengjiayi 已提交
317
    """
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
339 340

    Args:
341 342 343 344
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
345 346

    Returns:
347 348
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
349 350

    Examples:
F
fengjiayi 已提交
351
        .. code-block:: python
K
kavyasrinet 已提交
352

353 354 355 356 357 358 359 360 361
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
362

363 364
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
365 366 367
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
368 369
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
370 371 372 373 374
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
375 376 377
    return out


F
fengjiayi 已提交
378
def assign(input, output=None):
379
    """
380
    The OP copies the :attr:`input` to the :attr:`output`.
381

382 383 384 385 386
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
387 388

    Returns:
389
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
390 391 392

    Examples:
        .. code-block:: python
393

394
          import paddle.fluid as fluid
395 396 397 398 399 400
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
401
    """
Y
Yu Yang 已提交
402
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
403
    if output is None:
X
Xin Pan 已提交
404
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
405 406
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
407
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
408 409
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
410
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
411
            value_name = "fp32_values"
412
            values = [float(v) for v in input.flat]
413
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
414
            value_name = "int32_values"
415
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
416 417
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
418 419 420
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
421 422 423 424 425 426 427

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
428
                value_name: values
X
xuwei06 已提交
429 430 431 432
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
433 434 435
    return output


Q
QI JUN 已提交
436
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
437
    """
W
wangchaochaohu 已提交
438
    This OP creates a Tensor with specified `shape` and `dtype`, and
439
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
440

W
wangchaochaohu 已提交
441
    The attribute `stop_gradient` of the created Tensor is setted to True.
442 443

    Args:
W
wangchaochaohu 已提交
444 445 446 447 448 449 450 451
        shape(tuple|list): Shape of the Tensor to be created.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
452 453

    Returns:
W
wangchaochaohu 已提交
454 455 456 457 458
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
459 460 461 462

    Examples:
        .. code-block:: python

463
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
464 465 466
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) 
          #data1=[[5], [5]] data2=[[5], [5]]
Y
Yu Yang 已提交
467
    """
468

Y
Yu Yang 已提交
469
    helper = LayerHelper("fill_constant", **locals())
470 471 472 473 474 475 476
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
477
    if out is None:
X
Xin Pan 已提交
478
        out = helper.create_variable_for_type_inference(dtype=dtype)
479 480 481 482 483 484
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
Y
Yu Yang 已提交
485 486 487 488
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
489 490 491 492
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
493
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
494 495
        },
        stop_gradient=True)
Y
Yu Yang 已提交
496 497 498 499
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
500
@templatedoc()
Y
Yu Yang 已提交
501 502 503 504 505
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
506
                                  output_dim_idx=0):
507
    """
W
wangchaochaohu 已提交
508 509 510 511 512
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
513 514

    Args:
W
wangchaochaohu 已提交
515 516 517 518 519 520 521 522 523 524 525
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
Y
yuyang18 已提交
526 527

    Returns:
W
wangchaochaohu 已提交
528
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
529 530 531 532 533

    Examples:

        .. code-block:: python

534
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
535
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
536
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
537
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
538

539
    """
Y
Yu Yang 已提交
540
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
541
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
557 558 559 560
def argmin(x, axis=0):
    """
    **argmin**

561 562
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
563 564

    Args:
565 566 567 568 569
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
570

S
sneaxiy 已提交
571
    Returns:
572
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
573

S
sneaxiy 已提交
574 575
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
576

577
            import paddle.fluid as fluid
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
605 606
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
607
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
608 609 610 611 612 613 614 615 616 617 618 619
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

620 621
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
622 623

    Args:
624 625 626 627 628
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
629

S
sneaxiy 已提交
630
    Returns:
631
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
632

S
sneaxiy 已提交
633 634
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
635

636
            import paddle.fluid as fluid
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
664 665
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
666
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
667 668 669 670 671 672 673 674
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


675
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
676
    """
677 678 679
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
680 681

    Args:
682 683 684 685 686 687 688 689
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
690 691

    Returns:
692 693 694
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
695 696 697 698

    Examples:
        .. code-block:: python

699
            import paddle.fluid as fluid
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
741 742
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
743 744 745 746
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
747 748 749 750
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
751 752
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
753 754 755
    return out, ids


Y
Yang Yu 已提交
756
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
757
    """
758 759
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
760

761 762 763 764 765 766 767
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
768 769

    Returns:
770
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
771 772 773 774

    Examples:
        .. code-block:: python

775
          import paddle.fluid as fluid
776
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
777
    """
C
chengduozh 已提交
778 779 780 781
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
782 783 784
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
785
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
786
    """
787 788
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
789

790 791 792 793 794 795 796
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
797 798

    Returns:
799
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
800 801 802 803

    Examples:
        .. code-block:: python

804
          import paddle.fluid as fluid
805
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
806 807
    """
    return fill_constant(value=0.0, **locals())
808 809


F
fengjiayi 已提交
810 811
def reverse(x, axis):
    """
812
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
813

814 815 816 817 818
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
819 820

    Returns:
821
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
822 823 824 825

    Examples:
        .. code-block:: python

826
          import paddle.fluid as fluid
827 828 829 830
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
831 832 833 834
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
835
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
836 837
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
838
        inputs={'X': x},
F
fengjiayi 已提交
839 840 841 842 843
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


844 845 846 847 848 849 850
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
851 852 853
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
869 870
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
871
        file_path(str): The file path where variables will be saved.
872
        overwrite(bool): Whether or not cover the given file when it has already
873 874
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
875 876 877 878 879 880 881 882

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

883
            import paddle.fluid as fluid
884 885 886 887 888 889 890
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
915 916 917 918 919 920 921


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
922
       x (Variable): The Tensor/LoDTensor to be checked.
923 924

    Returns:
925
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
926 927 928 929 930 931 932 933
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

934 935
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
936
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
937 938 939 940 941 942 943 944 945
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
946
       x (Variable): The Tensor/LoDTensor to be checked.
947 948

    Returns:
949
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
950 951 952 953 954 955 956 957
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

958 959
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
960
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
961 962 963 964 965 966
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
967
    Test if any of x contains an infinity / nan number. If all the elements are finite,
968 969
    returns true, else false.

970 971 972
    Note: The input to this operator Tensor / LoDTensor data type must be one of
    int32 / float / double.

973
    Args:
974
       x(Variable): The Tensor / LoDTensor to be checked.
975 976 977

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
978 979 980 981 982

    Examples:

        .. code-block:: python

983
            import paddle.fluid as fluid
984 985 986 987 988 989 990 991 992 993 994 995 996
            import numpy

            # Graph Organizing
            var = fluid.data(name="data", shape=(4, 6), dtype="float32")
            output = fluid.layers.isfinite(var)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            img = numpy.ones((4, 6)).astype(numpy.float32)
            res, = exe.run(fluid.default_main_program(), feed={'data':img}, fetch_list=[output])
            print(res)  # Output Value: [ True]
997 998
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
999
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1000 1001
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1011 1012 1013 1014
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1015
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1016 1017 1018
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1019
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
1020
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1021

L
Liufang Sang 已提交
1022 1023 1024
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1025 1026 1027 1028 1029

    examples:

        .. code-block:: python

1030
             import paddle.fluid as fluid
W
whs 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1051
    out.stop_gradient = True
W
whs 已提交
1052
    return out
Z
zhoukunsheng 已提交
1053 1054


Z
zhoukunsheng 已提交
1055 1056
def linspace(start, stop, num, dtype):
    """
1057
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1058 1059

    Args:
1060 1061 1062 1063 1064 1065 1066
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1067 1068

    Returns:
1069 1070 1071
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1072

Z
zhoukunsheng 已提交
1073
    Examples:
Z
zhoukunsheng 已提交
1074 1075
        .. code-block:: python

1076
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1077 1078
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1099 1100


Z
zhoukunsheng 已提交
1101 1102
def zeros_like(x, out=None):
    """
1103
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1104 1105 1106
    with `x`.

    Args:
1107 1108 1109 1110
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1111 1112

    Returns:
1113 1114
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1115 1116 1117 1118

    Examples:
        .. code-block:: python

1119
          import paddle.fluid as fluid
1120
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1121 1122
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1132 1133 1134 1135


def diag(diagonal):
    """
1136
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1137 1138

    Args:
1139 1140
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1141 1142

    Returns:
1143 1144
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1145 1146 1147 1148 1149 1150 1151

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1152 1153 1154

          import paddle.fluid as fluid
          import numpy as np
1155 1156 1157
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1173 1174


1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1187 1188
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1189 1190

    Returns:
1191
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1192 1193 1194 1195 1196

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1197 1198
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1199
          #  [0, 1, 0]
1200 1201
          #  [0, 0, 1]]

1202
          data = fluid.layers.eye(2, 3, dtype='int32')
1203
          # [[1, 0, 0]
1204
          #  [0, 1, 0]]
1205 1206

          data = fluid.layers.eye(2, batch_shape=[3])
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1259
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out